
Locality

Idea: First order logic can only express “local” properties

Local = properties of nodes which are close to one another

Lecture 6 : Finite and algorithmic Model Theory

[ Some of the slides are by Diego Figueira ,

some of them by Anuj Dawa, ] .



What kind of problems we study?

Definability: is the property P expressible in logic L?
E.g. is connectivity expressible in First-Order Logic?

Expressive power: Can the logics L1 and L2 express exactly the same properties?

Succinctness: Can L1 express the properties of L2 but shorter?

E.g. LTL vs FO over words.

Descriptive complexity: Is there a logic characterising the complexity class C?

Satisfiability: is there a model of a formula Ï?

Model-checking (a.k.a. query evaluation): given Ï and G is it the case that G |= Ï?
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Gaifman Graphs and Neighbourhoods

On a structure A, define the binary relation:

E(a1, a2) if, and only if, there is some relation R and some

tuple a containing both a1 and a2 with R(a).

The graph GA = (A,E) is called the Gaifman graph of A.

dist(a, b) — the distance between a and b in the graph (A,E).

NbdAr (a) — the substructure of A given by the set:

{b | dist(a, b)  r}
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Hanf locality

 De!nition.  Two structures S1 and S2 are  Hanf (r, t) - equivalent 

             i"    for each structure B ,   the two numbers  

    #u  s.t.  S1 [u, r] ≅ B            #v  s.t.  S2 [v, r] ≅ B 

                    are  either the same  or  both ≥ t .9
usually denoted with

N :( u ) or Neibrfu )



Hanf locality

Example.  S1 , S2 are Hanf (1, 1) - equivalent i" they have the same balls of radius 1

 De!nition.  Two structures S1 and S2 are  Hanf (r, t) - equivalent 

             i"    for each structure B ,   the two numbers  

    #u  s.t.  S1 [u, r] ≅ B            #v  s.t.  S2 [v, r] ≅ B 

                    are  either the same  or  both ≥ t .
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Hanf locality

Example.  Kn , Kn+1 are not Hanf (1, 1) - equivalent

 De!nition.  Two structures S1 and S2 are  Hanf (r, t) - equivalent 

             i"    for each structure B ,   the two numbers  

    #u  s.t.  S1 [u, r] ≅ B            #v  s.t.  S2 [v, r] ≅ B 

                    are  either the same  or  both ≥ t .
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Hanf locality

 !eorem.  S1 , S2 are  n - equivalent  ( they satisfy the same sentences with quanti!er rank n ) 

                      whenever  S1 , S2  are  Hanf (r, t) - equivalent, with r = 3n and t = n . 
                                            [Hanf '60]
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Hanf locality

Exercise:  prove that  acyclicity  is not FO-de!nable  ( even on !nite structures )

 !eorem.  S1 , S2 are  n - equivalent  ( they satisfy the same sentences with quanti!er rank n ) 

                      whenever  S1 , S2  are  Hanf (r, t) - equivalent, with r = 3n and t = n . 
                                            [Hanf '60]
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Hanf locality

Exercise:  prove that testing whether a binary tree is  complete  is not FO-de!nable

 !eorem.  S1 , S2 are  n - equivalent  ( they satisfy the same sentences with quanti!er rank n ) 

                      whenever  S1 , S2  are  Hanf (r, t) - equivalent, with r = 3n and t = n . 
                                            [Hanf '60]



Next task : How to show that FO is Hanf - local ?

Proof idea :
Assume that A and B are Hanf ( 3

"

,
n ) - equivalent and

let us find a winning strategy for duplicator in n- round E-F game .

µ Our invariant : After K rounds we have that
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Parameterized Complexity

FPT—the class of problems of input size n and parameter l which can be
solved in time O(f(l)nc) for some computable function f and constanct
c.

There is a hierarchy of intractable classes.

FPT ✓ W [1] ✓ W [2] ✓ · · · ✓ AW[?]

The satisfaction relation for first-order logic (A |= '), parameterized by
the length of ' is AW[?]-complete.
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Graph Problems

Vertex cover of size k:

9x1 · · · 9xk(8y8z(E(y, z) ) (
_

1ik

y = xi _
_

1ik

z = xi)

Vertex Cover is FPT

Independent Set:

9x1 · · · 9xk(
^

i<j

¬E(xi, xj))

Independent Set is W [1]-complete

Dominating Set:

9x1 · · · 9xk8y(
^

i

xi 6= y )
_

i

E(xi, y))

Dominating Set is W [2]-complete.
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Restricted Classes

One way to get a handle on the complexity of first-order satisfaction is to
consider restricted classes of structures.

Given: a first-order formula ' and a structure A 2 C
Decide: if A |= '

For many interesting classes C, this problem has been shown to be FPT.

The theorem of (Courcelle 1990) shows this for Tk—the class of graphs
of tree-width at most k, even for MSO.
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Bounded Degree

Dk—the class of structures A in which every element has at most k
neighbours in GA.
Theorem (Seese)
For every sentence ' of FO and every k there is a linear time algorithm
which, given a structure A 2 Dk determines whether A |= '.

Note: this is not true for MSO unless P = NP.

The proof is based on locality of first-order logic. Specifically, Hanf’s
theorem.
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Motivations: why do we care about logic? Meta-Algorithms

Logical characterisation of problems leads to meta-algorithms:
Any property of “graphs” expressible in logic L is
linear-time checkable on graphs from the class C.

Picture by c� Felix Reidl. No changes have been made.

Theorem (Courcelle 1990)
L = MSO, C = bounded-treewidth.
Theorem (Seese 1996)
L = FO, C = bounded-degree.
Theorem (Dvorák et al. 2010)
L = FO, C = bounded-expansion.

Theorem (Grohe, Kreutzer, Siebertz 2014)
O(n1+Á) algorithms for L = FO and C = nowhere-dense graphs.
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