EXERCISE 8

Science of Computational Logic

Sebastian Rudolph, Tobias Philipp
International Masters Programme in Computational Logic — winter semester 2014/2015
27.01.2015

Problem 8.1

Consider the default knowledge base $\langle \mathcal{F}_D, \mathcal{F}_W \rangle$ with

$$\begin{split} \mathcal{F}_D &= \left\{ \frac{bird(X):fly(X)}{fly(X)} \;,\; \frac{fly(X):happy(X)}{happy(X)} \;,\; \frac{fly(X):hungry(X)}{hungry(X)} \;\right\} \\ \mathcal{F}_W &= \left\{ \; bird(tweety) \;,\; \; hungry(X) \to \neg happy(X) \;\right\} \end{split}$$

- 1. Find two different extensions of $\langle \mathcal{F}_D, \mathcal{F}_W \rangle$ and verify them by means of Theorem 11.7.
- 2. Find formulas G and G' such that $\langle \mathcal{F}_D, \mathcal{F}_W \rangle \models_c G$ and $\langle \mathcal{F}_D, \mathcal{F}_W \rangle \models_s G'$.

Problem 8.2

Prove theorem 11.7 of the lectures:

Let (K_D, K_W) be a closed default knowledge base and K be a set of sentences.

Define $K_0 = K_W$

and for $i \ge 1$:

 $K_{i+1} = C(K_i) \cup \{H \mid G : G_1, ..., G_n | H \in K_D, G \in K_i \text{ and for all } 1 \le j \le n : \neg G_j \notin K\}.$

Then, K is an extension of (K_D, K_W) if $K = \bigcup_{i=0}^{\infty} K_i$.