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From Property Graph to RDF
As expected, every Property Graph can be expressed as an RDF graph:
• Use reification to represent edges by auxiliary nodes
• Use special RDF properties to encode source and target of edges, and the

node-label and relationship-relationship type association
• Use application-based RDF properties to encode property keys
• Depending on the exact Property graph implementation, use some appropriate

datatype-to-RDF mapping
(e.g., based on RDF2RDB mappings from SQL datatypes to RDF)

Remarks:
• This scheme is implemented natively in existing DBMS (Blazegraph, Amazon

Neptune), and scales despite of the increase size of the graph data that the system
has to work with

• The use of reification can be avoided for relationships without properties
• One can also use both (reified and direct statements) for flexibility (similar to

Wikidata’s RDF encoding)
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From RDF to Property Graph
As expected, every RDF Graph can be expressed as a Property Graph:
• Represent all RDF resources by nodes
• Use property keys to associate resources with IRIs and/or datatype literanl

information
• Represent all RDF triples with auxiliary nodes
• Use relationships with special relationship types to associate auxiliary nodes with

triple subject, predicate, and object

Remarks:
• There does not seem to be any simpler way of capturing the full power of RDF in

Property Graph, due to the restrictions of the latter (no reference in relationship
types or property values to nodes)

• In some cases, certain triples could be represented as properties (if their datatype
is supported in Property Graph and we do not need their RDF property to be
addressable in the graph)

• Many Property Graph implementations will have performance problems in handling
graphs with so many edges (part of the motivation for moving data into properties is to reduce the graph size)
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Cypher
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Cypher overview
Cypher is a (family of) query languages for Property Graph:

• Proprietary query language of the Neo4j graph database

• Subset supported by other tools as well: openCypher

• Might be an important input to future graph query language standards

openCypher supports two main functions:

• A query language

• An update language

Current specification of openCypher 9:
https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf

Currently not defined in openCypher v9 and depending on implementation:

• Parts of the query language (e.g., comparison and ordering of some values)

• Result formats for sending query results

• Protocol for sending queries and receiving answers
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Cypher queries

The heart of Cypher is its query language.

Example 10.1: The following Cypher query asks for a list of all nodes that are in
an EMPLOYER relationship:

MATCH (person)-[:EMPLOYER]->(company)
RETURN person, company

This corresponds to the following SPARQL query:

SELECT ?person ?company

WHERE { ?person :EMPLOYER ?company }

Basic concepts:

• Cypher uses variables, marked by their context of use

• The core of a query is the query condition within MATCH { . . . }

• Conditions can be simple patterns based on graph edges in a custom syntax

• RETURN specifies how results are produced from query matches
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Basic Cypher by example

Example 10.2: Find up to ten people whose daughter is a professor:

MATCH
(parent)-[:HAS_DAUGHTER]->(child {occupation:’Professor’})

RETURN parent
LIMIT 10

Example 10.3: Count all relationships in the database:

MATCH ()-[relationship]->()
RETURN count(relationship) AS count

Example 10.4: Count all relationship types in the database:

MATCH ()-[relationship]->()
RETURN count(DISTINCT type(relationship)) AS count
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Basic Cypher by example (2)

Example 10.5: Find the person with most friends:

MATCH (person)-[:HAS_FRIEND]->(friend)
RETURN person, count(DISTINCT friend) AS friendCount

ORDER BY friendCount DESC

LIMIT 1

Example 10.6: Find pairs of siblings:

MATCH
(parent)-[:HAS_CHILD]->(child1),

(parent)-[:HAS_CHILD]->(child2)

WHERE id(child1) != id(child2)

RETURN child1, child2
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Basic Cypher by example (3): properties and labels

Queries can also access

• Labels (the additional strings used on nodes)
• Properties (of nodes and relationships)

Example 10.7: Find friends of all people with name Paul Erdős, and return their
name and the start date of the friendship:

MATCH
(:Human {name: ’Paul Erdős’})-[rel:HAS_FRIEND]->(friend:Human)

RETURN friend.name, rel.startDate

Here Human is a label, and name and startDate are property keys.
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The shape of a Cypher query
Cypher queries are organised in blocks, called clauses:
• Match clause: MATCH followed by a pattern; variants of this clause are OPTIONAL

MATCH and MANDATORY MATCH

• Where clause: WHERE followed by a filter expression; usually associated with the
preceding match clause

• With clause: WITH followed by (possibly aliased) expressions and aggregates; ends
a subquery

• Return clause: RETURN followed by (possibly aliased) expressions and aggregates;
occurs once at the end of the query

• Modifier sub-clauses: ORDER BY, LIMIT, and SKIP might follow a With or Return
clause

• Union clauses: keyword UNION can be used between two complete queries (with
RETURN for each)

Syntactically, queries are not nested but chained. Many MATCH-WHERE-WITH blocks may
occur. The order of clauses affects the semantics of queries, but implementations can
still evaluate in modified order (as long as the meaning remains the same).
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Node patterns
The most basic pattern in Cypher describes a single node.

Definition 10.8: A node pattern is denoted by a pair of parentheses (). It may
optionally contain the following optional components:

• a variable name (a string)

• a list of labels (a list of strings, each prefixed by :)

• a set of properties (a comma-separated list of key:value pairs in {...})

Variable names, labels and property keys are quoted with backticks ` (can be omit-
ted if only alphanumeric characters are used). Property values that are strings are
written in straight quotes ’.

Example 10.9:

• (): an arbitrary node

• (v { name:’Melitta Bentz’, `year of birth`: 1873}): a node with two
properties (and maybe others); matching nodes are bound to variable v

• (:Scientist:Composer): a node with two labels
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Path patterns

Node patterns are a basic building block of path patterns:

Definition 10.10: A path pattern is a sequence of one or more node patterns,
separated by expressions of the form -[...]-> (forward) or <-[...]- (backward)
or -[...]- (bidirectional), where the expression in [...] is an relationship pat-
tern, with the following optional components:

• a variable name (a string)

• a list of relationship types (: followed by a |-separated list of strings)

• a range literal (*, optionally by a number range n..m)

• a set of properties (a comma-separated list of key:value pairs in {...})

Example 10.11: The following pattern finds nodes a and b connected with a di-
rected path that consists of between 5 and 10 relationships of types E or F, where
b has an incoming relationship e with properties that include score:0.8:

(a)-[:E|F*5..10]->(b)<-[e {score:0.8}]-()
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Features of path patterns

The various features of path patterns express the following query conditions:

• Sequences of stylised arrows express linear subgraphs (paths with edges in any
direction)

• Arrow tips indicate directionality; patterns without any arrow tip match any direction

• The |-separated list of relationship types expresses a disjunction of possible types:
the pattern matches if one of the types is found1

• The same property-map syntax as in node patterns are used to require the
presence of some properties

• The range with * indicates that the specified kind of relationship has to occur
multiple times (within a numeric range, where numbers can be omitted to match
any finite path)

Note: * always applies to the complete relationship pattern. For example, the
disjunction is nested within this iteration.

1Recall that relationships in this interpretation of Property Graph can only have one type.
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Expressivity of path patterns

In contrast to SPARQL, Cypher does not support arbitrary regular expressions, but it can
still capture certain regular languages:

Example 10.12: The SPARQL property path pattern ?a (p|ˆp|q|ˆp)* ?b can
be expressed by the Cypher path pattern (a)-[:p|q*]-(b).

Example 10.13: The SPARQL property path pattern ?a (p/q)* ?b cannot be
expressed in Cypher.

Example 10.14: The SPARQL property path pattern ?a (p|ˆq)* ?b cannot
be expressed with Cypher path patterns, but it can be expressed in Cypher by a
combination of other features.
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Graph patterns

Path patterns can be combined conjunctively.

Definition 10.15: A graph pattern is a comma-separated list of path patterns.

Cypher graph patterns are similar to SPARQL basic graph patterns (with property path
patterns):

• SPARQL bnodes correspond to Cypher node patterns without variable

• Path patterns are based on similar but slightly distinct features

• Individual path pattern results can be combined with join-like operations to
compute overall results

But do their semantics agree?
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Cypher matching semantics

Graph pattern matches are based on mapping parts of the pattern to parts of the graph:

• Every node pattern is mapped to a node
• Every path pattern is mapped to an alternating sequence of nodes and relationships

– Such a sequence is called a path
– Different matches of the same pattern can include paths of different lengths
– Each distinct path is a distinct match

• Even the parts that have no variables associated must be matched (similar to
bnodes in SPARQL)

Two special aspects of Cypher:

• Unique edges: In any match of a single graph pattern, each relationship
must be used in only one place (but each node can be used many times).

• Path counting: When paths are matched, each path (without repeated
relationships) counts as one result.
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Homomorphism semantics in Cypher

The restriction that each relationship can be used only once in a pattern match is only
enforced within single patterns

A query may use several clauses to allow for the same edge to be used several times:

Example 10.16: Find all persons who have a daughter and who has a relation
with a computer scientist (possibly the same person):

MATCH (p:Person)-[:HAS_DAUGHTER]->()
MATCH (p:Person)-[r]-({occupation:"computer scientist"})

Return p.name, type(r)

Using similar ideas as before, we immediately get:

Theorem 10.17: Query matching in Cypher is hard for NP.

Proof sketch: Reduce from graph colouring, using one MATCH clause per edge. �

Markus Krötzsch, 18th Dec 2018 Knowledge Graphs slide 18 of 24



Homomorphism semantics in Cypher

The restriction that each relationship can be used only once in a pattern match is only
enforced within single patterns

A query may use several clauses to allow for the same edge to be used several times:

Example 10.16: Find all persons who have a daughter and who has a relation
with a computer scientist (possibly the same person):

MATCH (p:Person)-[:HAS_DAUGHTER]->()
MATCH (p:Person)-[r]-({occupation:"computer scientist"})

Return p.name, type(r)

Using similar ideas as before, we immediately get:

Theorem 10.17: Query matching in Cypher is hard for NP.

Proof sketch: Reduce from graph colouring, using one MATCH clause per edge. �

Markus Krötzsch, 18th Dec 2018 Knowledge Graphs slide 18 of 24



Homomorphism semantics in Cypher

The restriction that each relationship can be used only once in a pattern match is only
enforced within single patterns

A query may use several clauses to allow for the same edge to be used several times:

Example 10.16: Find all persons who have a daughter and who has a relation
with a computer scientist (possibly the same person):

MATCH (p:Person)-[:HAS_DAUGHTER]->()
MATCH (p:Person)-[r]-({occupation:"computer scientist"})

Return p.name, type(r)

Using similar ideas as before, we immediately get:

Theorem 10.17: Query matching in Cypher is hard for NP.

Proof sketch: Reduce from graph colouring, using one MATCH clause per edge. �

Markus Krötzsch, 18th Dec 2018 Knowledge Graphs slide 18 of 24



Working with nodes and relationships

Matched nodes and relationships are represented as special types of maps. Their
content can be accessed in various ways:

• Syntax “varname.propertyKey” is used to access the value of a property
(keys using non-alphanumeric symbols must be written in backtics)

• Alternatively, syntax “varname[expression]” is used to access property values for
the property key returned by evaluating the expression

• The function id returns the (numeric) ID of a nodes or relationships
• The function keys returns the list of all property keys of a map-like object

• The function labels returns the list of labels of a node; the function type returns
the type of a relationship
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Working with paths

Cypher can return not only matched nodes and relationships, but also matched paths.

Example 10.18: Find all ways in which two nodes are connected, and return the
list of relationship types in each case:

MATCH p= ({name=’node1’})-[*]->({name=’node2’})

RETURN relationships(p)

• Paths are represented by lists of nodes and relationships (alternating; starting and
ending with a node).

• There are several functions to access the content of paths (and other lists), e.g.,
relationships to extract a sublist of relationships only, or length to return its
number of relationships.

• The syntax “varname=” in front of a path pattern indicates that matched paths
should be assigned to the variable.

Markus Krötzsch, 18th Dec 2018 Knowledge Graphs slide 20 of 24



Shortest paths

Cypher provides functions that find shortest paths

Example 10.19: Find all shortest ways in which two nodes are connected, and
return the list of relationship types in each case:

MATCH p= allShortestPaths(({name=’node1’})-[*]->({name=’node2’}))

RETURN relationships(p)

One can use range delimiters to specify an upper bound for the length of the shortest
path:

Example 10.20: Find all shortest ways of length at most 10 in which two nodes
are connected, and return the list of relationship types in each case:

MATCH p= allShortestPaths(({name=’node1’})-[*..10]->({name=’node2’}))

RETURN relationships(p)
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Filter conditions
MATCH clauses can be complemented by WHERE clauses that express filters.

Example 10.21: Find nodes with more than one label:

MATCH (n)
WHERE size(labels(n)) > 1

As in SPARQL, filters declaratively specify part of the query condition:

• they must be placed after the relevant MATCH clause

• but they can be evaluated in any order by a database

According to openCypher v9: “If there is a WHERE clause following the match of a
shortestPath, relevant predicates will be included in shortestPath.”

Example 10.22: It is not always clear how to evaluate this efficiently:

MATCH p=allShortestPaths((a)-[*]-(b))
WHERE a.someKey + b.someKey < length(p) RETURN p
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Summary

Cypher is a query language for property graphs

It is based on clauses (like SQL) and graph patterns (like SPARQL)

Not all regular expressions are supported, but powerful path manipulation features are
available.

Graph pattern matching is not based on homomorphisms like in other query languages
(SQL, SPARQL, etc.) but on a notion of isomorphim on edges

What’s next?

• Holidays

• Final remarks on Cypher

• Quality assurance in knowledge graphs
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Here’s wishing you

a Merry Christmas, a Happy Hanukkah,

a Joyous Yalda, a Cheerful Dōngzhì,

a Great Feast of Juul,

and a Wonderful Winter Solstice,

respectively!
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