Idea: First order logic can only express "local" properties

Local = properties of nodes which are close to one another

[Some of the slides are by Diego Figueira, some of them by Anyi Dawar].

What kind of problems we study?

Definability: is the property P expressible in logic \mathcal{L} ?

E.g. is connectivity expressible in First-Order Logic?

Expressive power: Can the logics \mathcal{L}_1 and \mathcal{L}_2 express exactly the same properties?

Succinctness: Can \mathcal{L}_1 express the properties of \mathcal{L}_2 but shorter?

Descriptive complexity: Is there a logic characterising the complexity class C?

Satisfiability: is there a model of a formula φ ?

Model-checking (a.k.a. query evaluation): given φ and G is it the case that $G \models \varphi$?

Gaifman Graphs and Neighbourhoods

On a structure \mathbb{A} , define the binary relation:

 $E(a_1, a_2)$ if, and only if, there is some relation R and some tuple \mathbf{a} containing both a_1 and a_2 with $R(\mathbf{a})$.

The graph GA = (A, E) is called the *Gaifman graph* of A.

Example

Anuj Dawar August 2016

Gaifman Graphs and Neighbourhoods

On a structure A, define the binary relation:

 $E(a_1, a_2)$ if, and only if, there is some relation R and some tuple \mathbf{a} containing both a_1 and a_2 with $R(\mathbf{a})$.

The graph GA = (A, E) is called the *Gaifman graph* of A.

dist(a,b) — the distance between a and b in the graph (A,E).

 $\operatorname{Nbd}_r^{\mathbb{A}}(a)$ — the substructure of \mathbb{A} given by the set:

 $\{b \mid dist(a,b) \leq r\}$

called a "ball"

Anuj Dawar August 2016

Definition. Two structures S_1 and S_2 are Hanf(r, t) - equivalent

iff for each structure B, the two numbers

#
$$u$$
 s.t. $S_1[u,r] \cong B$ # v s.t. $S_2[v,r] \cong B$

#
$$v$$
 s.t. $S_2[v,r] \cong B$

are either the same or both $\geq t$.

usually denoted with

$$N_{\tau}^{S_1}(u)$$
 or $N_{eib}^{S_1}(u)$

Definition. Two structures S_1 and S_2 are Hanf (1.4) - equivalent

iff for each structure B, the two numbers

#
$$u$$
 s.t. $S_1[u, \mathbf{1}] \cong B$ # v s.t. $S_2[v, \mathbf{1}] \cong B$

#
$$v$$
 s.t. $S_2[v_1] \cong B$

are either the same or both ≥ 1 .

Example. S_1 , S_2 are Hanf (1,1) - equivalent iff they have the *same* (balls of radius 1)

Definition. Two structures S_1 and S_2 are Hanf(r, t) - equivalent

iff for each structure B, the two numbers

#
$$u$$
 s.t. $S_1[u,r] \cong B$ # v s.t. $S_2[v,r] \cong B$

are either the same or both $\geq t$.

Example. S_1 , S_2 are Hanf (1, 1) - equivalent iff they have the *same balls* of radius 1

Definition. Two structures S_1 and S_2 are Hanf(r, t) - equivalent

iff for each structure B, the two numbers

#
$$u$$
 s.t. $S_1[u,r] \cong B$ # v s.t. $S_2[v,r] \cong B$

are either the same or both $\geq t$.

Example. K_n , K_{n+1} are **not** Hanf (1,1) - equivalent

Definition. Two structures S_1 and S_2 are Hanf(r, t) - equivalent

iff for each structure B, the two numbers

#
$$u$$
 s.t. $S_1[u,r] \cong B$ # v s.t. $S_2[v,r] \cong B$

are either the same or both $\geq t$.

Example. K_n , K_{n+1} are **not** Hanf (1,1) - equivalent


```
Theorem. S_1, S_2 are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1, S_2 are Hanf (3,n)-equivalent, with n = 3^n and t = n. [Hanf '60]
```

```
Theorem. S_1, S_2 are n - equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1, S_2 are \operatorname{Hanf}(r,t) - equivalent, with r=3^n and t=n. [Hanf '60]
```

Theorem. S_1 , S_2 are n - equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1 , S_2 are $\operatorname{Hanf}(r,t)$ - equivalent, with $r=3^n$ and t=n. [Hanf '60]

Theorem. S_1 , S_2 are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1 , S_2 are $\operatorname{Hanf}(r,t)$ -equivalent, with $r=3^n$ and t=n. [Hanf '60]

Theorem. S_1 , S_2 are n - equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1 , S_2 are $\operatorname{Hanf}(r,t)$ - equivalent, with $r=3^n$ and t=n. [Hanf '60]

Theorem. S_1 , S_2 are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1 , S_2 are $\operatorname{Hanf}(r,t)$ -equivalent, with $r=3^n$ and t=n. [Hanf '60]

Exercise: prove that testing whether a binary tree is complete is not FO-definable

Next task: How to show that FO is Hanf-local?

Theorem. S_1 , S_2 are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1 , S_2 are $\operatorname{Hanf}(r,t)$ -equivalent, with $r=3^n$ and t=n. [Hanf '60]

Proof idea: Assume that B and B are Hanf (3", n) - equivalent and a winning strategy for duplicator in n-rand E-F game. Our invariant: After k rounds me have that where a, ..., at & A and b, ..., bx are the selected elements.

Next task: How to show that FO is Hanf-local?

Theorem. S_1 , S_2 are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1 , S_2 are $\operatorname{Hanf}(r,t)$ -equivalent, with $r=3^n$ and t=n. [Hanf '60]

Parameterized Complexity

FPT—the class of problems of input size n and parameter l which can be solved in time $O(f(l)n^c)$ for some computable function f and constanct c.

There is a hierarchy of *intractable* classes.

$$(FPT \subseteq W[1] \subseteq W[2] \subseteq \cdots \subseteq AW[\star]$$

The satisfaction relation for first-order logic ($\mathbb{A} \models \varphi$), parameterized by the length of φ is $AW[\star]$ -complete.

$$O(3(k) \cdot n^2)$$
 Graph Problems $G = [$

$$\exists x_1 \cdots \exists x_k (\forall y \forall z (E(y, z) \Rightarrow (\bigvee_{1 \le i \le k} y = x_i \lor \bigvee_{1 \le i \le k} z = x_i)$$

Vertex Cover is FPT

Independent Set:

$$\exists x_1 \cdots \exists x_k (\bigwedge_{i < j} \neg E(x_i, x_j))$$

Independent Set is W[1]-complete

Dominating Set:

$$\exists x_1 \cdots \exists x_k \forall y (\bigwedge_i x_i \neq y \Rightarrow \bigvee_i E(x_i, y))$$

Dominating Set is W[2]-complete.

Restricted Classes

One way to get a handle on the complexity of first-order satisfaction is to consider restricted classes of structures.

Given: a first-order formula φ and a structure $\mathbb{A} \in \mathcal{C}$

Decide: if $\mathbb{A} \models \varphi$

For many interesting classes C, this problem has been shown to be FPT.

The theorem of (Courcelle 1990) shows this for \mathcal{T}_k —the class of graphs of tree-width at most k, even for MSO.

Anuj Dawar August 2016

Bounded Degree

 \mathcal{D}_k —the class of structures A in which every element has at most k neighbours in GA. 0(3(k)·n)

Theorem (Seese)

For every sentence φ of FO and every k there is a linear time algorithm which, given a structure $\mathbb{A} \in \mathcal{D}_k$ determines whether $\mathbb{A} \models \varphi$.

Note: this is not true for MSO unless P = NP.

The proof is based on *locality* of first-order logic. Specifically, *Hanf's* theorem.

Anuj Dawar August 2016

Motivations: why do we care about logic? Meta-Algorithms

Logical characterisation of problems leads to meta-algorithms:

Any property of "graphs" expressible in logic \mathcal{L} is linear-time checkable on graphs from the class \mathcal{C} .

Theorem (Courcelle 1990)

$$\mathcal{L} = \mathsf{MSO}$$
, $\mathcal{C} = \mathsf{bounded}$ -treewidth.

Theorem (Seese 1996)

$$\mathcal{L} = \mathsf{FO}$$
, $\mathcal{C} = \mathsf{bounded}$ -degree.

Theorem (Dvorák et al. 2010)

$$\mathcal{L}=\mathsf{FO}$$
, $\mathcal{C}=\mathsf{bounded}\text{-expansion}.$

Theorem (Grohe, Kreutzer, Siebertz 2014)

Picture by © Felix Reidl. No changes have been made.

Nowhere dense

Locally bounded

expansion

 $\mathcal{O}(n^{1+arepsilon})$ algorithms for $\mathcal{L}=\mathsf{FO}$ and $\mathcal{C}=\mathsf{nowhere} ext{-dense}$ graphs.

Star forests

Linear forests

Locally excluding