
Artificial Intelligence, Computational Logic

PROBLEM SOLVING AND SEARCH
IN ARTIFICIAL INTELLIGENCE

Lecture 2 Uninformed Search vs. Informed Search

Sarah Gaggl

Dresden



Agenda

1 Introduction
2 Uninformed Search versus Informed Search (Best First Search, A*

Search, Heuristics)
3 Local Search, Stochastic Hill Climbing, Simulated Annealing
4 Tabu Search
5 Answer-set Programming (ASP)
6 Constraint Satisfaction (CSP)
7 Evolutionary Algorithms/ Genetic Algorithms
8 Structural Decomposition Techniques (Tree/Hypertree Decompositions)

TU Dresden PSSAI slide 2 of 14



Traditional Methods

• There are many classic algorithms to search spaces for an optimal
solution.

• Broadly, they fall into two disjoint classes:
– Algorithms that only evaluate complete solutions (exhaustive

search, local search, . . . ).
– Algorithms that require the evaluation of partially constructed or

approximate solutions.
• Algorithms that treat complete solutions can be stopped any time, and

give at least one potential answer.
• If you interrupt an algorithm that works on partial solutions, the results

might be useless.

TU Dresden PSSAI slide 3 of 14



Complete Solutions

• All decision variables are specified.
• For example, binary strings of length n constitute complete solutions for

any n-variable SAT.
• Permutations of n cities constitute complete solutions for a TSP.
• We can compare two complete solutions using an evaluation function.
• Many algorithms rely on such comparisons, manipulating one single

complete solution at a time.
• When a new solution has a better evaluation than the previous best

solution, it replaces that prior solution.
• Exhaustive search, local search, hill climbing as well as modern heuristic

methods such as simulated annealing, tabu search and evolutionary
algorithms fall into this category.

TU Dresden PSSAI slide 4 of 14



Partial Solutions
There are two forms:

1 incomplete solution to the problem originally posed, and
2 complete solution to a reduced (i.e. simpler) problem.

• Incomplete solutions reside in a subset of the original problem’s search
space.

– In an SAT, consider all of the binary strings where the first two
variables were assigned the value 1 (i.e. TRUE).

– In a TSP, consider every permutation of cities that contains the
sequence 7− 11− 2− 16.

– We fix the attention on a subset of the search space that has a
partial property.

– Hopefully, that property is also shared by the real solution!

TU Dresden PSSAI slide 5 of 14



Partial Solutions ctd.

• Decompose original problem into a set of smaller and simpler problems.
– Hope: solving each of the easier problems and combine the partial

solutions, results in an answer for the original problem.
– In a TSP, consider only k out of n cities and try to establish the

shortest path from city i to j that passes through all k of these cities.
– Reduce the size of the search space significantly and search for a

complete solution within the restricted domain.
– Such partial solutions can serve as building blocks for the solution

to the original problem.

TU Dresden PSSAI slide 6 of 14



Partial Solutions ctd.

• Decompose original problem into a set of smaller and simpler problems.
– Hope: solving each of the easier problems and combine the partial

solutions, results in an answer for the original problem.
– In a TSP, consider only k out of n cities and try to establish the

shortest path from city i to j that passes through all k of these cities.
– Reduce the size of the search space significantly and search for a

complete solution within the restricted domain.
– Such partial solutions can serve as building blocks for the solution

to the original problem.
• But, algorithms that work on partial solutions pose additional difficulties.

One needs to
– devise a way to organize the sub-spaces so that they can be

searched efficiently, and
– create a new evaluation function that can assess the quality of

partial solutions.

TU Dresden PSSAI slide 7 of 14



Exhaustive Search

• Checks every solution in the search space until the best global solution
has been found.

• Can be used only for small instances of problems.
• Exhaustive (enumerative) algorithms are simple.
• Search space can be reduced by backtracking.
• Some optimization methods, e.g., branch and bound and A* are based on

an exhaustive search.

TU Dresden PSSAI slide 8 of 14



Exhaustive Search

• Checks every solution in the search space until the best global solution
has been found.

• Can be used only for small instances of problems.
• Exhaustive (enumerative) algorithms are simple.
• Search space can be reduced by backtracking.
• Some optimization methods, e.g., branch and bound and A* are based on

an exhaustive search.
• How can we generate a sequence of every possible solution to the

problem?
– The order in which the solutions are generated and evaluated is

irrelevant (because we evaluate all of them).
– The answer for the question depends on the selected

representation.

TU Dresden PSSAI slide 9 of 14



Enumerating the SAT

• We have to generate every possible binary string of length n.
• All solutions correspond to whole numbers in a one-to-one mapping.
• Generate all non-negative integers from 0 to 2n − 1 and convert each of

these integers into the matching binary string of length n.

0000 0 0100 4 1000 8 1100 12
0001 1 0101 5 1001 9 1101 13
0010 2 0110 6 1010 10 1110 14
0011 3 0111 7 1011 11 1111 15

• Bits of the string are the truth assignments of the decision variables.
• Organize the search space, for example partition into two disjoint

sub-spaces. First contains all the vectors where x1 = f (FALSE), and the
second contains all vectors where x1 = t (TRUE).

TU Dresden PSSAI slide 10 of 14



Enumerating the SAT ctd.

x1 = f x1 = t

x2 = f x2 = t x2 = f x2 = t

x3 = f x3 = t . . .. . .

Binary search tree for SAT

TU Dresden PSSAI slide 11 of 14



Search Strategies

A strategy is defined by picking the order of node expansion.
Strategies are evaluated along the following dimensions:

• Completeness - does it always find a solution if one exists?
• Time complexity - number of nodes generated/expanded.
• Space complexity - maximum number of nodes in memory.
• Optimality - does it always find a least-cost solution?

Time and space complexity are measured in terms of
• b - maximum branching factor of the search tree;
• d - depth of the least-cost solution;
• m - maximum depth of the state space (may be∞).

TU Dresden PSSAI slide 12 of 14



Self-study

OPAL
The material for self-studying is available in OPAL:
https://bildungsportal.sachsen.de/opal/auth/
RepositoryEntry/23291363328/CourseNode/101501861304634

After going through the chapters you should be able to answer the following
properties for the discussed search methods.

• Completeness
• Time complexity
• Space complexity
• Optimality

TU Dresden PSSAI slide 13 of 14

https://bildungsportal.sachsen.de/opal/auth/RepositoryEntry/23291363328/CourseNode/101501861304634
https://bildungsportal.sachsen.de/opal/auth/RepositoryEntry/23291363328/CourseNode/101501861304634


References

Zbigniew Michalewicz and David B. Fogel.
How to Solve It: Modern Heuristics, volume 2. Springer, 2004.

Stuart J. Russell and Peter Norvig.
Artificial Intelligence - A Modern Approach (3. edition). Pearson
Education, 2010.

TU Dresden PSSAI slide 14 of 14


	Uninformed Search
	Exhaustive Search


