Exercise Sheet 7: FO Query Expressivity
Maximilian Marx, Markus Krötzsch
Database Theory, 2022-05-24, Summer Term 2022

Exercise 7.1. For the following pairs of structures, find the maximal r such that $\mathcal{I} \sim_{r} \mathcal{J}$:
(a)

(b)

(c)

(d)

Exercise 7.2. A linear order is a relational structure with one binary relational symbol \leq that is interpreted as a reflexive, asymmetric, transitive and total relation over the domain. Up to renaming of domain elements there is exactly one linear order for every finite domain, which can be depicted as a chain of elements. We denote the linear order of size n by \mathcal{L}_{n}. For example:

$$
\mathcal{L}_{6}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \quad \text { and } \quad \mathcal{L}_{7}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \leq 7
$$

1. For which r are $\mathcal{L}_{6} \sim_{r} \mathcal{L}_{7}$?
2. More generally, for which r are $\mathcal{L}_{n} \sim_{r} \mathcal{L}_{n+1}$?

Exercise 7.3. A graph is planar if it can be drawn on the plane without intersections of edges. For example, the following graph A is planar, while graph B is not:

Can the graphs A and B be distinguished by a first-order query? Show that planarity is not FO-definable by using locality.

