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Agenda
1 Introduction
2 Uninformed Search versus Informed Search (Best First Search, A*

Search, Heuristics)
3 Local Search, Stochastic Hill Climbing, Simulated Annealing
4 Tabu Search
5 Answer-set Programming (ASP)
6 Constraint Satisfaction (CSP)
7 Structural Decomposition Techniques (Tree/Hypertree Decompositions)
8 Evolutionary Algorithms/ Genetic Algorithms
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Traditional Methods
• There are many classic algorithms to search spaces for an optimal

solution.
• Broadly, they fall into two disjoint classes:

– Algorithms that only evaluate complete solutions (exhaustive
search, local search, . . . ).

– Algorithms that require the evaluation of partially constructed or
approximate solutions.

• Algorithms that treat complete solutions can be stopped any time, and
give at least one potential answer.

• If you interrupt an algorithm that works on partial solutions, the results
might be useless.
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Complete Solutions
• All decision variables are specified.
• For example, binary strings of length n constitute complete solutions for

any n-variable SAT.
• Permutations of n cities constitute complete solutions for a TSP.
• We can compare two complete solutions using an evaluation function.
• Many algorithms rely on such comparisons, manipulating one single

complete solution at a time.
• When a new solution has a better evaluation than the previous best

solution, it replaces that prior solution.
• Exhaustive search, local search, hill climbing as well as modern heuristic

methods such as simulated annealing, tabu search and evolutionary
algorithms fall into this category.
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Partial Solutions
There are two forms:

1 incomplete solution to the problem originally posed, and
2 complete solution to a reduced (i.e. simpler) problem.

• Incomplete solutions reside in a subset of the original problem’s search
space.

– In an SAT, consider all of the binary strings where the first two
variables were assigned the value 1 (i.e. TRUE).

– In a TSP, consider every permutation of cities that contains the
sequence 7− 11− 2− 16.

– We fix the attention on a subset of the search space that has a
partial property.

– Hopefully, that property is also shared by the real solution!
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Partial Solutions ctd.
• Decompose original problem into a set of smaller and simpler problems.

– Hope: solving each of the easier problems and combine the partial
solutions, results in an answer for the original problem.

– In a TSP, consider only k out of n cities and try to establish the
shortest path from city i to j that passes through all k of these cities.

– Reduce the size of the search space significantly and search for a
complete solution within the restricted domain.

– Such partial solutions can serve as building blocks for the solution
to the original problem.
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Partial Solutions ctd.
• Decompose original problem into a set of smaller and simpler problems.

– Hope: solving each of the easier problems and combine the partial
solutions, results in an answer for the original problem.

– In a TSP, consider only k out of n cities and try to establish the
shortest path from city i to j that passes through all k of these cities.

– Reduce the size of the search space significantly and search for a
complete solution within the restricted domain.

– Such partial solutions can serve as building blocks for the solution
to the original problem.

• But, algorithms that work on partial solutions pose additional difficulties.
One needs to

– devise a way to organize the sub-spaces so that they can be
searched efficiently, and

– create a new evaluation function that can assess the quality of
partial solutions.
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Exhaustive Search
• Checks every solution in the search space until the best global solution

has been found.
• Can be used only for small instances of problems.
• Exhaustive (enumerative) algorithms are simple.
• Search space can be reduced by backtracking.
• Some optimization methods, e.g., branch and bound and A* are based on

an exhaustive search.
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Exhaustive Search
• Checks every solution in the search space until the best global solution

has been found.
• Can be used only for small instances of problems.
• Exhaustive (enumerative) algorithms are simple.
• Search space can be reduced by backtracking.
• Some optimization methods, e.g., branch and bound and A* are based on

an exhaustive search.
• How can we generate a sequence of every possible solution to the

problem?
– The order in which the solutions are generated and evaluated is

irrelevant (because we evaluate all of them).
– The answer for the question depends on the selected

representation.
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Enumerating the SAT
• We have to generate every possible binary string of length n.
• All solutions correspond to whole numbers in a one-to-one mapping.
• Generate all non-negative integers from 0 to 2n − 1 and convert each of

these integers into the matching binary string of length n.

0000 0 0100 4 1000 8 1100 12
0001 1 0101 5 1001 9 1101 13
0010 2 0110 6 1010 10 1110 14
0011 3 0111 7 1011 11 1111 15

• Bits of the string are the truth assignments of the decision variables.
• Organize the search space, for example partition into two disjoint

sub-spaces. First contains all the vectors where x1 = f (FALSE), and the
second contains all vectors where x1 = t (TRUE).
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Enumerating the SAT ctd.

x1 = f x1 = t

x2 = f x2 = t x2 = f x2 = t

x3 = f x3 = t . . .. . .

Binary search tree for SAT
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Search Strategies

A strategy is defined by picking the order of node expansion.
Strategies are evaluated along the following dimensions:

• Completeness - does it always find a solution if one exists?
• Time complexity - number of nodes generated/expanded.
• Space complexity - maximum number of nodes in memory.
• Optimality - does it always find a least-cost solution?

Time and space complexity are measured in terms of
• b - maximum branching factor of the search tree;
• d - depth of the least-cost solution;
• m - maximum depth of the state space (may be∞).
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Uninformed Search
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Uninformed Search ctd.
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Informed Search
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Dynamic Programming
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Dynamic Programming
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