Locality Lecture 6: Finite and algorithmic Model Theory

Idea: First order logic can only express "local" properties

Local $=$ properties of nodes which are close to one another

[Some of the slides are by Diego Figueira, some of them by Anne Damar].

What kind of problems we study?

Definability: is the property P expressible in logic \mathcal{L} ?
E.g. is connectivity expressible in First-Order Logic?

Expressive power: Can the logics \mathcal{L}_{1} and \mathcal{L}_{2} express exactly the same properties?

Succinctness: Can \mathcal{L}_{1} express the properties of \mathcal{L}_{2} but shorter?

Descriptive complexity: Is there a logic characterising the complexity class \mathcal{C} ?

Satisfiability: is there a model of a formula φ ?

Model-checking (a.k.a. query evaluation): given φ and G is it the case that $G \models \varphi$?

Gaifman Graphs and Neighbourhoods

On a structure \mathbb{A}, define the binary relation:
$E\left(a_{1}, a_{2}\right)$ if, and only if, there is some relation R and some tuple a containing both a_{1} and a_{2} with $R(\mathbf{a})$.

The graph $G \mathbb{A}=(A, E)$ is called the Gaifman graph of \mathbb{A}. Example:

Gaifman Graphs and Neighbourhoods

On a structure \mathbb{A}, define the binary relation:
$E\left(a_{1}, a_{2}\right)$ if, and only if, there is some relation R and some tuple a containing both a_{1} and a_{2} with $R(\mathbf{a})$.

The graph $G \mathbb{A}=(A, E)$ is called the Gaifman graph of \mathbb{A}.
$\operatorname{dist}(a, b)$ - the distance between a and b in the graph (A, E).
$\operatorname{Nbd}_{r}^{\mathbb{A}}(a)$ - the substructure of \mathbb{A} given by the set:

Hand locality

Definition. Two structures S_{1} and S_{2} are $\operatorname{Hanf}(r, t)$-equivalent
iff for each structure B, the two numbers

$$
\Rightarrow \leqslant=\| \text { s.t. } S_{1}[u, r] \cong B
$$

$$
\# v \text { s.t. } S_{2}[v, r] \cong B
$$

are either the same or both $\geq t$. usually denoted with

$$
N_{r}^{s_{1}}(u) \text { or } \operatorname{Neib}_{\uparrow}^{s_{1}}(u)
$$

Hanf locality

Definition. Two structures S_{1} and S_{2} are $\operatorname{Hanf}(\boldsymbol{1}, \boldsymbol{t})$ - equivalent iff for each structure B, the two numbers

$$
\# u \text { s.t. } S_{1}[u, \mathbb{1}] \cong B \quad \# v \text { s.t. } S_{2}[v, \mathbb{1}] \cong B
$$

are either the same or both $\geq \mathcal{1}$.

Example. S_{1}, S_{2} are $\operatorname{Hanf}(1,1)$ - equivalent iff they have the same balls of radius 1

Hanf locality

Definition. Two structures S_{1} and S_{2} are $\operatorname{Hanf}(\boldsymbol{r}, \boldsymbol{t})$ - equivalent iff for each structure B, the two numbers

$$
\# u \text { s.t. } S_{1}[u, r] \cong B \quad \# v \text { s.t. } S_{2}[v, r] \cong B
$$

are either the same or both $\geq t$.

Example. S_{1}, S_{2} are $\operatorname{Hanf}(1,1)$ - equivalent iff they have the same balls of radius 1

Hanf locality

Definition. Two structures S_{1} and S_{2} are $\operatorname{Hanf}(\boldsymbol{r}, \boldsymbol{t})$ - equivalent iff for each structure B, the two numbers

$$
\# u \text { s.t. } S_{1}[u, r] \cong B \quad \# v \text { s.t. } S_{2}[v, r] \cong B
$$

are either the same or both $\geq t$.

Example. $K_{\mathrm{n}}, K_{\mathrm{n}+1}$ are not $\operatorname{Hanf}(1,1)$ - equivalent

Hanf locality

Definition. Two structures S_{1} and S_{2} are $\operatorname{Hanf}(\boldsymbol{r}, \boldsymbol{t})$ - equivalent iff for each structure B, the two numbers

$$
\# u \text { s.t. } S_{1}[u, r] \cong B \quad \# v \text { s.t. } S_{2}[v, r] \cong B
$$

are either the same or both $\geq t$.

Example. $K_{\mathrm{n}}, K_{\mathrm{n}+1}$ are not $\operatorname{Hanf}(1,1)$ - equivalent

Hanf locality

Theorem. S_{1}, S_{2} are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_{1}, S_{2} are $\operatorname{Hanf}\left(\boldsymbol{b}^{n}, n\right)$-equivalent, n.

Hanf locality

Theorem. S_{1}, S_{2} are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_{1}, S_{2} are $\operatorname{Hanf}(r, t)$-equivalent, with $r=3^{n}$ and $t=n$.

Exercise: prove that acyclicity is not FO-definable (even on finite structures)

Hand locality

Theorem. S_{1}, S_{2} are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_{1}, S_{2} are $\operatorname{Hanf}(r, t)$-equivalent, with $r=3^{n}$ and $t=n$.

Exercise: prove that acyclicity is not FO-definable (even on finite structures)

Hanf locality

Theorem. S_{1}, S_{2} are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_{1}, S_{2} are $\operatorname{Hanf}(r, t)$-equivalent, with $r=3^{n}$ and $t=n$.

Exercise: prove that acyclicity is not FO-definable (even on finite structures)

Hanf locality

Theorem. S_{1}, S_{2} are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_{1}, S_{2} are $\operatorname{Hanf}(r, t)$-equivalent, with $r=3^{n}$ and $t=n$.

Exercise: prove that acyclicity is not FO-definable (even on finite structures)

Hanf locality

Theorem. S_{1}, S_{2} are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_{1}, S_{2} are $\operatorname{Hanf}(r, t)$-equivalent, with $r=3^{n}$ and $t=n$.

Exercise: prove that testing whether a binary tree is complete is not FO-definable

Next task : How to show that $F O$ is Hanf-local?

Theorem. S_{1}, S_{2} are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_{1}, S_{2} are $\operatorname{Hanf}(r, t)$ - equivalent, with $r=3^{n}$ and $t=n$.

Proof idea:
Assume that B and B are $\operatorname{Hanf}\left(3^{n}, n\right)$ - equivalent and let us fund a winning strategy for duplicator in n-rand $\varepsilon-F$ game.

Our invariant: After k rounds we have that

$$
\bigcup_{1 \leqslant i \leqslant k} N_{3^{n-k}}^{A}\left(a_{i}\right) \cong \bigcup_{1 \leqslant i \leqslant k} N_{3^{n-k}}^{B}\left(b_{i}\right),
$$

where $a_{1}, \ldots, a_{k} \in A$ and b_{1}, \ldots, b_{k} are the selected elements.

Next task : How to show that $F O$ is Hanf-local?

Theorem. S_{1}, S_{2} are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_{1}, S_{2} are $\operatorname{Hanf}(r, t)$-equivalent, with $r=3^{n}$ and $t=n$.

Our invariant: After k rounds we have that

Parameterized Complexity

FPT-the class of problems of input size n and parameter l which can be solved in time $O\left(f(l) n^{c}\right)$ for some computable function f and constanct c.

There is a hierarchy of intractable classes.

$$
\mathrm{FPT} \subseteq W[1] \subseteq W[2] \subseteq \cdots \subseteq \mathrm{AW}[\star]
$$

The satisfaction relation for first-order logic $(\mathbb{A} \| \varphi)$, parameterized by the length of φ is AW $[\star]$-complete.

$$
\exists x_{1} \cdots \exists x_{k}\left(\forall y \forall z \left(E(y, z) \Rightarrow\left(\bigvee_{1 \leq i \leq k} y=x_{i} \vee \bigvee_{1 \leq i \leq k} z=x_{i}\right)\right.\right.
$$

Vertex Cover is FPT
Independent Set:

$$
\exists x_{1} \cdots \exists x_{k}\left(\bigwedge_{i<j} \neg E\left(x_{i}, x_{j}\right)\right)
$$

Independent Set is W [1]-complete
Dominating Set:

$$
\exists x_{1} \cdots \exists x_{k} \forall y\left(\bigwedge_{i} x_{i} \neq y \Rightarrow \bigvee_{i} E\left(x_{i}, y\right)\right)
$$

Dominating Set is $W[2]$-complete.

Restricted Classes

One way to get a handle on the complexity of first-order satisfaction is to consider restricted classes of structures.

Given: a first-order formula φ and a structure $\mathbb{A} \in \mathcal{C}$
Decide: if $\mathbb{A}=\varphi$
For many interesting classes \mathcal{C}, this problem has been shown to be FPT.
The theorem of (Courcelle 1990) shows this for \mathcal{T}_{k}-the class of graphs of tree-width at most k, even for MSO.

Bounded Degree

\mathcal{D}_{k}-the class of structures \mathbb{A} in which every element has at most k neighbours in $G \mathbb{A}$.
Theorem (Seese)

For every sentence φ of FO and every k there is a linear time algorithm which, given a structure $\mathbb{A} \in \mathcal{D}_{k}$ determines whether $\mathbb{A} \vDash \varphi$.

Note: this is not true for MSO unless $P=N P$.
The proof is based on locality of first-order logic. Specifically, Hanf's theorem.

Motivations: why do we care about logic? Meta-Algorithms

Logical characterisation of problems leads to meta-algorithms:
Any property of "graphs" expressible in logic \mathcal{L} is linear-time checkable on graphs from the class \mathcal{C}.

Theorem (Courcelle 1990)
$\mathcal{L}=$ MSO, $\mathcal{C}=$ bounded-treewidth.

Theorem (Seese 1996)
$\mathcal{L}=$ FO, $\mathcal{C}=$ bounded-degree.
Theorem (Dvorák et al. 2010)
$\mathcal{L}=\mathrm{FO}, \mathcal{C}=$ bounded-expansion.
Bounded expansion
Excluding a
topological minor

Bounded treewidth

Bounded treedepth

Star forests
Theorem (Grohe, Kreutzer, Siebertz 2014)

Nowhere dense

