Exercise 10.1. Denote with \(\text{add} \): \(\{ 0, 1 \}^{2n} \rightarrow \{ 0, 1 \}^{n+1} \) the function that takes two binary \(n \)-bit numbers \(x \) and \(y \) and returns their \(n + 1 \)-bit sum. Show that \(\text{add} \) can be computed with size \(O(n) \) circuits.

Exercise 10.2. Define the function \(\text{maj}_n : \{ 0, 1 \}^n \rightarrow \{ 0, 1 \}^n \) by
\[
\text{maj}_n(x_1, \ldots, x_n) := \begin{cases}
0 & \text{if } \sum x_i < n/2 \\
1 & \text{if } \sum x_i \geq n/2.
\end{cases}
\]
Devised a circuit to compute \(\text{maj}_3 \) and test it on the example input 101 and 010.

* Exercise 10.3. Show how to compute \(\text{maj}_n \) with circuits of size \(O(n \log n) \).

Exercise 10.4. Show \(\text{NC}^1 \subseteq L \).

Exercise 10.5. Show that every Boolean function with \(n \) variables can be computed with a circuit of size \(O(n \cdot 2^n) \).

Exercise 10.6. Show that every language \(L \subseteq \{ 1^n \mid n \in \mathbb{N} \} \) is contained in \(P/\text{poly} \). Conclude that \(P/\text{poly} \) contains undecidable languages.

Exercise 10.7. Find a decidable language in \(P/\text{poly} \) that is not contained in \(P \).

Hint:
\(\text{EXPTIME} \) is contained in \(5\text{EXP} \) if \(\text{EXP} \subseteq \text{P/poly} \) and \(\text{EXP} \) is EXP-complete under polynomial-time reductions.