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The Structure of NP

Idea: polynomial many-one reductions define an order on problems
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Are NP Problems Hard?
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NP-Hardness and NP-Completeness

Definition 7.1:
(1) Alanguage H is NP-hard, if L <, H for every language L € NP.
(2) A language C is NP-complete, if C is NP-hard and C € NP.

NP-Completeness
® NP-complete problems are the hardest problems in NP.
® They constitute the maximal class (wrt. <,) of problems within NP.
® They are all equally difficult — an efficient solution to one would solve them all.

YTheorem 7.2: If Lis NP-hard and L <, L', then L” is NP-hard as well.

David Carral, November 13, 2020 Foundations of Complexity Theory slide 5 of 26



Proving NP-Completeness

How to show NP-completeness

To show that L is NP-complete, we must show that every language in NP can be
reduced to L in polynomial time.

Alternative approach

Given an NP-complete language C, we can show that another language L is
NP-complete just by showing that

°eCg,L
°* LeNP

However: Is there any NP-complete problem at all?
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Further NP-Complete Problem?

Powymme NTM is NP-complete, but not very interesting:
® not most convenient to work with
* not of much interest outside of complexity theory
Are there more natural NP-complete problems?

Yes, thousands of them!
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The First NP-Complete Problems

Is there any NP-complete problem at all?

Of course there is: the word problem for polynomial time NTMs!

Powytime NTM

Input: A polynomial p, a p-time bounded NTM M, and
an input word w.

Problem: Does M accept w (in time p(lw|))?

F’heorem 7.3: Powymive NTM is NP-complete.

Proof: See exercise.
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The Cook-Levin Theorem

David Carral, November 13, 2020 Foundations of Complexity Theory

slide 7 of 26

slide 9 of 26



The Cook-Levin Theorem

TTheorem 7.4 (Cook 1970, Levin 1973): Sar is NP-complete.

Proof:
(1) Sare NP

Take satisfying assignments as polynomial certificates for the satisfiability of a

formula.
(2) Saris hard for NP

Proof by reduction from the word problem for NTMs.

Proving the Cook-Levin Theorem

Given:

® a polynomial p
® ap-time bounded 1-tape NTM M = (Q,X.T.6. 90, Gaccept)
® awordw

Intended reduction

Define a propositional logic formula ¢, 4, such that
¥p. M, IS satisfiable if and only if M accepts w in time p(Jw|).

Note

On input w of length n := |w|, every computation path of M is of length < p(n) and uses
< p(n) tape cells.

Idea

O
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Proving Cook-Levin: Encoding Configurations
Use propositional variables for describing configurations:
0, foreach g € O means “M s in state g € 0"
P; for each 0 < i < p(n) means “the head is at Position i”
S foreacha eI'and 0 <i < p(n) means “tape cell i contains Symbol a”
Represent configuration (g, p, ao . . . aym)
by assigning truth values to variables from the set
6:: {quPi: S(L[lquﬂ aer? 0Si<[7(il)}
using the truth assignment 3 defined as
1 =q 1 p Il a=a
BQOs) = BP) = B(Sai) =
0 0 0 a+#a
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Use logic to describe a run of M on input w by a formula.
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Proving Cook-Levin: Validating Configurations

We define a formula Conf(C) for a set of configuration variables

C=1{0Qy Pi,SuilqeQ, a€Tl, 0<i<pm)}

as follows:
Conf(C) := “the assignment is a valid configuration”:
\/(Q,, A /\ —|Q,,) “TM in exactly one state ¢ € Q"
qeQ q'#q

AN (Bon N\ -Py)

p<p(n) p'#p

A A Vs A 5)

0<i<p(n) acl’ b#ael’

“head in exactly one position p < p(n)”

“exactly one a € I in each cell”
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Proving Cook-Levin: Validating Configurations

For an assignment 3 defined on variables in C define

ﬁ(Qt/) =1,
conf(C,B) :=:(q,p,wo ... wpm) | B(Py) =1,
B(S,, ) =1forall 0 <i< p(n)
Note: 8 may be defined on other variables besides those in C.

Lemma 7.5: If 3 satisfies Conf(C) then |conf(a,3)| = .
We can therefore write conf(C, 8) = (g, p, w) to simplify notation.

Observations:

e conf(C,p) is a potential configuration of M, but it may not be reachable from the
start configuration of M on input w.

® Conversely, every configuration (¢, p,w; ... w,) induces a satisfying assignment g
such that conf(C., 8) = (g, p. w1 ... Wyu)).
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Proving Cook-Levin: Start and End

Defined so far:

¢ Conf(C): C describes a potential configuration
e Next(C,C): conf(C, ) ki conf(C , B)

Start configuration:

Proving Cook-Levin: Transitions Between Configurations

Consider the following formula Next(C, C') defined as

Conf(C) A Conf(C') A NoChange(C, C') A Change(C, C).

NoChange := \/ (P,, A /\ (Sa,i = S;,i))

0<p<p(n) i#p,ael’
—_— / o’ /
Change := \/ (Py A \/ (Qy A Sap A \/ (Qy A S}, APY)))
0<p<p(n) (54 (q',b,D)ed(q,a)

ael’

where D(p) is the position reached by moving in direction D from p.

Lemma 7.6: For any assignment /3 defined on C U C':
3 satisfies Next(C,C) if and only if conf(C, ) Fr conf(C , )
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Proving Cook-Levin: Adding Time

Since M is p-time bounded, each run may contain up to p(n) steps
~» we need one set of configuration variables for each

Propositional variables

For an input word w = wq - - - w,,_; € ¥, we define:

Starty(,(C) := Conf(C) A Qgy A Py A NI Sui A NS

oyl
s

Then an assignment g satisfies Start,w,,b.(f) if and only if C represents the start
configuration of M on input w.

Accepting stop configuration:

O, forallg € 0,0 <t < p(n) means “at time 1, M s in state g € Q”
P;; forall 0 <i,r < p(n) means “at time ¢, the head is at position i”

”»

Saip foralla e T"'and 0 < 7,7 < p(n) means “at time ¢, tape cell i contains symbol a

Notation

Acc-Conf(C) := Conf(C) A Qyeeen

Then an assignment S satisfies Acc-Conf(C) if and only if C represents an accepting

configuration of M.
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Cr:=1{Qys, Pir, Saiv| q€Q,0<i<pmn), acT}
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Proving Cook-Levin: The Formula

Given:

® a polynomial p
® ap-time bounded 1-tape NTM M = (Q,X.T". 6. g0, Gaccept)
® aword w

We define the formula ¢, A, as follows:
@p Mo 1= Startpg,u(Co) A \/ Acc-Conf(C,) A /\ Next(a.fm)}
0<r<p(n) 0<i<t

“Cy encodes the start configuration” and for some polynomial time t:
“M accepts after ¢ steps” and “Cy, ..., C, encode a computation path”

F_emma 7.7: ¢, m,w is satisfiable if and only if M accepts w in time p(jw|). {

Note that an accepting or rejecting stop configuration has no successor.
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Further NP-complete Problems
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The Cook-Levin Theorem

Fl'heorem 7.4 (Cook 1970, Levin 1973): Sar is NP-complete. \

Proof:
(1) Sare NP

Take satisfying assignments as polynomial certificates for the satisfiability of a
formula.

(2) Saris hard for NP

Proof by reduction from the word problem for NTMs.
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Towards More NP-Complete Problems

Starting with Sar, one can readily show more problems P to be NP-complete, each time
performing two steps:

(1) Show that P € NP
(2) Find a known NP-complete problem P’ and reduce P’ <, P

Thousands of problem have now been shown to be NP-complete.
(See Garey and Johnson for an early survey)

In this course:

<, Cuique <, INDEPENDENT SET
Sat <, 3-Sar <, DIr. HamiLTONIAN PaTH

<, SuBseT Sum <, KNapsack
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NP-Completeness of CLique

Fl'heorem 7.8: Cuaue is NP-complete.

Cuiaue: Given G, k, does G contain a clique of order > k?

Proof:
(1) Cuaue € NP
Take the vertex set of a clique of order k as a certificate.

(2) Cuaue is NP-hard
We show Sar <, Cuiaue

To every CNF-formula ¢ assign a graph G, and a number k,, such that

¢ satisfiable <= G, contains clique of order ,
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Sar <, CLique

To every CNF-formula ¢ assign a graph G, and a number k,, such that
¢ satisfiable if and only if G, contains clique of order k,
Givengp =Cy A--- A Cy:
® Setk,:=k
® For each clause C; and literal L € C; add a vertex v, ;
® Addedge {u;, vk} if i #jand L A K is satisfiable
(thatis: if L # =K and =L # K)

Correctness:
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G, has clique of order k, iff ¢ is satisfiable.

Complexity:

The reduction is clearly computable in polynomial time.
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Sar <, CLique

To every CNF-formula ¢ assign a graph G, and a number k,, such that
¢ satisfiable if and only if G, contains clique of order &,

Givenp =Cy A--- A Cy:
® Setk, =k
® For each clause C; and literal L € C; add a vertex v, ;
® Addedge (v, vk} ifi #jand L A K is satisfiable (that is: if L # =K and -L # K)

VX1 Vy1  V-z,1
Example 7.9:
XVYV-Z)AXV-Y)A(=XVZ) ’ ;
—_— NEE— N——— X,2 @ ® V-X3
Cy Cy C3
Vay,2 e Vz3
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NP-Completeness of INDEPENDENT SET

INDEPENDENT SET
Input:  An undirected graph G and a natural number k&

Problem: Does G contain k vertices that share no edges (in-
dependent set)?

F’heorem 7.10: InoepenpenT Skt is NP-complete. \

Proof: Hardness by reduction Cuique <, INDEPENDENT SET:
e Given G := (V,E) construct G := (V, {{u, v} | {u,v} ¢ E and u # v})
e AsetX C Vinduces a clique in G iff X induces an independent set in G.
e Reduction: G has a clique of order  iff G has an independent set of order k.
u]
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Summary and Outlook

NP-complete problems are the hardest in NP
Polynomial runs of NTMs can be described in propositional logic (Cook-Levin)

Cuiaue and InbepenpenT Skt are also NP-complete

What’s next?
® More examples of problems
® The limits of NP
® Space complexities
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