TECHNISCHE .
UNVERSITAT @ it
DRESDEN e °

COMPLEXITY THEORY

Lecture 13: Space Hierarchy and Gaps

Markus Krotzsch, Stephan Mennicke, Lukas Gerlach

Knowledge-Based Systems

TU Dresden, 27th Nov 2023

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2023)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Stephan_Mennicke
https://iccl.inf.tu-dresden.de/web/Lukas Gerlach
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

Review

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 2 of 19

Review: Time Hierarchy Theorems

Time Hierarchy Theorem 12.12 If f,¢ : N — N are such that f is time-
constructible, and g - log g € o(f), then

DTime.(g) € DTime.(f)

Nondeterministic Time Hierarchy Theorem 12.14 If f, ¢ : N — N are such that f
is time-constructible, and g(n + 1) € o(f(n)), then

NTime.(g) € NTime..(f)

In particular, we find that P # ExpTime and NP # NExpTime:
+

L € NL € P_<C NP C PSpace C¢ ExpTime C NExpTime C ExpSpace

+

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 3 of 19

A Hierarchy for Space

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 4 of 19

Space Hierarchy

For space, we can always assume a single working tape:
® Tape reduction leads to a constant-factor increase in space
® Constant factors can be eliminated by space compression
Therefore, DSpace, (f) = DSpace (f).

Space turns out to be easier to separate — we get:

Space Hierarchy Theorem 13.1: If f,¢ : N — N are such that f is space-
constructible, and g € o(f), then

DSpace(g) ¢ DSpace(f)

Challenge: TMs can run forever even within bounded space.

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 5 of 19

Proving the Space Hierarchy Theorem (1)

Space Hierarchy Theorem 13.1: If f, ¢ : N — N are such that f is space-
constructible, and g € o(f), then

DSpace(g) ¢ DSpace(f)

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 6 of 19

Proving the Space Hierarchy Theorem (1)

Space Hierarchy Theorem 13.1: If f, ¢ : N — N are such that f is space-
constructible, and g € o(f), then

DSpace(g) < DSpace(f)

Proof: Again, we construct a diagonalisation machine D. We define a multi-tape TM D
for inputs of the form (M, w) (other cases do not matter), assuming that (M, w)| = n
® Compute f(n) in unary to mark the available space on the working tape
® |nitialise a separate countdown tape with the largest binary number that can be
written in f(n) space
® Simulate M on (M, w), making sure that only previously marked tape cells are
used
® Time-bound the simulation using the content of the countdown tape by
decrementing the counter in each simulated step

* |f M rejects (in this space bound) or if the time bound is reached without M
halting, then accept; otherwise, if M accepts or uses unmarked space, reject

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 6 of 19

Proving the Space Hierarchy Theorem (1)

Proof (continued): It remains to show that © implements diagonalisation:

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 7 of 19

Proving the Space Hierarchy Theorem (1)

Proof (continued): It remains to show that © implements diagonalisation:

L(D) € DSpace(f):
® fis space-constructible, so both the marking of tape symbols and the initialisation
of the counter are possible in DSpace(f)

® The simulation is performed so that the marked O(f)-space is not left

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 7 of 19

Proving the Space Hierarchy Theorem (1)

Proof (continued): It remains to show that © implements diagonalisation:

L(D) € DSpace(f):
® fis space-constructible, so both the marking of tape symbols and the initialisation
of the counter are possible in DSpace(f)
® The simulation is performed so that the marked O(f)-space is not left

There is w such that (M, w) € L(D) iff (M, w) ¢ L(M):
® As for time, we argue that some w is long enough to ensure that f is sufficiently
larger than g, so D’s simulation can finish.
¢ The countdown measures 2™ steps. The number of possible distinct
configurations of M on wis Q| - n - g(n) - [[|§"™ € 206W+loen “and due to f(n) > logn
and g € o(f), this number is smaller than 2/ for large enough n.
® |f M has d tape symbols, then D can encode each in log d space, and due to M’s
space bound D’s simulation needs at most logd - g(n) € o(f(n)) cells.
Therefore, there is w for which D simulates M long enough to obtain (and flip) its

output, or to detect that it is not terminating (and to accept, flipping again).]
Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 7 of 19

Space Hierarchies

Like for time, we get some useful corollaries:

\ Corollary 13.2: PSpace ¢ ExpSpace

Proof: As for time, but easier.

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory

slide 8 of 19

Space Hierarchies

Like for time, we get some useful corollaries:

\ Corollary 13.2: PSpace ¢ ExpSpace

Proof: As for time, but easier.

) Corollary 13.3: NL ¢ PSpace

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory

slide 8 of 19

Space Hierarchies

Like for time, we get some useful corollaries:

Forollary 13.2: PSpace ¢ ExpSpace \
Proof: As for time, but easier. O
Eorollary 13.3: NL ¢ PSpace \

Proof: Savitch tells us that NL C DSpace(log® n). We can apply the Space Hierarchy
Theorem since log? n € o(n). O

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 8 of 19

Space Hierarchies

Like for time, we get some useful corollaries:

Forollary 13.2: PSpace ¢ ExpSpace \

Proof: As for time, but easier.]

Eorollary 13.3: NL ¢ PSpace \

Proof: Savitch tells us that NL C DSpace(log® n). We can apply the Space Hierarchy

Theorem since log? n € o(n). O
Corollary 13.4: For all real numbers 0 < a < b, we have DSpace(n?) <
DSpace(n’).

In other words: The hierarchy of distinct space classes is very fine-grained.

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 8 of 19

The Gap Theorem

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 9 of 19

Why Constructibility?

The hierarchy theorems require that resource limits are given by constructible functions

Do we really need this?

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 10 of 19

Why Constructibility?

The hierarchy theorems require that resource limits are given by constructible functions

Do we really need this?

Yes. The following theorem shows why (for time):

Special Gap Theorem 13.5: There is a computable function f : N — N such that
DTime(f(n)) = DTime(2f™).

This has been shown independently by Boris Trakhtenbrot (1964) and Allan Borodin
(1972).

Reminder: For this we continue to use the strict definition of DTime(f) where no
constant factors are included (no hidden O(f)). This simplifes proofs; the factors
are easy to add back.

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 10 of 19

Proving the Gap Theorem

Special Gap Theorem 13.5: There is a computable function f : N — N such that
DTime(f(n)) = DTime(2/™).

Proof idea: We divide time into exponentially long intervals of the form:
[0.n], [n+1,2"], [2"+1,2%], [2%+1,2%],
(for some appropriate starting value n)

We are looking for gaps of time where no TM halts, since:
e for every finite set of TMs,
® and every finite set of inputs to these TMs,
® there is some interval of the above form [m + 1,2"]
such that none of the TMs halts in between m + 1 and 2™ steps on any of the inputs.

The task of f is to find the start m of such a gap for a suitable set of TMs and words

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 11 of 19

Gaps in Time
We consider an (effectively computable) enumeration of all Turing machines:

Mo, My, Mo, ...

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 12 of 19

Gaps in Time
We consider an (effectively computable) enumeration of all Turing machines:

Mo, Mi, Mo, ...

Definition 13.6: For arbitrary numbers i,a,b € N with a < b, we say that
Gap,(a, b) is true if:

® Given any TM M; with 0 <j < i,

® and any input string w for M; of length |w| = i,
M; on input w will halt in less than a steps, in more than b steps, or not at all.

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 12 of 19

Gaps in Time
We consider an (effectively computable) enumeration of all Turing machines:

MOaM17M27"'

Definition 13.6: For arbitrary numbers i,a,b € N witha < b, we say that
Gap,(a, b) is true if:

e Given any TM M; with 0 <j < i,

® and any input string w for M; of length |w| = i,
M; on input w will halt in less than a steps, in more than b steps, or not at all.

Femma 13.7: Given i,a,b > 0 with a < b, it is decidable if Gap,(a, b) holds. \

Proof: We just need to ensure that none of the finitely many TMs Mo, ..., M; will halt
after a to b steps on any of the finitely many inputs of length i. This can be checked by
simulating TM runs for at most b steps.]

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 12 of 19

Find the Gap

We can now define the value f(n) of f for some n > 0:

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 13 of 19

Find the Gap

We can now define the value f(n) of f for some n > 0:
Let in(n) denote the number of runs of TMs M, ..., M, on words of length n, i.e.,

in(n) = [Zo|" +--- +|%,/" where %; is the input alphabet of M;

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 13 of 19

Find the Gap

We can now define the value f(n) of f for some n > 0:
Let in(n) denote the number of runs of TMs M, ..., M, on words of length n, i.e.,
in(n) = [Zo|" +--- +|%,/" where %; is the input alphabet of M;

We recursively define a series of numbers k., ki, ks, . .. by setting ko = 2n and k;,; = 25
for i > 0, and we consider the following list of intervals:

[kO + 17k1]7 [kl + lakZ], Ty [kin(n) + 17kin(n)+l]

5 2n

Rn+1,22, 22 +1,22], .. [2 +1,22]

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 13 of 19

Find the Gap

We can now define the value f(n) of f for some n > 0:
Let in(n) denote the number of runs of TMs M, ..., M, on words of length n, i.e.,
in(n) = [Zo|" +--- +|%,/" where %; is the input alphabet of M;

We recursively define a series of numbers k., ki, ks, . .. by setting ko = 2n and k;,; = 25
for i > 0, and we consider the following list of intervals:

[kO + 17k1]7 [kl + lakZ], Ty [kin(n) + 17kin(n)+l]

Il Il]
2 2n

Rn+1,22, 22 +1,22], .. [2 +1,22]

\ Let f(n) be the least number k; with 0 < i < in(n) such that Gap,,(k; + 1, k;41) is true. \

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 13 of 19

Properties of f

We first establish some basic properties of our definition of f:

\ Claim: The function f is well-defined. \

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 14 of 19

Properties of f

We first establish some basic properties of our definition of f:

Flaim: The function f is well-defined. \

Proof: For finding f(n), we consider in(n) + 1 intervals. Since there are only in(n) runs of
TMs My, ... M,, at least one interval remains a “gap” where no TM run halts. O

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 14 of 19

Properties of f

We first establish some basic properties of our definition of f:

Flaim: The function f is well-defined. \
Proof: For finding f(n), we consider in(n) + 1 intervals. Since there are only in(n) runs of
TMs My, ... M,, at least one interval remains a “gap” where no TM run halts. O
Elaim: The function f is computable. \

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 14 of 19

Properties of f

We first establish some basic properties of our definition of f:

Flaim: The function f is well-defined. \
Proof: For finding f(n), we consider in(n) + 1 intervals. Since there are only in(n) runs of
TMs My, ... M,, at least one interval remains a “gap” where no TM run halts. O
Elaim: The function f is computable. \

Proof: We can compute in(n) and k; for any i, and we can decide Gap, (k; + 1,ki+1). O

Papadimitriou: “notice the fantastically fast growth, as well as the decidedly unnatural
definition of this function.”

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 14 of 19

Finishing the Proof

We can now complete the proof of the theorem:

Claim: DTime(f(n)) = DTime(2'™). \

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 15 of 19

Finishing the Proof

We can now complete the proof of the theorem:

Claim: DTime(f(n)) = DTime(2'™).

Consider any L € DTime(2/™).

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory

slide 15 of 19

Finishing the Proof

We can now complete the proof of the theorem:

Claim: DTime(f(n)) = DTime(2'™).

Consider any L € DTime(2/™).
Then there is an 2/™-time bounded TM M; with L = L(M,;).

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory

slide 15 of 19

Finishing the Proof

We can now complete the proof of the theorem:

Claim: DTime(f(n)) = DTime(2'™).

Consider any L € DTime(2/™).
Then there is an 2/™-time bounded TM M; with L = L(M,;).

For any input w with |w| > j:

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory

slide 15 of 19

Finishing the Proof

We can now complete the proof of the theorem:

Claim: DTime(f(n)) = DTime(2'™). \

Consider any L € DTime(2/™).
Then there is an 2/™-time bounded TM M; with L = L(M,;).

For any input w with |w| > j:
® The definition of f(lw|) took the run of M; on w into account

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 15 of 19

Finishing the Proof

We can now complete the proof of the theorem:

Flaim: DTime(f(n)) = DTime(2f™), \

Consider any L € DTime(2/™).
Then there is an 2/™-time bounded TM M; with L = L(M,;).

For any input w with |w| > j:
® The definition of f(lw|) took the run of M; on w into account
* M; on w halts after less than f(|w|) steps, or not until after 2/") steps (maybe never)

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 15 of 19

Finishing the Proof

We can now complete the proof of the theorem:

Flaim: DTime(f(n)) = DTime(2f™), \

Consider any L € DTime(2/™).
Then there is an 2/™-time bounded TM M; with L = L(M,;).

For any input w with |w| > j:
® The definition of f(lw|) took the run of M; on w into account
* M; on w halts after less than f(|w|) steps, or not until after 2/") steps (maybe never)
* Since M; runs in time DTime(2/™), it must halt in DTime(f(n)) on w

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 15 of 19

Finishing the Proof

We can now complete the proof of the theorem:

Flaim: DTime(f(n)) = DTime(2f™), \

Consider any L € DTime(2/™).
Then there is an 2/™-time bounded TM M; with L = L(M,;).

For any input w with |w| > j:
® The definition of f(lw|) took the run of M; on w into account
* M; on w halts after less than f(|w|) steps, or not until after 2/") steps (maybe never)
* Since M; runs in time DTime(2/™), it must halt in DTime(f(n)) on w

For the finitely many inputs w with |w| < j:

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 15 of 19

Finishing the Proof

We can now complete the proof of the theorem:

Flaim: DTime(f(n)) = DTime(2f™), \

Consider any L € DTime(2/™).
Then there is an 2/™-time bounded TM M; with L = L(M,;).

For any input w with |w| > j:
® The definition of f(lw|) took the run of M; on w into account
* M; on w halts after less than f(|w|) steps, or not until after 2/") steps (maybe never)
* Since M; runs in time DTime(2/™), it must halt in DTime(f(n)) on w

For the finitely many inputs w with |w| < j:
® We can augment the state space of M; to run a finite automaton to decide these
cases
e This will work in DTime(f(n))

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 15 of 19

Finishing the Proof

We can now complete the proof of the theorem:

Elaim: DTime(f(n)) = DTime(2f™), \

Consider any L € DTime(2/™).
Then there is an 2/™-time bounded TM M; with L = L(M,;).

For any input w with |w| > j:
® The definition of f(lw|) took the run of M; on w into account
* M; on w halts after less than f(|w|) steps, or not until after 2/") steps (maybe never)
* Since M; runs in time DTime(2/™), it must halt in DTime(f(n)) on w

For the finitely many inputs w with |w| < j:
® We can augment the state space of M; to run a finite automaton to decide these
cases
e This will work in DTime(f(n))

Therefore we have L € DTime(f(n)). o
Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 15 of 19

Discussion: The case |w| < j

Borodin says: It is meaningful to state complexity results if they hold for “almost every”
input (i.e., for all but a finite number)

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 16 of 19

Discussion: The case |w| < j

Borodin says: It is meaningful to state complexity results if they hold for “almost every”
input (i.e., for all but a finite number)

Papadimitriou says: These words can be handled since we can check the length and
then recognise the word in less than 2;j steps

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 16 of 19

Discussion: The case |w| < j

Borodin says: It is meaningful to state complexity results if they hold for “almost every”
input (i.e., for all but a finite number)

Papadimitriou says: These words can be handled since we can check the length and
then recognise the word in less than 2;j steps

Really?
® If we do these < 2; steps before running M;, the modified TM runs in DTime(f(n) + 2/)
® This does not show L € DTime(f(n))

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 16 of 19

Discussion: The case |w| < j

Borodin says: It is meaningful to state complexity results if they hold for “almost every”
input (i.e., for all but a finite number)

Papadimitriou says: These words can be handled since we can check the length and
then recognise the word in less than 2;j steps

Really?
® If we do these < 2; steps before running M;, the modified TM runs in DTime(f(n) + 2/)
® This does not show L € DTime(f(n))

A more detailed argument:
® Make the intervals larger: [k; + 1, 252" 4 2n], that is ki = 252" + 2n.
® Select f(n) to be k; + 2n + 1 if the least gap starts at k; + 1.
The same pigeon hole argument as before ensures that an empty interval is found.

But now the f(n) time bounded machine M; from the proof will be sure to stop after
f(n) —2n — 1 steps, so a shift of 2j < 2n to account for the finitely many cases will not

make it use more than f(n) steps either
Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 16 of 19

Discussion: Generalising the Gap Theorem

® Qur proof uses the function n — 2" to define intervals
* Any other computable function could be used without affecting the argument

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 17 of 19

Discussion: Generalising the Gap Theorem

® Qur proof uses the function n — 2" to define intervals
* Any other computable function could be used without affecting the argument

This leads to a generalised Gap Theorem:

Gap Theorem 13.8: For every computable function g : N — N with g(n) > n, there
is a computable function f : N — N such that DTime(f(n)) = DTime(g(f(rn))).

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 17 of 19

Discussion: Generalising the Gap Theorem

® Qur proof uses the function n — 2" to define intervals
* Any other computable function could be used without affecting the argument
This leads to a generalised Gap Theorem:

Gap Theorem 13.8: For every computable function g : N — N with g(n) > n, there
is a computable function f : N — N such that DTime(f(n)) = DTime(g(f(rn))).

Example 13.9: There is a function f such that

DTime(f(n)):DTime{ 2]

f(n) times

Moreover, the Gap Theorem can also be shown for space (and for other resources) in a

similar fashion (space is a bit easier since the case of short words |w| < j is easy to handle in very little space)

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 17 of 19

Discussion: Significance of the Gap Theorem

What have we learned?

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 18 of 19

Discussion: Significance of the Gap Theorem

What have we learned?
* More time (or space) does not always increase computational power

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 18 of 19

Discussion: Significance of the Gap Theorem

What have we learned?
* More time (or space) does not always increase computational power
® However, this only works for extremely fast-growing, very unnatural functions

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 18 of 19

Discussion: Significance of the Gap Theorem

What have we learned?
* More time (or space) does not always increase computational power
® However, this only works for extremely fast-growing, very unnatural functions

“Fortunately, the gap phenomenon cannot happen for time bounds ¢
that anyone would ever be interested in”!

Main insight: better stick to constructible functions

'Allender, Loui, Reagan: Complexity Theory. In Computing Handbook, 3rd ed., CRC Press, 2014

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 18 of 19

Summary and Outlook

Hierarchy theorems tell us that more time/space leads to more power:

+
+

L € NL € P_C NP c PSpace ¢ ExpTime c NExpTime C ExpSpace

+

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 19 of 19

Summary and Outlook

Hierarchy theorems tell us that more time/space leads to more power:

+
+

L € NL € P_C NP c PSpace ¢ ExpTime c NExpTime C ExpSpace

+
+

However, they don'’t help us in comparing different resources and machine types
(P vs. NP, or PSpace vs. ExpTime)

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 19 of 19

Summary and Outlook

Hierarchy theorems tell us that more time/space leads to more power:

+
+

L € NL € P_C NP c PSpace ¢ ExpTime c NExpTime C ExpSpace

+
+

However, they don'’t help us in comparing different resources and machine types
(P vs. NP, or PSpace vs. ExpTime)

With non-constructible functions as time/space bounds, arbitrary (constructible or not)
boosts in resources do not lead to more power

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 19 of 19

Summary and Outlook

Hierarchy theorems tell us that more time/space leads to more power:

+
+

L € NL € P_C NP c PSpace ¢ ExpTime c NExpTime C ExpSpace

+
+

However, they don'’t help us in comparing different resources and machine types
(P vs. NP, or PSpace vs. ExpTime)

With non-constructible functions as time/space bounds, arbitrary (constructible or not)
boosts in resources do not lead to more power
What’s next?
® The inner structure of NP revisited
® Computing with oracles (reprise)
® The limits of diagonalisation, proved by diagonalisation

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 19 of 19

	Space Hierarchy and Gaps
	Review
	A Hierarchy for Space
	The Gap Theorem

