Exercise Sheet 8: Datalog
David Carral, Markus Krötzsch
Database Theory, June 7, Summer Term 2019

Exercise 8.1. A graph is planar if it can be drawn on the plane without intersections of edges. For example, the following graph A is planar, while graph B is not:

Can the graphs A and B be distinguished by a first-order query? Show that planarity is not FO-definable by using locality.

Exercise 8.2. Consider the example Datalog program from the lecture:

```
        father(alice, bob)
        mother(alice, carla)
        mother(evan, carla)
        father(carla, david)
            Parent \((x, y) \leftarrow\) father \((x, y)\)
            Parent \((x, y) \leftarrow\) mother \((x, y)\)
            Ancestor \((x, y) \leftarrow \operatorname{Parent}(x, y)\)
            Ancestor \((x, z) \leftarrow \operatorname{Parent}(x, y) \wedge \operatorname{Ancestor}(y, z)\)
SameGeneration \((x, x)\)
SameGeneration \((x, y) \leftarrow \operatorname{Parent}(x, v) \wedge \operatorname{Parent}(y, w) \wedge \operatorname{SameGeneration}(v, w)\)
```

1. Give a poof tree for SameGeneration(evan, alice).
2. Compute the sets $T_{P}^{0}, T_{P}^{1}, T_{P}^{2}, \ldots$ When is the fixed point reached?

Exercise 8.3. Consider databases that encodes a labelled, directed graph by means of a ternary EDB predicate e ("edge"). The two parameters are the source and target nodes of the edge, while the third parameter is its label. For example, the edge $n_{1} \xrightarrow{a} n_{2}$ would be represented by the fact $e\left(n_{1}, n_{2}, a\right)$. Moreover, assume that only constants a and b are used as labels.

Can you express the following queries using Datalog?

1. "Which nodes in the graph are reachable from the node n ?"
2. "Are all nodes of the graph reachable from the node n ?"
3. "Does the graph have a directed cycle?"
4. "Does the graph have a path that is labelled by a palindrome?" (a palindrome is a word that reads the same forwards and backwards)
5. "Is the connected component that contains the node $n 2$-colourable?"
6. "Is the graph 2-colourable?"
7. "Which pairs of nodes are connected by a path with an even number of a labels?"
8. "Which pairs of nodes are connected by a path with the same number of a and b labels?"
9. "Is there a pair of nodes that is connected by two distinct paths?"

Exercise 8.4. Consider a UCQ of the following form

$$
\left(r_{11}(x) \wedge r_{12}(x)\right) \vee \ldots \vee\left(r_{\ell 1}(x) \wedge r_{\ell 2}(x)\right)
$$

Find a Datalog query that expresses this UCQ. How many rules and how many additional IDB predicates does your solution use (depending on ℓ)?

Exercise 8.5. Consider a Datalog query of the following form:

$$
\begin{array}{lll}
A_{1}(x) \leftarrow r_{11}(x) & \ldots & A_{\ell}(x) \leftarrow r_{\ell 1}(x) \\
A_{1}(x) \leftarrow r_{12}(x) & \ldots & A_{\ell}(x) \leftarrow r_{\ell 2}(x)
\end{array}
$$

$$
\operatorname{Ans}(x) \leftarrow A_{1}(x) \wedge \ldots \wedge A_{\ell}(x)
$$

Find a UCQ that expresses this Datalog query. How many CQs does your solution contain (depending on ℓ)?

Exercise 8.6. Show that T_{P}^{∞} is the least fixed point of the T_{P} operator.

1. Show that it is a fixed point, i.e., that $T_{P}\left(T_{P}^{\infty}\right)=T_{P}^{\infty}$.
2. Show that every fixed point of T_{P} must contain every fact in T_{P}^{∞}.
