
Artificial Intelligence, Computational Logic

PROBLEM SOLVING AND SEARCH
IN ARTIFICIAL INTELLIGENCE

Lecture 2 Uninformed Search vs. Informed Search

Sarah Gaggl

Dresden, 28th April 2015



Agenda
1 Introduction
2 Uninformed Search versus Informed Search (Best First Search, A*

Search, Heuristics)
3 Local Search, Stochastic Hill Climbing, Simulated Annealing
4 Tabu Search
5 Answer-set Programming (ASP)
6 Constraint Satisfaction (CSP)
7 Structural Decomposition Techniques (Tree/Hypertree Decompositions)
8 Evolutionary Algorithms/ Genetic Algorithms

TU Dresden, 28th April 2015 PSSAI slide 2 of 17



Traditional Methods
• There are many classic algorithms to search spaces for an optimal

solution.
• Broadly, they fall into two disjoint classes:

– Algorithms that only evaluate complete solutions (exhaustive
search, local search, . . . ).

– Algorithms that require the evaluation of partially constructed or
approximate solutions.

• Algorithms that treat complete solutions can be stopped any time, and
give at least one potential answer.

• If you interrupt an algorithm that works on partial solutions, the results
might be useless.

TU Dresden, 28th April 2015 PSSAI slide 3 of 17



Complete Solutions
• All decision variables are specified.
• For example, binary strings of length n constitute complete solutions for

any n-variable SAT.
• Permutations of n cities constitute complete solutions for a TSP.
• We can compare two complete solutions using an evaluation function.
• Many algorithms rely on such comparisons, manipulating one single

complete solution at a time.
• When a new solution has a better evaluation than the previous best

solution, it replaces that prior solution.
• Exhaustive search, local search, hill climbing as well as modern heuristic

methods such as simulated annealing, tabu search and evolutionary
algorithms fall into this category.

TU Dresden, 28th April 2015 PSSAI slide 4 of 17



Partial Solutions
There are two forms:

1 incomplete solution to the problem originally posed, and
2 complete solution to a reduced (i.e. simpler) problem.

• Incomplete solutions reside in a subset of the original problem’s search
space.

– In an SAT, consider all of the binary strings where the first two
variables were assigned the value 1 (i.e. TRUE).

– In a TSP, consider every permutation of cities that contains the
sequence 7− 11− 2− 16.

– We fix the attention on a subset of the search space that has a
partial property.

– Hopefully, that property is also shared by the real solution!

TU Dresden, 28th April 2015 PSSAI slide 5 of 17



Partial Solutions ctd.
• Decompose original problem into a set of smaller and simpler problems.

– Hope: solving each of the easier problems and combine the partial
solutions, results in an answer for the original problem.

– In a TSP, consider only k out of n cities and try to establish the
shortest path from city i to j that passes through all k of these cities.

– Reduce the size of the search space significantly and search for a
complete solution within the restricted domain.

– Such partial solutions can serve as building blocks for the solution
to the original problem.

TU Dresden, 28th April 2015 PSSAI slide 6 of 17



Partial Solutions ctd.
• Decompose original problem into a set of smaller and simpler problems.

– Hope: solving each of the easier problems and combine the partial
solutions, results in an answer for the original problem.

– In a TSP, consider only k out of n cities and try to establish the
shortest path from city i to j that passes through all k of these cities.

– Reduce the size of the search space significantly and search for a
complete solution within the restricted domain.

– Such partial solutions can serve as building blocks for the solution
to the original problem.

• But, algorithms that work on partial solutions pose additional difficulties.
One needs to

– devise a way to organize the sub-spaces so that they can be
searched efficiently, and

– create a new evaluation function that can assess the quality of
partial solutions.

TU Dresden, 28th April 2015 PSSAI slide 7 of 17



Exhaustive Search
• Checks every solution in the search space until the best global solution

has been found.
• Can be used only for small instances of problems.
• Exhaustive (enumerative) algorithms are simple.
• Search space can be reduced by backtracking.
• Some optimization methods, e.g., branch and bound and A* are based on

an exhaustive search.

TU Dresden, 28th April 2015 PSSAI slide 8 of 17



Exhaustive Search
• Checks every solution in the search space until the best global solution

has been found.
• Can be used only for small instances of problems.
• Exhaustive (enumerative) algorithms are simple.
• Search space can be reduced by backtracking.
• Some optimization methods, e.g., branch and bound and A* are based on

an exhaustive search.
• How can we generate a sequence of every possible solution to the

problem?
– The order in which the solutions are generated and evaluated is

irrelevant (because we evaluate all of them).
– The answer for the question depends on the selected

representation.

TU Dresden, 28th April 2015 PSSAI slide 9 of 17



Enumerating the SAT
• We have to generate every possible binary string of length n.
• All solutions correspond to whole numbers in a one-to-one mapping.
• Generate all non-negative integers from 0 to 2n − 1 and convert each of

these integers into the matching binary string of length n.

0000 0 0100 4 1000 8 1100 12
0001 1 0101 5 1001 9 1101 13
0010 2 0110 6 1010 10 1110 14
0011 3 0111 7 1011 11 1111 15

• Bits of the string are the truth assignments of the decision variables.
• Organize the search space, for example partition into two disjoint

sub-spaces. First contains all the vectors where x1 = f (FALSE), and the
second contains all vectors where x1 = t (TRUE).

TU Dresden, 28th April 2015 PSSAI slide 10 of 17



Enumerating the SAT ctd.

x1 = f x1 = t

x2 = f x2 = t x2 = f x2 = t

x3 = f x3 = t . . .. . .

Binary search tree for SAT

TU Dresden, 28th April 2015 PSSAI slide 11 of 17



Search Strategies

A strategy is defined by picking the order of node expansion.
Strategies are evaluated along the following dimensions:

• Completeness - does it always find a solution if one exists?
• Time complexity - number of nodes generated/expanded.
• Space complexity - maximum number of nodes in memory.
• Optimality - does it always find a least-cost solution?

Time and space complexity are measured in terms of
• b - maximum branching factor of the search tree;
• d - depth of the least-cost solution;
• m - maximum depth of the state space (may be∞).

TU Dresden, 28th April 2015 PSSAI slide 12 of 17



Uninformed Search

TU Dresden, 28th April 2015 PSSAI slide 13 of 17



Uninformed Search ctd.

TU Dresden, 28th April 2015 PSSAI slide 14 of 17



Informed Search

TU Dresden, 28th April 2015 PSSAI slide 15 of 17



Dynamic Programming

TU Dresden, 28th April 2015 PSSAI slide 16 of 17



Dynamic Programming

TU Dresden, 28th April 2015 PSSAI slide 17 of 17



References

Zbigniew Michalewicz and David B. Fogel.
How to Solve It: Modern Heuristics, volume 2. Springer, 2004.

Stuart J. Russell and Peter Norvig.
Artificial Intelligence - A Modern Approach (3. edition). Pearson
Education, 2010.

TU Dresden, 28th April 2015 PSSAI slide 18 of 17


	Uninformed Search
	Exhaustive Search


