Problem Solving and Search in AI Tutorial 5 (on May 7th)

Sarah Gaggl, Lucía Gómez Álvarez

May 28th, 2020

First download MiniZinc from https://www.minizinc.org/ and have a look at the handbook including a tutorial https://www.minizinc.org/doc-latest/en/index.html. You can also use MiniZinc to test whether your encodings actually work:)

Exercise 5.1:

Consider the following *crossword puzzle*, where a given list of words can be used to fill the empty spaces.

					AF"I	LASER
1		2		3	ALE	LEE
#	#		#		EEL	LINE
#	4		5		HEE	EL SAILS
6	#	7			HIK	E SHEET
8					HOS	SES STEER
	#	#		#	KEE	EL TIE
					KNO	TC

- a) Formalize the problem as a CSP and draw the constraint graph.
- b) Reduce the domains of the variables by applying the constraint propagation method *arc consistency*.
- c) Use a search algorithm with forward checking and the degree heuristic to obtain all solutions of the CSP.

Exercise 5.2 (Subsetsum problem):

given a set (or multiset) of integers, is there a non-empty subset whose sum is zero? For example, given the set $\{-7, -3, -2, 5, 8\}$, the answer is yes because the subset $\{-3, -2, 5\}$ sums to zero. Formulate the problem as CSP.

Exercise 5.3 (Rucksack problem):

Given a set of n items numbered 1...n, each with a weight w_i and a value v_i , determine whether or not to include an item in a collection so that the total weight W is less than or equal to a given limit W_{max} and the total value V is as large as possible. Formulate the problem as CSP.