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Review: Time Hierarchy Theorems

Time Hierarchy Theorem 12.12 If f,¢ : N — N are such that f is time-
constructible, and g - log g € o(f), then

DTime.(g) € DTime.(f)

Nondeterministic Time Hierarchy Theorem 12.14 If f, ¢ : N — N are such that f
is time-constructible, and g(n + 1) € o(f(n)), then

NTime.(g) € NTime..(f)

In particular, we find that P # ExpTime and NP # NExpTime:
+

L € NL € P_<C NP C PSpace C¢ ExpTime C NExpTime C ExpSpace

+
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A Hierarchy for Space
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Space Hierarchy

For space, we can always assume a single working tape:
® Tape reduction leads to a constant-factor increase in space
® Constant factors can be eliminated by space compression
Therefore, DSpace, (f) = DSpace (f).

Space turns out to be easier to separate — we get:

Space Hierarchy Theorem 13.1: If f,¢ : N — N are such that f is space-
constructible, and g € o(f), then

DSpace(g) ¢ DSpace(f)

Challenge: TMs can run forever even within bounded space.
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Proving the Space Hierarchy Theorem (1)

Space Hierarchy Theorem 13.1: If f, ¢ : N — N are such that f is space-
constructible, and g € o(f), then

DSpace(g) ¢ DSpace(f)
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Proving the Space Hierarchy Theorem (1)

Space Hierarchy Theorem 13.1: If f, ¢ : N — N are such that f is space-
constructible, and g € o(f), then

DSpace(g) < DSpace(f)

Proof: Again, we construct a diagonalisation machine D. We define a multi-tape TM D
for inputs of the form (M, w) (other cases do not matter), assuming that (M, w)| = n
® Compute f(n) in unary to mark the available space on the working tape
® |nitialise a separate countdown tape with the largest binary number that can be
written in f(n) space
® Simulate M on (M, w), making sure that only previously marked tape cells are
used
® Time-bound the simulation using the content of the countdown tape by
decrementing the counter in each simulated step

* |f M rejects (in this space bound) or if the time bound is reached without M
halting, then accept; otherwise, if M accepts or uses unmarked space, reject
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Proving the Space Hierarchy Theorem (1)

Proof (continued): It remains to show that © implements diagonalisation:
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Proving the Space Hierarchy Theorem (1)

Proof (continued): It remains to show that © implements diagonalisation:

L(D) € DSpace(f):
® fis space-constructible, so both the marking of tape symbols and the initialisation
of the counter are possible in DSpace(f)

® The simulation is performed so that the marked O(f)-space is not left
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Proving the Space Hierarchy Theorem (1)

Proof (continued): It remains to show that © implements diagonalisation:

L(D) € DSpace(f):
® fis space-constructible, so both the marking of tape symbols and the initialisation
of the counter are possible in DSpace(f)
® The simulation is performed so that the marked O(f)-space is not left

There is w such that (M, w) € L(D) iff (M, w) ¢ L(M):
® As for time, we argue that some w is long enough to ensure that f is sufficiently
larger than g, so D’s simulation can finish.
¢ The countdown measures 2™ steps. The number of possible distinct
configurations of M on wis Q| - n - g(n) - [[|§"™ € 206W+loen “and due to f(n) > logn
and g € o(f), this number is smaller than 2/ for large enough n.
® |f M has d tape symbols, then D can encode each in log d space, and due to M’s
space bound D’s simulation needs at most logd - g(n) € o(f(n)) cells.
Therefore, there is w for which D simulates M long enough to obtain (and flip) its

output, or to detect that it is not terminating (and to accept, flipping again). ]
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Space Hierarchies

Like for time, we get some useful corollaries:

\ Corollary 13.2: PSpace ¢ ExpSpace

Proof: As for time, but easier.
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Space Hierarchies

Like for time, we get some useful corollaries:

\ Corollary 13.2: PSpace ¢ ExpSpace

Proof: As for time, but easier.

) Corollary 13.3: NL ¢ PSpace
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Space Hierarchies

Like for time, we get some useful corollaries:

Forollary 13.2: PSpace ¢ ExpSpace \
Proof: As for time, but easier. O
Eorollary 13.3: NL ¢ PSpace \

Proof: Savitch tells us that NL C DSpace(log® n). We can apply the Space Hierarchy
Theorem since log? n € o(n). O
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Space Hierarchies

Like for time, we get some useful corollaries:

Forollary 13.2: PSpace ¢ ExpSpace \

Proof: As for time, but easier. ]

Eorollary 13.3: NL ¢ PSpace \

Proof: Savitch tells us that NL C DSpace(log® n). We can apply the Space Hierarchy

Theorem since log? n € o(n). O
Corollary 13.4: For all real numbers 0 < a < b, we have DSpace(n?) <
DSpace(n’).

In other words: The hierarchy of distinct space classes is very fine-grained.
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The Gap Theorem
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Why Constructibility?

The hierarchy theorems require that resource limits are given by constructible functions

Do we really need this?
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Why Constructibility?

The hierarchy theorems require that resource limits are given by constructible functions

Do we really need this?

Yes. The following theorem shows why (for time):

Special Gap Theorem 13.5: There is a computable function f : N — N such that
DTime(f(n)) = DTime(2f™).

This has been shown independently by Boris Trakhtenbrot (1964) and Allan Borodin
(1972).

Reminder: For this we continue to use the strict definition of DTime(f) where no
constant factors are included (no hidden O(f)). This simplifes proofs; the factors
are easy to add back.
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Proving the Gap Theorem

Special Gap Theorem 13.5: There is a computable function f : N — N such that
DTime(f(n)) = DTime(2/™).

Proof idea: We divide time into exponentially long intervals of the form:
[0.n], [n+1,2"], [2"+1,2%], [2%+1,2%],
(for some appropriate starting value n)

We are looking for gaps of time where no TM halts, since:
e for every finite set of TMs,
® and every finite set of inputs to these TMs,
® there is some interval of the above form [m + 1,2"]
such that none of the TMs halts in between m + 1 and 2™ steps on any of the inputs.

The task of f is to find the start m of such a gap for a suitable set of TMs and words

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 11 of 19



Gaps in Time
We consider an (effectively computable) enumeration of all Turing machines:

Mo, My, Mo, ...
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Gaps in Time
We consider an (effectively computable) enumeration of all Turing machines:

Mo, Mi, Mo, ...

Definition 13.6: For arbitrary numbers i,a,b € N with a < b, we say that
Gap,(a, b) is true if:

® Given any TM M; with 0 <j < i,

® and any input string w for M; of length |w| = i,
M; on input w will halt in less than a steps, in more than b steps, or not at all.

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 12 of 19



Gaps in Time
We consider an (effectively computable) enumeration of all Turing machines:

MOaM17M27"'

Definition 13.6: For arbitrary numbers i,a,b € N witha < b, we say that
Gap,(a, b) is true if:

e Given any TM M; with 0 <j < i,

® and any input string w for M; of length |w| = i,
M; on input w will halt in less than a steps, in more than b steps, or not at all.

Femma 13.7: Given i,a,b > 0 with a < b, it is decidable if Gap,(a, b) holds. \

Proof: We just need to ensure that none of the finitely many TMs Mo, ..., M; will halt
after a to b steps on any of the finitely many inputs of length i. This can be checked by
simulating TM runs for at most b steps. ]
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Find the Gap

We can now define the value f(n) of f for some n > 0:
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Find the Gap

We can now define the value f(n) of f for some n > 0:
Let in(n) denote the number of runs of TMs M, ..., M, on words of length n, i.e.,

in(n) = [Zo|" +--- +|%,/" where %; is the input alphabet of M;
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Find the Gap

We can now define the value f(n) of f for some n > 0:
Let in(n) denote the number of runs of TMs M, ..., M, on words of length n, i.e.,
in(n) = [Zo|" +--- +|%,/" where %; is the input alphabet of M;

We recursively define a series of numbers k., ki, ks, . .. by setting ko = 2n and k;,; = 25
for i > 0, and we consider the following list of intervals:

[kO + 17k1]7 [kl + lakZ], Ty [kin(n) + 17kin(n)+l]

5 2n

Rn+1,22, 22 +1,22], .. [2 +1,22 ]
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Find the Gap

We can now define the value f(n) of f for some n > 0:
Let in(n) denote the number of runs of TMs M, ..., M, on words of length n, i.e.,
in(n) = [Zo|" +--- +|%,/" where %; is the input alphabet of M;

We recursively define a series of numbers k., ki, ks, . .. by setting ko = 2n and k;,; = 25
for i > 0, and we consider the following list of intervals:

[kO + 17k1]7 [kl + lakZ], Ty [kin(n) + 17kin(n)+l]

Il Il ]
2 2n

Rn+1,22, 22 +1,22], .. [2 +1,22 ]

\ Let f(n) be the least number k; with 0 < i < in(n) such that Gap,,(k; + 1, k;41) is true. \
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Properties of f

We first establish some basic properties of our definition of f:

\ Claim: The function f is well-defined. \
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Properties of f

We first establish some basic properties of our definition of f:

Flaim: The function f is well-defined. \

Proof: For finding f(n), we consider in(n) + 1 intervals. Since there are only in(n) runs of
TMs My, ... M,, at least one interval remains a “gap” where no TM run halts. O
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We first establish some basic properties of our definition of f:

Flaim: The function f is well-defined. \
Proof: For finding f(n), we consider in(n) + 1 intervals. Since there are only in(n) runs of
TMs My, ... M,, at least one interval remains a “gap” where no TM run halts. O
Elaim: The function f is computable. \
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Properties of f

We first establish some basic properties of our definition of f:

Flaim: The function f is well-defined. \
Proof: For finding f(n), we consider in(n) + 1 intervals. Since there are only in(n) runs of
TMs My, ... M,, at least one interval remains a “gap” where no TM run halts. O
Elaim: The function f is computable. \

Proof: We can compute in(n) and k; for any i, and we can decide Gap, (k; + 1,ki+1). O

Papadimitriou: “notice the fantastically fast growth, as well as the decidedly unnatural
definition of this function.”

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 14 of 19



Finishing the Proof

We can now complete the proof of the theorem:

Claim: DTime(f(n)) = DTime(2'™). \
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Finishing the Proof

We can now complete the proof of the theorem:

Claim: DTime(f(n)) = DTime(2'™).

Consider any L € DTime(2/™).
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Finishing the Proof

We can now complete the proof of the theorem:

Claim: DTime(f(n)) = DTime(2'™).

Consider any L € DTime(2/™).
Then there is an 2/™-time bounded TM M; with L = L(M,;).
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Finishing the Proof

We can now complete the proof of the theorem:

Claim: DTime(f(n)) = DTime(2'™).

Consider any L € DTime(2/™).
Then there is an 2/™-time bounded TM M; with L = L(M,;).

For any input w with |w| > j:
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Finishing the Proof

We can now complete the proof of the theorem:

Claim: DTime(f(n)) = DTime(2'™). \

Consider any L € DTime(2/™).
Then there is an 2/™-time bounded TM M; with L = L(M,;).

For any input w with |w| > j:
® The definition of f(lw|) took the run of M; on w into account

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 15 of 19



Finishing the Proof

We can now complete the proof of the theorem:

Flaim: DTime(f(n)) = DTime(2f™), \

Consider any L € DTime(2/™).
Then there is an 2/™-time bounded TM M; with L = L(M,;).

For any input w with |w| > j:
® The definition of f(lw|) took the run of M; on w into account
* M; on w halts after less than f(|w|) steps, or not until after 2/") steps (maybe never)
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Finishing the Proof

We can now complete the proof of the theorem:

Flaim: DTime(f(n)) = DTime(2f™), \

Consider any L € DTime(2/™).
Then there is an 2/™-time bounded TM M; with L = L(M,;).

For any input w with |w| > j:
® The definition of f(lw|) took the run of M; on w into account
* M; on w halts after less than f(|w|) steps, or not until after 2/") steps (maybe never)
* Since M; runs in time DTime(2/™), it must halt in DTime(f(n)) on w
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Finishing the Proof

We can now complete the proof of the theorem:

Flaim: DTime(f(n)) = DTime(2f™), \

Consider any L € DTime(2/™).
Then there is an 2/™-time bounded TM M; with L = L(M,;).

For any input w with |w| > j:
® The definition of f(lw|) took the run of M; on w into account
* M; on w halts after less than f(|w|) steps, or not until after 2/") steps (maybe never)
* Since M; runs in time DTime(2/™), it must halt in DTime(f(n)) on w

For the finitely many inputs w with |w| < j:
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Finishing the Proof

We can now complete the proof of the theorem:

Flaim: DTime(f(n)) = DTime(2f™), \

Consider any L € DTime(2/™).
Then there is an 2/™-time bounded TM M; with L = L(M,;).

For any input w with |w| > j:
® The definition of f(lw|) took the run of M; on w into account
* M; on w halts after less than f(|w|) steps, or not until after 2/") steps (maybe never)
* Since M; runs in time DTime(2/™), it must halt in DTime(f(n)) on w

For the finitely many inputs w with |w| < j:
® We can augment the state space of M; to run a finite automaton to decide these
cases
e This will work in DTime(f(n))
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Finishing the Proof

We can now complete the proof of the theorem:

Elaim: DTime(f(n)) = DTime(2f™), \

Consider any L € DTime(2/™).
Then there is an 2/™-time bounded TM M; with L = L(M,;).

For any input w with |w| > j:
® The definition of f(lw|) took the run of M; on w into account
* M; on w halts after less than f(|w|) steps, or not until after 2/") steps (maybe never)
* Since M; runs in time DTime(2/™), it must halt in DTime(f(n)) on w

For the finitely many inputs w with |w| < j:
® We can augment the state space of M; to run a finite automaton to decide these
cases
e This will work in DTime(f(n))

Therefore we have L € DTime(f(n)). o
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Discussion: The case |w| < j

Borodin says: It is meaningful to state complexity results if they hold for “almost every”
input (i.e., for all but a finite number)
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Discussion: The case |w| < j

Borodin says: It is meaningful to state complexity results if they hold for “almost every”
input (i.e., for all but a finite number)

Papadimitriou says: These words can be handled since we can check the length and
then recognise the word in less than 2;j steps
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Discussion: The case |w| < j

Borodin says: It is meaningful to state complexity results if they hold for “almost every”
input (i.e., for all but a finite number)

Papadimitriou says: These words can be handled since we can check the length and
then recognise the word in less than 2;j steps

Really?
® If we do these < 2; steps before running M;, the modified TM runs in DTime(f(n) + 2/)
® This does not show L € DTime(f(n))
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Discussion: The case |w| < j

Borodin says: It is meaningful to state complexity results if they hold for “almost every”
input (i.e., for all but a finite number)

Papadimitriou says: These words can be handled since we can check the length and
then recognise the word in less than 2;j steps

Really?
® If we do these < 2; steps before running M;, the modified TM runs in DTime(f(n) + 2/)
® This does not show L € DTime(f(n))

A more detailed argument:
® Make the intervals larger: [k; + 1, 252" 4 2n], that is ki = 252" + 2n.
® Select f(n) to be k; + 2n + 1 if the least gap starts at k; + 1.
The same pigeon hole argument as before ensures that an empty interval is found.

But now the f(n) time bounded machine M; from the proof will be sure to stop after
f(n) —2n — 1 steps, so a shift of 2j < 2n to account for the finitely many cases will not

make it use more than f(n) steps either
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Discussion: Generalising the Gap Theorem

® Qur proof uses the function n — 2" to define intervals
* Any other computable function could be used without affecting the argument

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 17 of 19



Discussion: Generalising the Gap Theorem

® Qur proof uses the function n — 2" to define intervals
* Any other computable function could be used without affecting the argument

This leads to a generalised Gap Theorem:

Gap Theorem 13.8: For every computable function g : N — N with g(n) > n, there
is a computable function f : N — N such that DTime(f(n)) = DTime(g(f(rn))).
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Discussion: Generalising the Gap Theorem

® Qur proof uses the function n — 2" to define intervals
* Any other computable function could be used without affecting the argument
This leads to a generalised Gap Theorem:

Gap Theorem 13.8: For every computable function g : N — N with g(n) > n, there
is a computable function f : N — N such that DTime(f(n)) = DTime(g(f(rn))).

Example 13.9: There is a function f such that

DTime(f(n)):DTime{ 2 ]

f(n) times

Moreover, the Gap Theorem can also be shown for space (and for other resources) in a

similar fashion (space is a bit easier since the case of short words |w| < j is easy to handle in very little space)
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Discussion: Significance of the Gap Theorem

What have we learned?
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Discussion: Significance of the Gap Theorem

What have we learned?
* More time (or space) does not always increase computational power
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Discussion: Significance of the Gap Theorem

What have we learned?
* More time (or space) does not always increase computational power
® However, this only works for extremely fast-growing, very unnatural functions
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Discussion: Significance of the Gap Theorem

What have we learned?
* More time (or space) does not always increase computational power
® However, this only works for extremely fast-growing, very unnatural functions

“Fortunately, the gap phenomenon cannot happen for time bounds ¢
that anyone would ever be interested in”!

Main insight: better stick to constructible functions

'Allender, Loui, Reagan: Complexity Theory. In Computing Handbook, 3rd ed., CRC Press, 2014

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 27th Nov 2023 Complexity Theory slide 18 of 19



Summary and Outlook

Hierarchy theorems tell us that more time/space leads to more power:

+
+

L € NL € P_C NP c PSpace ¢ ExpTime c NExpTime C ExpSpace

+
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Summary and Outlook

Hierarchy theorems tell us that more time/space leads to more power:

+
+

L € NL € P_C NP c PSpace ¢ ExpTime c NExpTime C ExpSpace

+
+

However, they don'’t help us in comparing different resources and machine types
(P vs. NP, or PSpace vs. ExpTime)
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Hierarchy theorems tell us that more time/space leads to more power:

+
+

L € NL € P_C NP c PSpace ¢ ExpTime c NExpTime C ExpSpace

+
+

However, they don'’t help us in comparing different resources and machine types
(P vs. NP, or PSpace vs. ExpTime)

With non-constructible functions as time/space bounds, arbitrary (constructible or not)
boosts in resources do not lead to more power
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Summary and Outlook

Hierarchy theorems tell us that more time/space leads to more power:

+
+

L € NL € P_C NP c PSpace ¢ ExpTime c NExpTime C ExpSpace

+
+

However, they don'’t help us in comparing different resources and machine types
(P vs. NP, or PSpace vs. ExpTime)

With non-constructible functions as time/space bounds, arbitrary (constructible or not)
boosts in resources do not lead to more power
What’s next?
® The inner structure of NP revisited
® Computing with oracles (reprise)
® The limits of diagonalisation, proved by diagonalisation
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