

COMPLEXITY THEORY

Lecture 13: Space Hierarchy and Gaps

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach Knowledge-Based Systems

TU Dresden, 27th Nov 2023

wore recent versions of ins since deck might be available. For the most current version of this course, see https://iccl.inf.tu-dresden.de/web/Complexity_Theory/e

Review

Review: Time Hierarchy Theorems

Time Hierarchy Theorem 12.12 If $f,g:\mathbb{N}\to\mathbb{N}$ are such that f is time-constructible, and $g\cdot\log g\in o(f)$, then

$$\mathsf{DTime}_*(g) \subseteq \mathsf{DTime}_*(f)$$

Nondeterministic Time Hierarchy Theorem 12.14 If $f,g:\mathbb{N}\to\mathbb{N}$ are such that f is time-constructible, and $g(n+1)\in o(f(n))$, then

$$NTime_*(g) \subseteq NTime_*(f)$$

In particular, we find that $P \neq ExpTime$ and $NP \neq NExpTime$:

A Hierarchy for Space

Space Hierarchy

For space, we can always assume a single working tape:

- Tape reduction leads to a constant-factor increase in space
- Constant factors can be eliminated by space compression

Therefore, $DSpace_k(f) = DSpace_1(f)$.

Space turns out to be easier to separate – we get:

Space Hierarchy Theorem 13.1: If $f,g:\mathbb{N}\to\mathbb{N}$ are such that f is space-constructible, and $g\in o(f)$, then

 $\mathsf{DSpace}(g) \subseteq \mathsf{DSpace}(f)$

Challenge: TMs can run forever even within bounded space.

Space Hierarchy Theorem 13.1: If $f,g:\mathbb{N}\to\mathbb{N}$ are such that f is space-constructible, and $g\in o(f)$, then

 $\mathsf{DSpace}(g) \subsetneq \mathsf{DSpace}(f)$

Space Hierarchy Theorem 13.1: If $f,g:\mathbb{N}\to\mathbb{N}$ are such that f is space-constructible, and $g\in o(f)$, then

 $\mathsf{DSpace}(g) \subsetneq \mathsf{DSpace}(f)$

Proof: Again, we construct a diagonalisation machine \mathcal{D} . We define a multi-tape TM \mathcal{D} for inputs of the form $\langle \mathcal{M}, w \rangle$ (other cases do not matter), assuming that $|\langle \mathcal{M}, w \rangle| = n$

- Compute f(n) in unary to mark the available space on the working tape
- Initialise a separate countdown tape with the largest binary number that can be written in f(n) space
- Simulate M on (M, w), making sure that only previously marked tape cells are used
- Time-bound the simulation using the content of the countdown tape by decrementing the counter in each simulated step
- If M rejects (in this space bound) or if the time bound is reached without M
 halting, then accept; otherwise, if M accepts or uses unmarked space, reject

Proof (continued): It remains to show that \mathcal{D} implements diagonalisation:

Proof (continued): It remains to show that \mathcal{D} implements diagonalisation:

$L(\mathcal{D}) \in \mathsf{DSpace}(f)$:

- *f* is space-constructible, so both the marking of tape symbols and the initialisation of the counter are possible in DSpace(*f*)
- The simulation is performed so that the marked O(f)-space is not left

Proof (continued): It remains to show that \mathcal{D} implements diagonalisation:

$L(\mathcal{D}) \in \mathsf{DSpace}(f)$:

- *f* is space-constructible, so both the marking of tape symbols and the initialisation of the counter are possible in DSpace(*f*)
- The simulation is performed so that the marked O(f)-space is not left

There is w such that $\langle \mathcal{M}, w \rangle \in \mathbf{L}(\mathcal{D})$ iff $\langle \mathcal{M}, w \rangle \notin \mathbf{L}(\mathcal{M})$:

- As for time, we argue that some w is long enough to ensure that f is sufficiently larger than g, so \mathcal{D} 's simulation can finish.
- The countdown measures $2^{f(n)}$ steps. The number of possible distinct configurations of \mathcal{M} on w is $|Q| \cdot n \cdot g(n) \cdot |\Gamma|^{g(n)} \in 2^{O(g(n) + \log n)}$, and due to $f(n) \ge \log n$ and $g \in o(f)$, this number is smaller than $2^{f(n)}$ for large enough n.
- If \mathcal{M} has d tape symbols, then \mathcal{D} can encode each in $\log d$ space, and due to \mathcal{M} 's space bound \mathcal{D} 's simulation needs at most $\log d \cdot g(n) \in o(f(n))$ cells.

Therefore, there is w for which \mathcal{D} simulates \mathcal{M} long enough to obtain (and flip) its output, or to detect that it is not terminating (and to accept, flipping again).

П

Like for time, we get some useful corollaries:

Corollary 13.2: PSpace ⊊ ExpSpace

Proof: As for time, but easier.

Like for time, we get some useful corollaries:

Corollary 13.2: PSpace ⊊ ExpSpace

Proof: As for time, but easier.

Corollary 13.3: NL ⊊ PSpace

Like for time, we get some useful corollaries:

Corollary 13.2: PSpace ⊊ ExpSpace

Proof: As for time, but easier.

Corollary 13.3: NL ⊊ PSpace

Proof: Savitch tells us that $NL \subseteq DSpace(\log^2 n)$. We can apply the Space Hierarchy Theorem since $\log^2 n \in o(n)$.

Like for time, we get some useful corollaries:

Corollary 13.2: PSpace ⊊ ExpSpace

Proof: As for time, but easier.

Corollary 13.3: NL ⊊ PSpace

Proof: Savitch tells us that $NL \subseteq DSpace(\log^2 n)$. We can apply the Space Hierarchy Theorem since $\log^2 n \in o(n)$.

Corollary 13.4: For all real numbers 0 < a < b, we have $\mathsf{DSpace}(n^a) \subseteq \mathsf{DSpace}(n^b)$.

In other words: The hierarchy of distinct space classes is very fine-grained.

The Gap Theorem

Why Constructibility?

The hierarchy theorems require that resource limits are given by constructible functions Do we really need this?

Why Constructibility?

The hierarchy theorems require that resource limits are given by constructible functions Do we really need this?

Yes. The following theorem shows why (for time):

Special Gap Theorem 13.5: There is a computable function $f: \mathbb{N} \to \mathbb{N}$ such that $\mathsf{DTime}(f(n)) = \mathsf{DTime}(2^{f(n)})$.

This has been shown independently by Boris Trakhtenbrot (1964) and Allan Borodin (1972).

Reminder: For this we continue to use the strict definition of $\mathsf{DTime}(f)$ where no constant factors are included (no hidden O(f)). This simplifes proofs; the factors are easy to add back.

Proving the Gap Theorem

Special Gap Theorem 13.5: There is a computable function $f: \mathbb{N} \to \mathbb{N}$ such that $\mathsf{DTime}(f(n)) = \mathsf{DTime}(2^{f(n)})$.

Proof idea: We divide time into exponentially long intervals of the form:

$$[0,n], [n+1,2^n], [2^n+1,2^{2^n}], [2^{2^n}+1,2^{2^{2^n}}], \cdots$$

(for some appropriate starting value n)

We are looking for gaps of time where no TM halts, since:

- · for every finite set of TMs,
- and every finite set of inputs to these TMs,
- there is some interval of the above form $[m+1, 2^m]$

such that none of the TMs halts in between m+1 and 2^m steps on any of the inputs.

The task of f is to find the start m of such a gap for a suitable set of TMs and words

Gaps in Time

We consider an (effectively computable) enumeration of all Turing machines:

$$\mathcal{M}_0, \mathcal{M}_1, \mathcal{M}_2, \dots$$

Gaps in Time

We consider an (effectively computable) enumeration of all Turing machines:

$$\mathcal{M}_0, \mathcal{M}_1, \mathcal{M}_2, \dots$$

Definition 13.6: For arbitrary numbers $i, a, b \in \mathbb{N}$ with $a \leq b$, we say that $\operatorname{Gap}_i(a, b)$ is true if:

- Given any TM \mathcal{M}_i with $0 \le j \le i$,
- and any input string w for \mathcal{M}_i of length |w| = i,

 \mathcal{M}_i on input w will halt in less than a steps, in more than b steps, or not at all.

Gaps in Time

We consider an (effectively computable) enumeration of all Turing machines:

$$\mathcal{M}_0, \mathcal{M}_1, \mathcal{M}_2, \dots$$

Definition 13.6: For arbitrary numbers $i, a, b \in \mathbb{N}$ with $a \leq b$, we say that $\operatorname{Gap}_i(a, b)$ is true if:

- Given any TM \mathcal{M}_i with $0 \le j \le i$,
- and any input string w for \mathcal{M}_j of length |w| = i,

 \mathcal{M}_i on input w will halt in less than a steps, in more than b steps, or not at all.

Lemma 13.7: Given $i, a, b \ge 0$ with $a \le b$, it is decidable if $\operatorname{Gap}_i(a, b)$ holds.

Proof: We just need to ensure that none of the finitely many TMs $\mathcal{M}_0, \ldots, \mathcal{M}_i$ will halt after a to b steps on any of the finitely many inputs of length i. This can be checked by simulating TM runs for at most b steps.

We can now define the value f(n) of f for some $n \ge 0$:

We can now define the value f(n) of f for some $n \ge 0$:

Let in(n) denote the number of runs of TMs $\mathcal{M}_0, \dots, \mathcal{M}_n$ on words of length n, i.e.,

$$in(n) = |\Sigma_0|^n + \cdots + |\Sigma_n|^n$$
 where Σ_i is the input alphabet of \mathcal{M}_i

We can now define the value f(n) of f for some $n \ge 0$:

Let $\underline{\mathsf{in}}(n)$ denote the number of runs of TMs $\mathcal{M}_0, \ldots, \mathcal{M}_n$ on words of length n, i.e.,

$$in(n) = |\Sigma_0|^n + \cdots + |\Sigma_n|^n$$
 where Σ_i is the input alphabet of \mathcal{M}_i

We recursively define a series of numbers $k_0, k_1, k_2, ...$ by setting $k_0 = 2n$ and $k_{i+1} = 2^{k_i}$ for $i \ge 0$, and we consider the following list of intervals:

$$[k_0+1,k_1],$$
 $[k_1+1,k_2],$ $\cdots,$ $[k_{\mathsf{in}(n)}+1,k_{\mathsf{in}(n)+1}]$

$$\parallel$$

$$[2n+1,2^{2n}],$$
 $[2^{2n}+1,2^{2^{2n}}],$ $\cdots,$ $[2^{2^{2n}}+1,2^{2^{2^{2n}}}]$

We can now define the value f(n) of f for some $n \ge 0$:

Let $\underline{\mathsf{in}}(n)$ denote the number of runs of TMs $\mathcal{M}_0, \ldots, \mathcal{M}_n$ on words of length n, i.e.,

$$in(n) = |\Sigma_0|^n + \cdots + |\Sigma_n|^n$$
 where Σ_i is the input alphabet of \mathcal{M}_i

We recursively define a series of numbers $k_0, k_1, k_2, ...$ by setting $k_0 = 2n$ and $k_{i+1} = 2^{k_i}$ for $i \ge 0$, and we consider the following list of intervals:

$$[k_0+1,k_1],$$
 $[k_1+1,k_2],$ $\cdots,$ $[k_{\mathsf{in}(n)}+1,k_{\mathsf{in}(n)+1}]$

$$\parallel$$

$$[2n+1,2^{2n}],$$
 $[2^{2n}+1,2^{2^{2n}}],$ $\cdots,$ $[2^{2^{2n}}+1,2^{2^{2^{2n}}}]$

Let f(n) be the least number k_i with $0 \le i \le \text{in}(n)$ such that $\text{Gap}_n(k_i + 1, k_{i+1})$ is true.

We first establish some basic properties of our definition of f:

Claim: The function f is well-defined.

We first establish some basic properties of our definition of f:

Claim: The function f is well-defined.

Proof: For finding f(n), we consider in(n) + 1 intervals. Since there are only in(n) runs of TMs $\mathcal{M}_0, \dots \mathcal{M}_n$, at least one interval remains a "gap" where no TM run halts.

We first establish some basic properties of our definition of f:

Claim: The function f is well-defined.

Proof: For finding f(n), we consider in(n) + 1 intervals. Since there are only in(n) runs of TMs $\mathcal{M}_0, \dots \mathcal{M}_n$, at least one interval remains a "gap" where no TM run halts.

Claim: The function f is computable.

We first establish some basic properties of our definition of f:

Claim: The function f is well-defined.

Proof: For finding f(n), we consider in(n) + 1 intervals. Since there are only in(n) runs of TMs $\mathcal{M}_0, \dots \mathcal{M}_n$, at least one interval remains a "gap" where no TM run halts.

Claim: The function f is computable.

Proof: We can compute in(n) and k_i for any i, and we can decide $Gap_n(k_i + 1, k_{i+1})$.

Papadimitriou: "notice the fantastically fast growth, as well as the decidedly unnatural definition of this function."

We can now complete the proof of the theorem:

Claim: $DTime(f(n)) = DTime(2^{f(n)}).$

We can now complete the proof of the theorem:

Claim: $DTime(f(n)) = DTime(2^{f(n)}).$

Consider any $L \in \mathsf{DTime}(2^{f(n)})$.

We can now complete the proof of the theorem:

Claim: $\mathsf{DTime}(f(n)) = \mathsf{DTime}(2^{f(n)}).$

Consider any $\mathbf{L} \in \mathsf{DTime}(2^{f(n)})$.

Then there is an $2^{f(n)}$ -time bounded TM \mathcal{M}_j with $\mathbf{L} = \mathbf{L}(\mathcal{M}_j)$.

We can now complete the proof of the theorem:

Claim: $\mathsf{DTime}(f(n)) = \mathsf{DTime}(2^{f(n)}).$

Consider any $\mathbf{L} \in \mathsf{DTime}(2^{f(n)})$.

Then there is an $2^{f(n)}$ -time bounded TM \mathcal{M}_j with $\mathbf{L} = \mathbf{L}(\mathcal{M}_j)$.

For any input w with $|w| \ge j$:

We can now complete the proof of the theorem:

Claim: $DTime(f(n)) = DTime(2^{f(n)}).$

Consider any $\mathbf{L} \in \mathsf{DTime}(2^{f(n)})$.

Then there is an $2^{f(n)}$ -time bounded TM \mathcal{M}_j with $\mathbf{L} = \mathbf{L}(\mathcal{M}_j)$.

For any input w with $|w| \ge j$:

• The definition of f(|w|) took the run of \mathcal{M}_i on w into account

We can now complete the proof of the theorem:

Claim: $\mathsf{DTime}(f(n)) = \mathsf{DTime}(2^{f(n)}).$

Consider any $\mathbf{L} \in \mathsf{DTime}(2^{f(n)})$.

Then there is an $2^{f(n)}$ -time bounded TM \mathcal{M}_j with $\mathbf{L} = \mathbf{L}(\mathcal{M}_j)$.

For any input w with $|w| \ge j$:

- The definition of f(|w|) took the run of \mathcal{M}_i on w into account
- \mathcal{M}_i on w halts after less than f(|w|) steps, or not until after $2^{f(|w|)}$ steps (maybe never)

We can now complete the proof of the theorem:

Claim: $\mathsf{DTime}(f(n)) = \mathsf{DTime}(2^{f(n)}).$

Consider any $\mathbf{L} \in \mathsf{DTime}(2^{f(n)})$.

Then there is an $2^{f(n)}$ -time bounded TM \mathcal{M}_j with $\mathbf{L} = \mathbf{L}(\mathcal{M}_j)$.

For any input w with $|w| \ge j$:

- The definition of f(|w|) took the run of \mathcal{M}_i on w into account
- \mathcal{M}_i on w halts after less than f(|w|) steps, or not until after $2^{f(|w|)}$ steps (maybe never)
- Since \mathcal{M}_i runs in time $\mathsf{DTime}(2^{f(n)})$, it must halt in $\mathsf{DTime}(f(n))$ on w

Finishing the Proof

We can now complete the proof of the theorem:

Claim: $\mathsf{DTime}(f(n)) = \mathsf{DTime}(2^{f(n)}).$

Consider any $L \in \mathsf{DTime}(2^{f(n)})$.

Then there is an $2^{f(n)}$ -time bounded TM \mathcal{M}_j with $\mathbf{L} = \mathbf{L}(\mathcal{M}_j)$.

For any input w with $|w| \ge j$:

- The definition of f(|w|) took the run of \mathcal{M}_i on w into account
- \mathcal{M}_j on w halts after less than f(|w|) steps, or not until after $2^{f(|w|)}$ steps (maybe never)
- Since \mathcal{M}_j runs in time $\mathsf{DTime}(2^{f(n)})$, it must halt in $\mathsf{DTime}(f(n))$ on w

For the finitely many inputs w with |w| < j:

Finishing the Proof

We can now complete the proof of the theorem:

```
Claim: \mathsf{DTime}(f(n)) = \mathsf{DTime}(2^{f(n)}).
```

Consider any $\mathbf{L} \in \mathsf{DTime}(2^{f(n)})$.

Then there is an $2^{f(n)}$ -time bounded TM \mathcal{M}_j with $\mathbf{L} = \mathbf{L}(\mathcal{M}_j)$.

For any input w with $|w| \ge j$:

- The definition of f(|w|) took the run of \mathcal{M}_i on w into account
- \mathcal{M}_i on w halts after less than f(|w|) steps, or not until after $2^{f(|w|)}$ steps (maybe never)
- Since M_j runs in time $\mathsf{DTime}(2^{f(n)})$, it must halt in $\mathsf{DTime}(f(n))$ on w

For the finitely many inputs w with |w| < j:

- We can augment the state space of M_j to run a finite automaton to decide these cases
- This will work in DTime(f(n))

Finishing the Proof

We can now complete the proof of the theorem:

```
Claim: \mathsf{DTime}(f(n)) = \mathsf{DTime}(2^{f(n)}).
```

Consider any $\mathbf{L} \in \mathsf{DTime}(2^{f(n)})$.

Then there is an $2^{f(n)}$ -time bounded TM \mathcal{M}_j with $\mathbf{L} = \mathbf{L}(\mathcal{M}_j)$.

For any input w with $|w| \ge j$:

- The definition of f(|w|) took the run of \mathcal{M}_i on w into account
- \mathcal{M}_i on w halts after less than f(|w|) steps, or not until after $2^{f(|w|)}$ steps (maybe never)
- Since \mathcal{M}_i runs in time $\mathsf{DTime}(2^{f(n)})$, it must halt in $\mathsf{DTime}(f(n))$ on w

For the finitely many inputs w with |w| < j:

- We can augment the state space of M_j to run a finite automaton to decide these cases
- This will work in DTime(f(n))

Therefore we have $\mathbf{L} \in \mathsf{DTime}(f(n))$.

П

Borodin says: It is meaningful to state complexity results if they hold for "almost every" input (i.e., for all but a finite number)

Borodin says: It is meaningful to state complexity results if they hold for "almost every" input (i.e., for all but a finite number)

Papadimitriou says: These words can be handled since we can check the length and then recognise the word in less than 2j steps

Borodin says: It is meaningful to state complexity results if they hold for "almost every" input (i.e., for all but a finite number)

Papadimitriou says: These words can be handled since we can check the length and then recognise the word in less than 2j steps

Really?

- If we do these < 2j steps before running \mathcal{M}_i , the modified TM runs in DTime(f(n) + 2j)
- This does not show $\mathbf{L} \in \mathsf{DTime}(f(n))$

Borodin says: It is meaningful to state complexity results if they hold for "almost every" input (i.e., for all but a finite number)

Papadimitriou says: These words can be handled since we can check the length and then recognise the word in less than 2i steps

Really?

- If we do these < 2j steps before running \mathcal{M}_i , the modified TM runs in DTime(f(n) + 2j)
- This does not show $\mathbf{L} \in \mathsf{DTime}(f(n))$

A more detailed argument:

- Make the intervals larger: $[k_i + 1, 2^{k_i+2n} + 2n]$, that is $k_{i+1} = 2^{k_i+2n} + 2n$.
- Select f(n) to be $k_i + 2n + 1$ if the least gap starts at $k_i + 1$.

The same pigeon hole argument as before ensures that an empty interval is found.

But now the f(n) time bounded machine \mathcal{M}_j from the proof will be sure to stop after f(n)-2n-1 steps, so a shift of $2j \leq 2n$ to account for the finitely many cases will not make it use more than f(n) steps either

Discussion: Generalising the Gap Theorem

- Our proof uses the function $n \mapsto 2^n$ to define intervals
- Any other computable function could be used without affecting the argument

Discussion: Generalising the Gap Theorem

- Our proof uses the function $n \mapsto 2^n$ to define intervals
- Any other computable function could be used without affecting the argument

This leads to a generalised Gap Theorem:

Gap Theorem 13.8: For every computable function $g : \mathbb{N} \to \mathbb{N}$ with $g(n) \ge n$, there is a computable function $f : \mathbb{N} \to \mathbb{N}$ such that $\mathsf{DTime}(f(n)) = \mathsf{DTime}(g(f(n)))$.

Discussion: Generalising the Gap Theorem

- Our proof uses the function $n \mapsto 2^n$ to define intervals
- Any other computable function could be used without affecting the argument

This leads to a generalised Gap Theorem:

Gap Theorem 13.8: For every computable function $g: \mathbb{N} \to \mathbb{N}$ with $g(n) \ge n$, there is a computable function $f: \mathbb{N} \to \mathbb{N}$ such that $\mathsf{DTime}(f(n)) = \mathsf{DTime}(g(f(n)))$.

Example 13.9: There is a function f such that

$$\mathsf{DTime}(f(n)) = \mathsf{DTime}\left(\underbrace{2^{2^{n^2}}}_{f(n) \text{ times}}\right)$$

Moreover, the Gap Theorem can also be shown for space (and for other resources) in a similar fashion (space is a bit easier since the case of short words |w| < j is easy to handle in very little space)

What have we learned?

What have we learned?

• More time (or space) does not always increase computational power

What have we learned?

- More time (or space) does not always increase computational power
- However, this only works for extremely fast-growing, very unnatural functions

What have we learned?

- More time (or space) does not always increase computational power
- However, this only works for extremely fast-growing, very unnatural functions

"Fortunately, the gap phenomenon cannot happen for time bounds *t* that anyone would ever be interested in" 1

Main insight: better stick to constructible functions

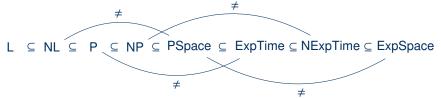
¹ Allender, Loui, Reagan: Complexity Theory. In Computing Handbook, 3rd ed., CRC Press, 2014

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023

Complexity Theory slide 18 of 19

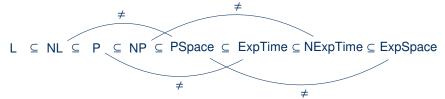
Hierarchy theorems tell us that more time/space leads to more power:

Hierarchy theorems tell us that more time/space leads to more power:



However, they don't help us in comparing different resources and machine types (P vs. NP, or PSpace vs. ExpTime)

Hierarchy theorems tell us that more time/space leads to more power:



However, they don't help us in comparing different resources and machine types (P vs. NP, or PSpace vs. ExpTime)

With non-constructible functions as time/space bounds, arbitrary (constructible or not) boosts in resources do not lead to more power

Hierarchy theorems tell us that more time/space leads to more power:

However, they don't help us in comparing different resources and machine types (P vs. NP, or PSpace vs. ExpTime)

With non-constructible functions as time/space bounds, arbitrary (constructible or not) boosts in resources do not lead to more power

What's next?

- The inner structure of NP revisited
- Computing with oracles (reprise)
- The limits of diagonalisation, proved by diagonalisation