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Abstract

The general topic of this thesis is the investigation of various notions of morphisms
between logical deductive systems, motivated by the intuition that additional (cat-
egorical) structure is needed to model the interrelations of formal specifications.
This general task necessarily involves considerations in various mathematical dis-
ciplines, some of which might be interesting in their own right and which can be
read independently.

To find suitable morphisms, we review the relationships of formal logic, al-
gebra, topology, domain theory, and formal concept analysis (FCA). This leads
to a rather complete exposition of the representation theory of algebraic lattices,
including some novel interpretations in terms of FCA and an explicit proof of the
cartestian closedness of the emerging category. It also introduces the main con-
cepts of “domain theory in logical form” for a particularly simple example.

In order to incorporate morphisms from FCA, we embark on the study of
various context morphisms and their relationships. The discovered connections
are summarized in a hierarchy of context morphisms, which includes dual bonds,
scale measures, and infomorphisms.

Finally, we employ the well-known means of Stone duality to unify the topo-
logical and the FCA-based approach. A notion of logical consequence relation
with a suggestive proof theoretical reading is introduced as a morphism between
deductive systems, and special instances of these relations are identified with mor-
phisms from topology, FCA, and lattice theory. Especially, scale measures are rec-
ognized as topologically continuous mappings, and infomorphisms are identified
both with coherent maps and with Lindenbaum algebra homomorphisms.
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Chapter 1

Introduction

In Computer Science, formal logics generally are perceived as a tool for specifi-
cation and reasoning, where the latter – partly due to the efforts of Proof Theory –
is often identified with a process of computation. This intuition turns out to be
feasible for many logical formalisms, and today numerous concrete implementa-
tions of reasoning mechanisms are available. Classically, such implementations
are the domain of logic programming [Llo87], but growing demands lead to de-
velopments in other areas as well. Most recently, ontology research opened up
new applications for knowledge representation and reasoning, and gave rise to
novel logic-based reasoning formalisms, such as F-Logic [KLW95] or Descrip-
tion Logic [BCM+03].

Many more approaches, both theoretical and practical in nature, engaged in
similar efforts to provide means of specification and reasoning for some particular
application area. However, in most cases, “specification and reasoning” restricts
to the specification of and the reasoning on top of some particular deductive sys-
tem (i.e. logic program, ontology, . . . ). What is often neglected is the question of
how to specify the relationships between such deductive systems and how to infer
consequences for such interrelations. Nonetheless this question appears to be vital
for the success of some – probably most – of the targeted applications of formal
logics. On the one hand, use-cases of practical dimensions can hardly be based on
a single huge specification, but will rather require modularization into numerous
smaller ones. Reasoning in such a setting clearly requires the specification not
only of the modules themselves, but also of the exact relationships between them.
On the other hand, situations with even higher levels of heterogeneity naturally
occur in ontology research, e.g. in the context of a semantic web. There, one faces
a scenery of multiple distributed specifications which may not even use a common
logical language, and which have not been conceived as modules of some over-
all deductive system. This situation represents a considerable challenge to current
research, and neither theoretical nor practical approaches to this problem are de-
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I

veloped to a satisfactory extent.
Given the amount and diversity of available logical formalisms, one obviously

cannot expect this problem to have a simple solution. In fact, the first question
that arises is how to specify the aforementioned “relationships” between deduc-
tive systems at all. Initially, one is faced with a mere collection of specifications,
lacking additional structure that could be used for interrelating them. A priori, it
is not clear how this additional structure should look like, and indeed there might
be various reasonable choices, strongly depending on the particular kind of logi-
cal formalisms that are to be taken into account. However, the primitive concepts
of such investigations most certainly are the relationships between a single pair
of specifications. In ontology research, such relationships are sometimes called
ontology mappings [KS03]. In this generality, this notion does not yield a lot of
structural information, and we therefore make the additional assumption that rela-
tionships between specifications have a direction. This can be justified on practical
grounds as well, since relationships between specifications often come with a pre-
ferred direction for the flow of information. Examples include modules which are
to be included into some bigger specification, and ontologies that have been gath-
ered from the semantic web to be processed in (the deductive system of) a local
reasoner.

Of course this setting still appears to be very abstract. Yet directed relation-
ships between objects are a familiar concept in mathematics, where they are gen-
erally referred to as “morphisms.” Now such morphisms usually come with the
additional property that they can be composed in a well behaved way.1 This actu-
ally is reasonable from a practical viewpoint as well: if one is given a relationship
between specifications A and B, and another relationship between specifications
B and C, then it should also be possible to compose these relations to relate A to
C. Nonetheless, it should be remarked that sufficiently well behaved compositions
may not be available for all imaginable notions of morphisms.2 Given a means of
composing morphisms, one usually expects that there are identity morphisms from
each specification to itself, acting as a neutral element to composition. Intuitively,
such relationships correspond to the possibility of relating every part of a deduc-
tive system to itself. In another reading, identity morphisms represent translations
of the content of a particular specification into itself, in a way that does neither
add nor remove information.

Summing up, we wish to consider logical specifications together with a col-
lection of mutual interrelations, called morphisms, which can be composed in
well mannered way that allows for identity relations. In other words we are inter-

1“Well behaved” essentially means “associative” but we save formal details for later chapters.
2Especially, it is to be expected that ontology research, where a great amount of possible types

of ontology-mappings has been proposed, came up with such unpleasant relationships. It is beyond
our current ability and interest to provide a theoretical basis for these approaches as well.
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ested in categories of specifications, which, quite naturally, are the topic of this
work. Categories, which are indeed just collections of objects with the very sim-
ple structural constraints introduced above, have been studied intensively in the
last decades (see e.g. [Bor94a, LR03, Mac71, McL92]), and a wealth of results
is immediately available when dealing with such a structure. In particular, a sur-
prisingly rich amount of concrete constructions can be defined only based on the
structure of morphisms, and these constructions are also of interest when dealing
with specifications. Typical examples include the construction of a specification
from its parts or the merging of ontologies (see [KHES04] for a gentle introduc-
tion).

However, the focus of this work is not to give a general account of the pos-
sible applications of category theory in knowledge representation and reasoning.
Instead, we consider very concrete categories of propositional logics and compare
known logical morphisms in this context. Nevertheless our view on propositional
logic is quite general. Especially, our investigations are simplified by not restrict-
ing logical languages in size, i.e. by allowing for uncountable sets of atomic for-
mulae. A deductive system3 of such propositional logics is not at all trivial: since
infinite theories are taken into account, the grounded versions of logic programs
are just special cases of this setting.

Although the central motif of this work is this logical view, the results obtained
en route are interesting in their own right. Our findings are shortly summarized in
the outline of the chapters which is given below.

Review: morphisms in logic

As explained above, the available supply of theoretically sound notions of mor-
phisms between logics is rather small. A notable exception from the general dis-
interest for logical categories is Institution Theory [GB92], which goes back to
the 80s and which encompasses a broad range of logical formalisms. The aims of
the theory largely agree with the aforementioned general motives for the use of
categories, though the aspect of modular logical specifications received particular
interest in the first decades, leading even to the development of category theory
based programming languages.

The basic principle of institution theory is the representation of logics in terms
of their model theories. More precisely, the theory considers formalisms that can
be described via a semantical consequence relation |= between models and for-
mulae. All further investigations are founded on binary relations in place of de-
ductive systems. The predominant type of morphisms between these relations are
so-called infomorphisms, each described by a mapping on formulae and a map-

3I.e. a logical calculus together with a background theory of presupposed assertions.
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ping on models in the opposite direction, with the property that the image of a
formula relates to a given model if and only if the image of the model relates to
the formula.

These morphisms have several advantages: other than being motivated in log-
ical terms, they can easily be described for arbitrary binary relations and they
lead to some pleasing properties of the resulting categories. The latter reason also
motivates the usage of this definition in other mathematical areas, for example
in the theory of Chu spaces [Pra03]. On the other hand, the framework of insti-
tution theory is rater general, and it is not always clear how it relates to other
possible morphisms that appear in concrete settings. Nonetheless, institution the-
ory inspired a recent theory of Information Flow [BS97], which takes a similar
categorical viewpoint based on the same notions of objects and morphisms.

Another ramification of institution theory has not been exploited yet. Binary
relations as the basic objects of study are known as formal contexts in Formal
Concept Analysis (FCA). In turn, FCA provides a number of possible morphisms,
though the interrelation of these is not well understood either. However, this raises
questions concerning the relevance of morphisms from FCA for logical investiga-
tions. Two such morphisms will turn out to be particularly interesting: dual bonds,
a special type of binary relation between formal contexts, and scale measures, a
class of functions that is characterized by certain continuity properties.

In contrast to these morphisms, part of which – to the best of our knowledge –
have not yet been considered from a logical viewpoint at all, there is another col-
lection of morphisms whose relationship to propositional logics is known for more
than 70 years. It is based on Marshall Stone’s celebrated representation theorems
for Boolean algebras [Sto36, Sto37a] and Brouwerian (aka intuitionistic) logics
[Sto37b]. From a logical perspective, these representation theorems can be ex-
plained as follows. First note that any logical formula – up to semantical equiva-
lence – is described by the set of its models. Now one considers the collection of
all sets of models that arise in this way. It turns out that this collection with the
order of subset inclusion is a Boolean algebra, and that this algebra is isomorphic
to the set of logical formulae, ordered by logical entailment and with semanti-
cally equivalent formulae identified. This is not surprising yet, since the relation
of Boolean algebras and classical propositional logic was well known for a long
time.

Now Stone’s important step was to recognize that one can construct a topolog-
ical space4 from this Boolean algebra of sets of models by taking arbitrary unions
of such sets, and that this process can be inverted to obtain Boolean algebras from
certain topological spaces. Thus he obtained a correspondence of Boolean alge-

4This is just a system of sets (called “open sets”) that is closed under arbitrary unions and finite
intersections. For details see Section 2.4.
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bras and a class of topologies that is now known as Stone spaces. This result
extends to morphisms as well: homomorphisms of Boolean algebras correspond
exactly to coherent maps between the associated topological spaces. But the topo-
logical perspective enables us to import further morphisms as well: the typical
morphisms in topology are continuous maps and we will subsequently study their
connection to the other candidates of logical morphisms mentioned above.

Connections to domain theory

Stone’s duality theorems have been generalized to other types of order structures,
finally leading to the creation of locale theory (“pointless topology”) as an alter-
native to classical point-set topology. Surprisingly, this line of research exposed
connections to domain theory [AJ94, GHK+03], a branch of order theory that was
originally established as a tool for constructing denotational semantics for certain
lambda calculi. In consequence, domain theory encompasses various important
aspects of automatic computation: most notably it formalizes approximation and
it generally supports a wealth of type constructions.5

In its role as a framework for modelling computational processes, domain the-
ory also includes notions of computational feasibility, describing circumstances
under which approximating computations reach fixed points after only countably
many iterations. The basic objects of study in domain theory are partially ordered
sets which have specific properties to support such computations. The common
term for these structures is “domains” though no particular definition is generally
associated with this terminology.

The connection to topology and to Stone duality is made by defining topolo-
gies on a domain, where the order structure is employed to characterize open sets.
For the converse, the points of a topology are ordered based on the collection of
open sets within which they are contained.6 The emerging connections to Stone
duality lead to Abramsky’s “Domain theory in logical form” [Abr91] and gave
rise to numerous further studies [Bon98, DG90, CC00, CZ00, Zha91, Zha92].

The link between logics and domain theory is highly relevant for Computer
Science since it establishes a correspondence of denotational and axiomatic se-
mantics, i.e. of computation and specification. Motivated both by the possibil-
ity to connect logical considerations to aspects of computation and by the pleas-
ing mathematical relationships, domain theoretical notions will also be discussed
within this thesis.

5Here “type” has the usual meaning of Computer Science as a collection of input and output
values. Typical examples of type constructions are cartesian products and function spaces.

6This yields the order of specialization, see Section 2.4.
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Outline of this work

We shortly review the contents of the subsequent chapters and point out the main
results from each of them. As a general rule, all theorems that occur elsewhere in
the literature – to the extent of being known to the author – are properly attributed
to their respective sources, such that the exact contributions of each chapter should
become clear.

The following Chapter 2 gives a general introduction to the mathematical pre-
requisites needed to follow the rest of this work. Specifically, these include basic
notions from order and lattice theory, and an extra section on the according mor-
phisms with emphasis on Galois connections and closure operators. The presen-
tation of Galois connections accounts for both the antitone and the monotone ver-
sions found in the literature, since the former is more common in domain theory
while the latter is preferred in FCA. We then give an introduction to the math-
ematical basics of FCA and introduce some extended notation for images and
preimages of binary relations. Our following exposition of notions from domain
theory, general topology and category theory is again fairly standard. Since our ex-
position is restricted in space, we advice the reader to consult the cited textbooks
for a more thorough introduction to the respective fields. Only our treatment of
Galois connections and FCA shows some slight deviations from the literature.
Likewise, the chosen notation should yield little surprises to the knowledgeable
reader, who may thus prefer to skip familiar material and come back only when
additional details are needed. The index at the end of this work is intended to aid
this strategy.

Chapter 3 embarks on the representation theory of algeraic lattices, thus em-
phasizing the mentioned domain theoretical perspective on logics. The main con-
tribution of this chapter lies in relating the aforementioned areas – domain theory,
logic, FCA, lattice theory, and topology – for the concrete case of algebraic lat-
tices. This setting is particularly simple and, in consequence, is well suited for a
detailed introduction to Stone duality. Although much of the material covers stan-
dard results of the involved areas, no similarly extensive treatement is known to
us. This chapter will also prepare the consideration of topological morphisms for
deductive systems in Chapter 5.

Further major results of Chapter 3 are found in Section 3.3, where a novel
representation of algebraic lattices via formal concepts is studied. This represen-
tation was originally proposed in [ZS0x] and first lifted to a categorical setting
in [HZ04]. In the present work, we enhance our understanding of this approach
by relating it to various other means of representing algebraic lattices. In addi-
tion, cartesian closedness of the emerging category of formal contexts is shown
explicitly by giving new descriptions and proofs for the required categorical con-
structions.

10



In Chapter 4 we prepare our later consideration of morphisms from FCA
within the logical context of Chapter 5. The aim of Chapter 4 thus is to under-
stand the relationships between certain well-known morphisms from FCA, most
notably between dual bonds, scale measures, and infomorphisms. Our investiga-
tions will finally lead us to the insight that these apparently diverse morphisms can
be accurately characterized as special cases of dual bonds. Using attribute explo-
ration, the resulting hierarchy of context morphisms is cast into the formal context
of Figure 4.2 that summarizes the essential relationships established in Chapter 4.
To the best of our knowledge, most of the results of Chapter 4 are new, with the
exception of some theorems taken from one of [GW99, Gan04, Xia93].

Finally, Chapter 5 unifies the considerations of Stone duality, topology and
FCA in a common logical setting. We formaly explain the representation of vari-
ous propositional logics in terms of formal contexts and review some known rela-
tions to Stone duality. The decisive step then is to recognize dual bonds between
logical contexts as a multi lingual version of the common syntactical consequence
relations known from proof theory. In consequence, our work yields a general
framework for the interpretation of such consequence relations in terms of topol-
ogy and FCA. This connects up with [JKM99], where similar relations in their
classical proof theoretical formulation were studied as multi lingual sequent cal-
culi between non-reflexive positive logics.

It is then shown that deductive systems and consequence relations constitute
categories. The exact relationship to topology and FCA become apparent in Theo-
rem 5.3.1, where a sub-class of consequence relations is shown to correspond to (i)
continuous functions between the associated topological spaces, (ii) to scale mea-
sures between the associated formal contexts, and (iii) to frame homomorphisms
between the associated concept lattices. Thus we arrive at the well-known con-
nection between continuous functions and frame homomorphisms by the route of
formal concept analysis. A second main result is Theorem 5.4.2, where we further
specialize the considered class of consequence relations to obtain a correspon-
dence between (i) coherent functions of topology, (ii) infomorphisms of FCA,
and (iii) homomophisms of the Lindenbaum algebras of the deductive systems.
These are the main results of Chapter 5, establishing the desired relationships be-
tween morphisms from logic, topology, institution theory and FCA. Most of these
results are new, the only exception being some standard facts from Stone duality.

Interdependence of the chapters

As expounded above, the general theme of this work is the investigation of mor-
phisms in logical settings. Yet, some parts of this work can be read rather indepen-
dently. Especially, this applies to Chapters 3 and 4, the contents of which largely
corresponds to the papers [HKZ04] and [KHZ05], respectively. The following

11
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graph describes the interdependence of the various parts of this thesis:
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Chapter 2

Preliminaries

In order to make this work as self-contained as possible, the current chapter will
present most of the mathematical preliminaries that are required to understand
what follows. We shall assume the reader to be familiar with naive set theory,
while everything else is expounded below. However, for readers without prior
knowledge of a given area, it will usually be preferable to consult some of the
more easy-paced treatments which we highlight at the beginning of each section.
In particular, our introduction of logics in mainly algebraic terms, without any
reference to their actual purpose of knowledge representation and reasoning, pre-
sumes that the reader already has some intuitions about the practical use of formal
logics.

Not all of the preliminaries are required to follow specific parts of this thesis,
so the reader may prefer to skip most of what follows and come back when addi-
tional background or notation is needed. We will try to give appropriate reference
to the according parts of this chapter when using concepts and results later on.
Also note that there is a list of symbols and an index at the end of this work.

The following sections collect material in a way that is motivated by our later
usage. Section 2.1 treats partially ordered sets and lattices, before Section 2.2 in-
troduces the appropriate morphisms, including Galois connections and closure op-
erators. Section 2.3 makes use of these basics to introduce formal concept analysis
whereas Section 2.4 develops order theory in another direction to present domains
and the related parts of topology. Finally, Section 2.5 introduces necessary facts
from category theory.

2.1 Orders and lattices

This section introduces the basics of order theory and the related field of lattice
theory. Together with additional introductory remarks and numerous illustrating

13
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examples, the following can also be found in [DP02] or online at [WP, Article
“Order Theory”]. More in depth treatments of order theory are to be found in
[Bir73, GHK+03].

Definition 2.1.1 A partial order is a relation ≤ on some set P which is reflexive
(x ≤ x), antisymmetric (x ≤ x′ and x′ ≤ x implies x = x′), and transitive (x ≤ y
and y ≤ z implies x ≤ z). A partially ordered set (poset) is a tuple (P,≤), where
≤ is a partial order on the set P. If no confusion is likely, a poset (P,≤) will be
denoted by its carrier P. Given elements x, y ∈ P, x is smaller than (or below) y if
x ≤ y.

For a poset (P,≤), its order dual Pop is defined to be the poset (P,≥), with ≥
being the inverse relation of ≤ as usual.

Given a poset (P,≤) any subset S ⊆ P induces a subposet (S ,≤|S ) obtained by
restricting the order of P. Another way for obtaining new posets is to multiply two
partially ordered sets.

Definition 2.1.2 Given posets P and Q, the product P × Q is defined to be the
cartesian product of the carrier sets together with the order defined by

(p, q) ≤ (p′, q′) if and only if p ≤P p′ and q ≤Q q′.

We are often interested in the following constructions within posets.

Definition 2.1.3 Consider a poset P and a subset X ⊆ P. An upper bound of X
in P is an element which is greater than all elements of X. An element of P is the
least upper bound (supremum, join) of X in P, denoted

∨

X, if it is smaller than
all upper bounds of X. For two-element sets we denote

∨

{x, y} by x∨y. (Greatest)
lower bounds are defined dually (with dual notation

∧

X and x ∧ y).

When dealing with more than one poset at a time, we will sometimes annotate
≤,
∨

, ∧, etc. with the name of the poset that they refer to, thus writing ≤P,
∨

Q,
∧L, etc.

The supremum of the empty set (or, equivalently, the infimum of the whole
poset) is the least element ⊥ of the poset. Dual remarks apply to the greatest
element >. The observation that suprema and infima need not exist for all sets
gives rise to the next definition.

Definition 2.1.4 A poset P is a join-semilattice if any two elements of P have a
join (supremum). Meet-semilattices are defined dually. A lattice is a poset which
is both a meet- and a join-semilattice. It is bounded if it has a least and a greatest
element. A lattice L is distributive if one finds that x ∨ (y ∧ z) = (x ∧ y) ∨ (x ∧ z)

14
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holds for all elements x, y, z ∈ L (which is equivalent to the dual condition with ∨
and ∧ exchanged).

A poset is a complete lattice if all of its subsets have both a supremum and an
infimum.

We recall the standard result that a poset which has all infima also has all
suprema, and vice versa, so that one of these conditions is in fact sufficient to
define complete lattices.

We give some easy examples, starting with a complete lattice that we will deal
with throughout this document.

Example 2.1.5 Given some set G, the powerset of G is the set 2G
B {O | O ⊆

G}. The poset (2G,⊆) is a complete lattice, the infima and suprema of which are
computed as intersections and unions of sets, respectively. In the following, the
notation 2G will always refer to this complete lattice.

Similarly, by Fin(G) we denote the set of all finite subsets of G. Unless G
itself is finite, this is not a lattice since it misses a greatest element. However, it is
a meet-semilattice with least element ∅.

If numerous infima or suprema exist within a poset, then it makes sense to
consider subsets of elements which are dense with respect to these constructions,
i.e. which yield all other elements as suprema or infima.

Definition 2.1.6 Given a poset P, a subset X ⊆ P is meet-dense (or infimum-
dense) in P if we find that

y =
∧

{x ∈ X | y ≤ x}, for all y ∈ P.

Especially, the above infimum exists for all subsets of X of the given form. A
subset of P is join-dense (or supremum-dense) in P if it is meet-dense in Pop.

Clearly, P is always meet-dense and join-dense in itself. More useful cases of
density are those where the dense subset is substantially smaller than the poset
itself. For example, in a powerset lattice 2S , the strictly smaller set of all finite
subsets of S is join-dense.

Finally, we define various types of subsets of a partially ordered set that are of
special interest to us.

Definition 2.1.7 Let P be a poset and let X ⊆ P. The lower closure of X is the set
↓X B {y ∈ P | y ≤ x for some x ∈ X}. The upper closure ↑X is defined dually.
X is an upper (lower) set in P if X is upward (downward) closed, i.e. if X = ↑X
(X = ↓X).
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X is directed if it is nonempty and, for any two elements x, y ∈ X, there is
some element z ∈ X such that x ≤ z and y ≤ z. An ideal is directed lower set.1 A
principal ideal of P is an ideal which has a greatest element when considered as a
subposet of P, i.e. which is of the form ↓{x} for some x ∈ P.

An ideal I is prime if it is inaccessible by binary infima, i.e. if for any x, y ∈ P,
x ∧ y ∈ I implies x ∈ I or y ∈ I. An ideal is completely prime if it is inaccessible
even by arbitrary infima.

A filter of P is an ideal of Pop, i.e. an upper subset of P which is filtered
(directed with respect to Pop). Principal and (completely) prime filters are defined
accordingly.

As usual, we will write ↓x (↑x) instead of ↓{x} (↑{x}). Note that a set I is a
prime ideal if and only if its set complement if a prime filter. If, as in the cases we
consider below, the underlying order is a lattice, the notion of a prime ideal is but
a special case of the following more general concept of a prime element.

Definition 2.1.8 Given a lattice L, an element x ∈ L is called

• meet-irreducible if y ∧ z = x implies y = x or z = x,

• meet-prime if y ∧ z ≤ x implies y ≤ x or z ≤ x.

Join-irreducible and join-prime elements are defined dually.

In a distributive lattice, the meet-irreducibles are exactly the meet-primes, and
this will be the only case considered in this paper. The prime ideals of a lattice are
known to be the meet-prime elements in the complete lattice of all ideals (within
which meets are computed as set intersections).

Our investigations will often rely on the existence of sufficiently many prime
filters and ideals. Unfortunately, the supply of prime ideals that can be deduced
in classical Zermelo-Fraenkel set theory is not sufficient for our purposes. We
overcome this problem by postulating the required property.

Axiom 2.1.9 (Prime Ideal Theorem) Let I be an ideal of a distributive lattice
and let F be a filter disjoint from I. Then there exists a prime ideal J which con-
tains I and is disjoint from F.

The name for this axiom stems from the fact that it can also be obtained as a
consequence of the strictly stronger Axiom of Choice (typically using the equiva-
lent condition of Zorn’s Lemma, see [Joh82, Lemma 2.3]). The above prime ideal
theorem for distributive lattices (DPI) is equivalent to the Boolean Prime Ideal
Theorem (BPI) – for details see [DP02, Joh82]. We will try to point out when-
ever a result in our subsequent investigations directly depends on DPI, which is
typically the case for the investigations of Stone duality in Chapters 3 and 5.

1Note that this definition implies that ∅ (which is not directed) is not an ideal.
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2.2 Morphisms of partially ordered sets
Now we shall turn to the most important types of morphisms (here: functions)
between posets and lattices. Suggested references are the same as in Section 2.1,
though [GHK+03] is our primary reference for our rather general treatment of
Galois connections. Another good source on this topic is [EKMS93].

Before looking at particular types of functions, we remark that any collection
of functions between two posets can itself be equipped with a partial order.

Definition 2.2.1 Given a set F of functions f : P → Q between posets P and Q,
the pointwise order on F is defined by setting

f ≤ g iff f (p) ≤ g(p) for all p ∈ P.

Note that this definition does not depend on the order of P, such that one
could as well take a simple set here. However, as the following definition shows,
the order on P plays an important role for describing appropriate collections of
mappings between the posets.

Definition 2.2.2 Consider posets P and Q, and a function f : P → Q. Then f is
monotone (antitone) if it is order-preserving (order-reversing), i.e. if x ≤ y implies
f (x) ≤ f (y) ( f (x) ≥ f (y)) for all x, y ∈ P. f is order-reflecting if f (x) ≤ f (y)
implies x ≤ y. An order-isomorphism is a bijective function which preserves and
reflects the order.

Given a subset X ⊆ P with supremum
∨

X, f preserves the supremum of X
if
∨

{ f (x) | x ∈ X} exists and is equal to f (
∨

X). f preserves all suprema if it
preserves the supremum of all subsets of P that have a supremum. Preservation
of binary, directed, and (non-)empty suprema is defined analogously. The dual
statements give rise to preservation properties for infima. A function that preserves
directed suprema is also called Scott continuous.

Note that monotony can also be described as the preservation of infima (or,
equivalently, suprema) of all sets of the form {x, y}, x ≤ y. Especially, any function
that preserves binary, directed, or non-empty suprema is necessarily monotone.

2.2.1 Galois connections

A homomorphism between posets of a specific type is usually assumed to be
a mapping that preserves all of the required structural data. For example, a ho-
momorphism of join-semilattices with least elements is a function that preserves
binary joins and least elements (empty joins), and a homomorphism of bounded
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distributive lattices preserves all finite (including empty) meets and joins. As com-
plete lattices can be defined using only suprema (or infima), mappings that pre-
serve either all suprema or all infima are equally interesting in this case. It turns
out that the corresponding type of morphism is conveniently characterized with
the help of the following notion.

Definition 2.2.3 Consider posets P and Q, and a pair of monotone functions ~g :
P → Q and ~g : Q → P. Then (~g, ~g) is a monotone Galois connection if, for all
elements x ∈ P, y ∈ Q, one finds that

y ≤Q ~g(x) if and only if ~g(y) ≤P x.

In this case, ~g is called the upper adjoint and ~g the lower adjoint of the Galois
connection.

As remarked in [GHK+03], speaking of “adjoints” is motivated by close con-
nections to category theory, while the use of “upper” and “lower” (instead of “left”
and “right” as in category theory) is intended to avoid possible confusion arising
from different categorical interpretations of posets that were considered in the lit-
erature. This terminology is easy to memorize by observing that the upper adjoint
appears on the greater side of the order-relation in the above condition.

An antitone Galois connection from P to Q is a monotone Galois connection
from Pop to Q.2 Stated explicitly, one obtains pairs of maps as above such that y ≤Q

~g(x) if and only if x ≤P ~g(y). This is the historic definition of Galois connections
which is still preferred in some areas (especially in Formal Concept Analysis,
see Section 2.3). In many other cases, Galois connections are considered to be
monotone by default. We avoid associated terminological confusion by making
the desired meaning explicit. Introducing both notions allows us to concentrate on
the formulation which is most convenient for a given purpose (or most common
in a given subject area).

Note that, if (~g, ~g) is a monotone Galois connection from P to Q then ( ~g, ~g) is
a monotone Galois connection from Qop to Pop. Likewise, if (~g, ~g) is an antitone
Galois connection from P to Q then ( ~g, ~g) is an antitone Galois connection from
Q to P. Care must be taken not to confuse these statements to draw wrong con-
clusions. For example, an antitone Galois connection from P to Q is certainly not
the same as an antitone Galois connection from Pop to Qop.

Furthermore, as the next result shows, each part of a Galois connection deter-
mines the other uniquely.

2Since this yields a symmetrical definition, the distinction of lower and upper adjoints is not
adequate in this context. However, we will still speak of adjoints when referring to the respective
mappings.
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Theorem 2.2.4 For functions f : P → Q and g : Q → P between posets P and
Q, the following are equivalent:

(i) ( f , g) is a monotone Galois connection,

(ii) f is monotone and g(y) = min f −1(↑y), for all y ∈ Q,

(iii) g is monotone and f (x) = max g−1(↓x), for all x ∈ P.

Proof. See [GHK+03, Theorem O-3.2]. �

The adjoints of any monotone Galois connection preserve infima and suprema,
respectively, while the converse is only true under additional assumptions.

Theorem 2.2.5 The upper adjoint of a monotone Galois connection preserves all
infima, the lower adjoint preserves all suprema.

Conversely, consider a function f : L → P with L a complete lattice and P a
poset. If f preserves all infima, then f is the upper adjoint of a monotone Galois
connection. The corresponding lower adjoint maps an element x ∈ P to

∧

f −1(↑x).

Proof. See [GHK+03, Theorems O-3.3 and O-3.4]. �

From the previous result we conclude that both adjoints of an antitone Galois
connection transform suprema into infima, i.e. ~g (

∨

X) =
∧

{~g(x) | x ∈ X} and
likewise for ~g. We emphasize that the dual statement is not true in general.

Given a lattice with element a, the mapping · ∧ a : x 7→ x∧ a clearly preserves
all meets, and indeed is upper adjoint to the identity mapping. The converse is
not true in general, such that the property that · ∧ a is a lower adjoint actually
defines a further type of lattices. However, the emerging definition, compact as
it may be, provides very little intuition about the (logical) nature of the defined
structures. Interested readers are therefore referred to [DP02, Joh82, Bor94b] for
further context.

Definition 2.2.6 A Heyting algebra is a bounded lattice L within which the map-
pings ·∧a for arbitrary a ∈ L are lower adjoints of a monotone Galois connection.
The (necessarily unique) upper adjoints are denoted a→ ·.

A Boolean algebra is a Heyting algebra L for which one has a ∨ (a → ⊥) =
> for every a ∈ L, where ⊥ and > denote the least and greatest element of L,
respectively.

Note that any Heyting algebra is necessarily distributive: by Theorem 2.2.5,
the lower adjoints · ∧ a preserve joins, and preservation of binary joins by these
maps is just what we called distributivity. Heyting algebras and Boolean algebras
will first appear at the end of Chapter 3, but our main use for these concepts is in
the discussion of intuitionistic and classical propositional logics in Chapter 5.
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2.2.2 Closure operators
Galois connections are closely connected to a class of order-theoretic functions
known as closure operators.

Definition 2.2.7 Given a poset P, a closure operator on P is a function f : P→ P
which is

(i) monotone, i.e. x ≤ y implies f (x) ≤ f (y),

(ii) idempotent, i.e. f (x) = f ( f (x)),

(iii) inflationary, i.e. x ≤ f (x),

for all x, y ∈ P. An element x ∈ P is closed (under f ) if x = f (x).

The exact relationship to Galois connections is as follows.

Theorem 2.2.8 Consider posets P, Q, and a monotone or antitone Galois connec-
tion (~g, ~g) : P → Q. Then the composition ~g◦ ~g : y 7→ ~g( ~g(y)) is a closure operator
on Q.

Conversely, if f : Q→ Q is a closure operator on Q, then there is the obvious
factorization

Q
f ◦ // f (Q)

f◦ // Q

into the corestriction f ◦ and the inclusion f◦, and ( f◦, f ◦) is a monotone Galois
connection from f (Q) = { f (y) | y ∈ Q} to Q.

Proof. A full proof of these basic facts is given in [GHK+03, Proposition O-3.10].
The important first part is also to be found in [DP02, GW99]. �

The above formulation is correct, but might invite to the wrong conclusion that
the composition of the adjoints of either a monotone or antitone Galois connection
will always yield closure operators. This is true only for antitone Galois connec-
tions where both adjoints are interchangeable. In contrast, for monotone Galois
connections, the composition ~g ◦ ~g : P → P is a closure operator with respect to
Pop.3

As a corollary of Theorem 2.2.8, we obtain additional properties of closure
operators, especially when considered in conjunction with complete lattices.

Corollary 2.2.9 ([GHK+03] Proposition O-3.13) The image of any closure op-
erator f : L → L is closed under arbitrary infima, i.e. – provided that it exists –
the infimum of a collection of closed elements is closed.

3Such an operator – called kernel operator in [GHK+03] – is still monotone and idempotent
on P, but it is “deflationary”, i.e. the image of any element is below the element.
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Furthermore, if L is a complete lattice, then the poset f (L) is closed under
arbitrary infima in L and thus is a complete lattice as well. Conversely, any subset
C of L that is closed under arbitrary infima in L induces a unique closure operator
c with image C, given by c : L → L : x 7→

∧

{y ∈ C | x ≤ y}.

Proof. Consider a collection X ⊂ f (L) of closed elements with infimum
∧

L X
in L. By monotonicity, f (

∧

L X) is the greatest lower bound of X in f (L). Since
∧

L X ≤ f (
∧

L X), both infima are in fact equal, and thus the infimum of X in L is
indeed closed.

If L is a complete lattice, the above entails that f (L) has all infima, and, con-
sequently, is a complete lattice as well. Now if C ⊂ L is closed under arbitrary
infima in L, then C is a complete lattice and the inclusion f◦ : f (L)→ L preserves
infima. Thus by Theorem 2.2.5, f◦ is the upper adjoint of a Galois connection, the
lower adjoint of which is the map f ◦ : L → f (L) : x 7→

∧

{y ∈ C | x ≤ y}. By
Theorem 2.2.8, f◦ ◦ f ◦ : L→ L is the claimed closure operator. �

Motivated by the previous result, subsets C of a complete lattice that are closed
under infima are called closure systems in algebra, especially in the case where
infima are computed as intersections of sets. In some areas (e.g. in topology, Sec-
tion 2.4), more specific types of closure systems are considered, but we will al-
ways use the term in this most general sense.

The next proposition collects some additional facts to improve our understand-
ing of Galois connections and to prepare our introduction of formal concept anal-
ysis in Section 2.3.

Proposition 2.2.10 For every Galois connection (~g, ~g) between posets P and Q,
one finds that

~g(x) = ~g ~g~g(x) and ~g(y) = ~g~g ~g(y)

Especially, every element ~g(x) is closed under the closure operator ~g ◦ ~g.
If (~g, ~g) is an antitone Galois connection, then the subposets of P and Q that

consist of the elements which are closed under ~g ◦ ~g and ~g ◦ ~g, respectively, are
dually isomorphic4 and (~g, ~g) provides the required isomorphism.

Proof. Proofs are for example given in [GW99, Propositions 5 and 8]. �

The second part of the previous proposition refers to antitone Galois connec-
tions, since this is the case for which we will use this result below. Of course it
could as well have been stated for the monotone setting.

4I.e. each of the posets is order-isomorphic (Definition 2.2.2) to the dual of the other.
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2.3 Formal concept analysis
Our notation for formal concept analysis mostly follows [GW99], with a few ex-
ceptions which enhance readability for our purposes. Especially, we avoid the use
of the operator ′ to denote the operations that are induced by a formal context.
This will both clarify the exposition and allow us to use ′ to enrich our pool of
possible entity names (like in “g, g′ ∈ G”).

Furthermore, we introduce some additional notation for the (pre-)image of
binary relations, as given in the next definition.

Definition 2.3.1 Let R ⊆ G × M be a binary relation between sets G and M. For
subsets O ⊆ G and A ⊆ M, we define

• R(O) B {m ∈ M | g R m for some g ∈ O}, the image of O under R,

• R−1(A) B {g ∈ G | g R m for some m ∈ A}, the preimage of A under R,

• OR
B {m ∈ M | g R m for all g ∈ O}, and

• AR
B {g ∈ G | g R m for all m ∈ A}.

Note that, though we generally use R−1 to denote the inverse relation of R, we
prefer the notation AR over AR−1 . We will be careful to avoid possible confusion
that could arise from this notation if it is not clear whether A is a subset of G or of
M. Furthermore, we adopt the usual abbreviations gR

B {g}R, R(g) B R({g}), etc.
The sets OR and AR turn out to be closed under certain closure operators (see

Definition 2.2.7).

Proposition 2.3.2 Consider a binary relation R ⊆ G × M. The mappings

·R : 2G → 2M and ·R : M → G

constitute an antitone Galois connection between the powersets 2G and 2M, or-
dered by subset-inclusion.

Especially, ·RR : 2G → 2G and ·RR : 2M → 2M are closure operators and all sets
of the form OR, O ⊆ G, and AR, A ⊆ M, are closed with respect to the respective
operator.

Proof. Using Definition 2.3.1 it is straightforward to derive the condition of Defi-
nition 2.2.3 to show that the above mappings are indeed adjoints of an antitone
Galois connection. The other results follow from Theorem 2.2.8 and Proposi-
tion 2.2.10. A more direct proof is to be found in [GW99]. �

At this stage we already have most of the background knowledge on FCA
which will be required within this work. It remains to introduce some terms that
are typically used in this area. For example, binary relations are called contexts in
FCA:
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Definition 2.3.3 A (formal) context K is a tuple (G, M, I), where I ⊆ G × M is a
binary relation between G and M. G and M are referred to as the sets of objects
and attributes, respectively, and I is called the incidence relation of K.

A subset O ⊆ G is an extent of K whenever O = OII . Likewise, an intent of
K is a closed subset A = AII ⊆ M. An attribute extent (object extent) is a set of
the form mI, m ∈ M (gII, g ∈ G). Object intents and attribute intents are defined
dually.

The intuitive reading in terms of knowledge representation is that ·I : 2G → 2M

yields all attributes common to a set of objects, while ·I : 2M → 2G maps a set of
attributes to all objects that fall under all of these attributes.

Note that, by Proposition 2.2.10, attribute extents and object intents are indeed
closed and the extents of a context are exactly the sets of the form AI for some A ⊆
M. Moreover, according to Corollary 2.2.9, the above closure operators induce
complete lattices as their closure systems. These are called concept lattices in
FCA.

Theorem 2.3.4 ([GW99] Theorem 3) Consider a context K = (G, M, I). The set
of extents Bo(K) B {O ⊆ G | O = OII}, ordered by subset-inclusion, is a complete
lattice. Given a set of extents X ⊆ Bo(K), we have

∧

X =
⋂

X and
∨

X =
(
⋃

X
)II
.

Given a set Y ⊆ 2M of attribute sets of K, we have
(
⋃

Y
)I
=
⋂

{AI | A ∈ Y}.

Especially, the set of all attribute extents is meet-dense in Bo(K).
Dual statements hold for the complete lattice Ba(K) of all intents of K. Fur-

thermore, Bo(K) and Ba(K) are dually isomorphic with isomorphisms given by
·I : Bo(K)→ Ba(K) and ·I : Ba(K)→ Bo(K).

Proof. The first part of the statement is immediate from Corollary 2.2.9 and the
fact that ·II is a closure operator on 2G (Proposition 2.3.2), where set-theoretic
operations yield infimum and supremum.

The second part follows since ·I : 2M → 2G is an antitone Galois connection
(Proposition 2.3.2), which thus transforms suprema into infima (Theorem 2.2.5).
Meet-density of the attribute extents follows since any extent O ⊆ G is equal to
OII, which can be expressed as

(

⋃

{{a} | a ∈ OI}
)I

. The claimed dual isomorphism
has been established in Proposition 2.2.10. �

The closure systems Bo(K) and Ba(K) of the above theorem are called object
and attribute concept-lattice, respectively.
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An important aspect of FCA – at least from a mathematical perspective – is
that contexts can be dualized and complemented to obtain new structures. These
operations will turn out to be vital for our subsequent studies. Considering some
context K = (G, M, I), the context complementary to K is Kc = (G, M, Ir) where
Ir = (G × M) \ I. The context dual to K is Kd = (M,G, I−1). We already employed
the latter construction implicitly when using the term “dually” in the above stud-
ies.

It is easy to see that dualizing a context does merely change the roles of ex-
tents and intents and thus the order of the concept lattices: Bo(Kd) = Ba(K) and
Ba(Kd) = Bo(K). The situation for complementation is more involved since the
concept lattices of K and Kc are in general not (dually) isomorphic to each other.
What we can observe immediately is that dualization and complementation com-
mute: Kcd = Kdc. Furthermore, we will find the following lemma quite helpful.

Lemma 2.3.5 Given a context K = (G, M, I) with objects g, h ∈ G, we find that
g ∈ hII if and only if h ∈ gIrIr.

Proof. If g ∈ hII then g I m for all m ∈ hI. Thus h I m implies g I m. Contraposi-
tively, g Ir m entails h Ir m, which shows h ∈ gIrIr. �

Further specific notions, especially those that are related to morphisms be-
tween formal contexts, will be introduced in Chapter 4.

2.4 Topology and domain theory
Domain theory is a branch of order theory that, roughly speaking, is concerned
with structures that model iterative computation and approximation in computer
science. The original motive for such a formalism was finding an appropriate se-
mantical description of certain lambda calculi.

In contrast, topology originally was introduced in order to study spacial re-
lationships of geometric objects in an abstract way. However, further abstraction
lead to the field of general topology and gave rise to structures of high relevance
to theoretical computer science. These developments allow us to study domain
theory and topology as too sides of the same coin.5

The viewpoint on topology that we adopt here is detailed in [Smy92], and we
will not need topological background knowledge that goes beyond this treatment.
Our main reference for domain theory is [GHK+03], though the lighter exposition
in [DP02] might be more suitable for beginning the studies in this field. Another
good source of domain theory is [AJ94], an additional advantage of which is that

5As will be explained in Chapter 3, logic is found on the side of topology.
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it is freely available online. Introductory remarks on the motivation underlying
domain theory as well as some of the relevant definitions are also to be found in
[WP, Article “Domain Theory”].

2.4.1 Domain theory

Domain theory is concerned with various specific kinds posets, the most basic
of which are the directed complete partial orders. Directed subsets have been
introduced in Definition 2.1.7.

Definition 2.4.1 A poset P is a directed complete partial order (or dcpo for short),
if it is directed complete, i.e. if all directed subsets of P have a supremum.

P is a complete partial order (or cpo), if it is a dcpo with a least element, i.e.
within which the empty supremum exists.

Given that the defining property of dcpos is the existence of directed suprema,
Scott continuous functions (Definition 2.2.2) suggest themselves as the natural
type of morphism between dcpos.

The intuition underlying domain theory is to view elements of posets as the
possible inputs or outcomes of a computation. The order then provides a quali-
tative measure for the information content of some particular piece of data in the
respective input or output domains. In spite of the fact that ordering relations can
not provide for a notion of distance to judge how “close” a particular output is
to a desired result, it is still possible to formulate a notion of approximation on
domains.

Definition 2.4.2 Consider elements x, y of some dcpo6 P. Then x approximates y
(or x is way-below y), written x � y, if we find that, for all directed sets D ⊆ P
with y ≤

∨

D, there is some element d ∈ D with x ≤ d.
An element x ∈ P is compact if it is way below itself, i.e. if x � x. The set of

all compact elements of a poset P is denoted K(P).

The order of approximation� intuitively states that one element is much sim-
pler than another, and provides a useful alternative to the strict order < (or ⊂),
which is not very meaningful in the case of infinite posets.

Example 2.4.3 Consider the set N of all natural numbers and its powerset 2N.
Given the set U ⊆ N of all odd numbers, we find that U \ {2147483647} is strictly
smaller than U, though it does rather not appear to be considerably simpler. In

6One can also discuss the given notions for posets that are not directed complete, but we have
no need to take this additional effort.
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contrast, the sets that are way below U are only the finite sets of odd numbers.
Furthermore, any finite set of natural numbers is compact.7

Some easy facts about the approximation relation need to be recorded before
we proceed.

Proposition 2.4.4 Let P be a dcpo and let� be the order of approximation on P.

(i) � ⊆ ≤, i.e. x � y implies x ≤ y,

(ii) if x′ ≤ x, x � y, and y ≤ y′, then one finds x′ � y′,

(iii) � is antisymmetric and transitive,

(iv) x � y and x′ � y imply x ∨ x′ � y (provided this supremum exists),

(v) if a least element ⊥ exists, then ⊥ � x,

hold for all x, y, x′, y′ ∈ P.

Proof. Statement (i) is immediate when observing that {y} is a directed subset
which has y as its supremum. For (ii) one just has to note that any directed supre-
mum above y′ is also above y and that any element of this directed set which is
above x is also above x′. Item (iii) follows from (i) and (ii).

For (iv), consider a directed subset D ⊆ P with q ≤
∨

D. Then there are
elements d and d′ ∈ D with x ≤ d and x′ ≤ d′. By directedness, there is some
e ∈ D with d ≤ e and d ≤ e′, and, in consequence, x ∨ x′ ≤ e as required.

Statement (v) is again immediate from the definition of �, where one has to
note that directed sets can not be empty. �

In general, it is possible that some elements of a dcpo are not approximated
by any element. We, however, are interested in cases where every element is the
supremum of the set of elements that are way-below it and where this set is di-
rected. Directed complete partial orders where this is the case are called continu-
ous. Our treatment focuses on an even more specific case, where we can restrict
to the set of compact elements to achieve these approximations. In addition, we
will only have reason to consider dcpos of this type which are complete lattices
(Definition 2.1.4).

Definition 2.4.5 A poset L is an algebraic lattice if

(i) L is a complete lattice,

(ii) L is algebraic, i.e. any element x ∈ L is the supremum of the compact ele-
ments below it: x =

(

↓x ∩ K(L)
)

.
7Which is why “finite element” is used in place of “compact element” in parts of the literature.

The term “compact” stems from a similar example found in topology (see Definition 2.4.11).
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2.4.2 General topology
The central notion of topology is that of a topological space.

Definition 2.4.6 A topological space is a tuple (X, τ) where X is a set and τ ⊆ 2X,
provided that the following hold:

(i) X ∈ τ and ∅ ∈ τ,

(ii) τ is closed under binary intersections, i.e. O, O′ ∈ τ implies O ∩ O′ ∈ τ,

(iii) τ is closed under arbitrary unions.

The elements of τ then are called open sets and the complete lattice (τ,⊆) is the
open set lattice. The set-complements of open sets are the closed sets.

A subset B of τ is a base of τ if every open set is equal to the union of all
members of B it contains.

If confusion is unlikely, we will denote topological spaces by their sets of
points. For a topological space X, we also use ω(X) to denote its open set lattice.
Note that set complementation transforms unions into intersections and vice versa,
such that the collection of all closed sets of a topological space is indeed a closure
system (see remarks after Corollary 2.2.9), inducing a corresponding closure op-
erator. However, not every closure operator on a powerset is topological, since the
additional requirements (i) and (ii) might be violated.

Basic examples of a topology on some set X are the discrete topology (X, 2X)
and the indiscrete topology (X, {X, ∅}). Another simple example is the Sierpiński
space, which is the topological space defined on the two-element set {0, 1} with
open subsets ∅, {1} and {0, 1}.

The appropriate morphisms between topological spaces are continuous func-
tions.

Definition 2.4.7 Consider topological spaces X and Y , and a function f : X → Y .
Then f is continuous if its inverse image preserves open sets, i.e. for every open
set O ⊆ Y , the set f −1(O) = {x ∈ X | f (x) ∈ O} is open in X.

If f is bijective and both f and f −1 are continuous then f is a homeomorphism.
The topological spaces X and Y are said to be homeomorphic if a homeomorphism
between them exists.

One can now connect topology and order theory by defining a topology τ on
a poset P, based on the structure given by the partial order. A simple example is
the Alexandrov topology where one takes the collection of all upper sets (Defini-
tion 2.1.7) as opens. It is easy to check that this is indeed a topology. In fact, the
Alexandrov topology is even closed under arbitrary intersections. The following

27



P

definition introduces another topology that restricts to upper sets, and which is
most important for our subsequent studies.

Definition 2.4.8 Consider a dcpo P. A subset O ⊆ P is Scott open if the following
hold:

(i) x ∈ O and x ≤ y imply y ∈ O (O is an upper set),

(ii) for any directed set D ⊆ P,
∨

D ∈ O implies D ∩ O , ∅ (O is inaccessible
by directed suprema).

The Scott topology on P is the collection of Scott open sets. We use σ(P) to denote
this collection and Σ(P) = (P, σ(P)) for the resulting topological space.

Note that according to this definition, a Scott closed set is a lower set which
contains the suprema of all of its directed subsets.

One evidence that the Scott topology is a good choice from the viewpoint of
domain theory is provided by the following result.

Proposition 2.4.9 A function between dcpos P and Q is Scott continuous if and
only if it is topologically continuous when considered as a function between the
spaces Σ(P) and Σ(Q).

The proof of this result is entirely standard (see, e.g., [AJ94, Proposition 2.3.4]),
but we include it as an illustration of some typical domain-theoretic reasoning.

Proof. Consider a Scott continuous function f : P → Q and a Scott open set
O ⊆ Q. Let D ⊆ P be directed such that

∨

D ∈ f −1(O). Then f (
∨

D) =
∨

f (D) ∈
O. Hence there is some element f (d) ∈ O and thus d ∈ f −1(O). Since f −1(O)
is clearly an upper set by monotonicity of f this shows that it is Scott open as
required.

For the converse consider a continuous function g : Σ(P) → Σ(Q) and two
elements x ≤ y ∈ P. It is easy to see that principal ideals (Definition 2.1.7) in Q
are Scott closed. Supposing that f (x) � f (y) one finds that f (x) < ↓ f (y), where
the latter is Scott closed. Thus, f −1(↓ f (y)) is a closed set not containing x. But this
contradicts the fact that closed sets are lower sets. This shows that f is monotone.
Thus for any directed D ⊆ L1, f (D) is directed. Surely

∨

f (D) ≤ f (
∨

D) and
C = ↓

∨

f (D) is closed. But then f −1(C) is a closed set containing D, thus also
∨

D ∈ f −1(C). But this implies f (
∨

D) ∈ C and f (
∨

D) ≤
∨

( f (D)) as required.
�

On the other hand, one can also reverse the above process to obtain orders
from topologies.
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Definition 2.4.10 Consider a topological space (X, τ). Then τ defines a special-
ization (pre-)order ≤ on X by setting x ≤ y whenever x ∈ O implies y ∈ O for
any O ∈ τ. A topology on a partially ordered set is called order consistent if its
specialization order coincides with the order of the poset.

The utility value of the previous definitions lies in the fact that we can hope
to obtain a mutual correspondence between topological spaces and partial orders,
thus substantiating the claimed relationship between both areas. It is easy to see
that the Alexandrov topology is indeed order consistent.8

For the Scott topology, the situation is slightly more complicated. For example,
consider the unit interval [0, 1] of real numbers in their natural order. A little
reflection reveals that most subsets of this set are accessible by (trivially directed)
suprema: the Scott topology is indiscrete, i.e. only ∅ and [0, 1] are open. As this
example shows, we need to impose additional restrictions in order to obtain order
consistent Scott topologies. We shall provide the details in Chapter 3 below.

Finally, we come back to the notion of compactness of Definition 2.4.2. The
terminology chosen in this general case derives from the following topological
notions.

Definition 2.4.11 Given a topological space X, an open set O ∈ ω(X) is compact
if it is a compact element in the open set lattice ω(X). The space X is compact if
X itself is a compact open set.

A space is coherent if the intersection of any two compact opens is again
compact.

Since ω(X) is a (complete) lattice, the explicit definition of compact open sets
need not include the notion of a directed set. The reason is that an arbitrary subset
X of a lattice can be transformed into a directed set that has the same supremum
as X (provided it exists). This is achieved by adding to X the suprema of all finite
subsets of X. Accordingly, the traditional formulation of compactness in topology
includes finite unions of open sets.

2.5 Category theory
Category theory provides us with some valuable tools to improve our understand-
ing of the relationships between the various types of objects studied within this
work. Yet, we will use only very little of the huge amount of knowledge available
in this area.

8In fact, one can even define Alexandrov spaces without explicitly mentioning the poset, by just
requiring that arbitrary intersections of opens be open. For details see [WP, Article “Alexandrov
topology”].
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For a first introduction, we strongly recommend [LR03]. A more advanced but
still very accessible treatment is [McL92]. Finally, [Mac71] and [Bor94a] offer
increasingly comprehensive treatments, which go far beyond what will be needed
to follow this text.

A category consists of a (usually large) collection of objects which are con-
nected by “arrows” (called morphisms) to form a directed graph. As a simple
example, one can consider the collection of all sets9 with arrows given by the
functions between each pair of sets. Functions provide a good first intuition for
understanding the concept of morphisms in category theory, but we remark that
the nature of the chosen arrows is rather arbitrary. For example, the collection of
all sets with (directed) binary relations is also a category. However, one requires
the availability of a composition operation between morphisms that essentially
behaves like the composition of functions or the product of relations.

Definition 2.5.1 A category C consists of

(i) a class |C| of objects of the category,

(ii) for all A, B ∈ |C|, a set C(A, B) of morphisms from A to B,

(iii) for all A, B,C ∈ |C|, a composition operation
◦ : C(B,C) × C(A, B)→ C(A,C),

(iv) for all A ∈ |C|, an identity morphism idA ∈ C(A, A),

such that for all f ∈ C(A, B), g ∈ C(B,C), h ∈ C(C,D), the associativity axiom
h ◦ (g ◦ f ) = (h ◦ g) ◦ f , and the identity axioms idB ◦ f = f and g ◦ idB = g are
satisfied.

As usual, we write f : A → B for morphisms f ∈ C(A, B) and refer to
C(A, B) as the homset10 of A and B. Note that we already considered a number
of different categories in the previous sections. For example, we can combine
arbitrary classes of posets with any type of order-theoretic functions, since it is
clear that the usual composition of functions and identity functions satisfy the
conditions of Definition 2.5.1. In Chapter 3, we will especially be interested in the
category Alg of algebraic lattices and Scott continuous functions. In Section 2.4,
we encountered the category Top of topological spaces and continuous functions.

9According to Russel’s Paradox, this cannot be a set. The reader may now choose among
various possible solutions that have been proposed to handle this problem: one can restrict all con-
siderations to a certain universe, a super-set which provides an overall setting for all set-theoretical
operations [Mac71], or one can resort to some appropriate theory of classes (i.e. “large sets”), e.g.
to the von Neumann-Bernays-Gödel axioms of set theory [Bor94a]. In this document, we shall
ignore these issues completely, generally speaking of “(proper) classes” when we encounter col-
lections of objects that cannot be sets.

10This is a rather historical expression, deriving from the first types of morphisms being homo.
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An example which is much smaller than the categories above is obtained by
considering a single poset as a category. To this end, one considers the elements
of a poset P as objects of a category, and defines a morphism p → q if and only
if p ≤ q. Thus there is at most one morphism between two objects. Composition
and identities are obtained from transitivity and reflexivity of the order. Though
this example yields an overly complicated view on posets, it is well-suited for
demonstrating that morphisms need not be functions in general.

The process of dualizing a partial order can easily be generalized to arbitrary
categories. Accordingly, the opposite Cop of a category C is defined by setting
|Cop| = |C| and Cop(A, B) = C(B, A).

Another means of constructing new categories from old ones is the product of
categories.

Definition 2.5.2 Given categories A and B, the product category A×B is defined
as follows:

• the objects of A×B are the pairs (A, B) of objects from A ∈ |A| and B ∈ |B|,
• a morphism (A, B)→ (A′, B′) in A×B is a pair ( f , g) of morphisms f : A→

A′ and g : B→ B′.

In Section 2.2, we defined order isomorphisms as a means to establish the
equivalence of two ordered sets. Likewise, Section 2.4 introduced the notion of
a homeomorphism to achieve a similar comparison between topological spaces.
In order to lift these ideas to a categorical level, we define an isomorphism in a
category to be a morphism f : A→ A′ that has an inverse, i.e. for which there is a
morphism g : A′ → A with g ◦ f = idA and f ◦ g = idA′ . It is not too hard to show
that only one morphism g can be inverse to f in this sense. One can now check
that this categorical formulation indeed yields the usual types isomorphisms when
applied to specific categories.

In order to compare categories among each other, we need the following notion
of “morphisms between categories.”

Definition 2.5.3 A functor F from a category A to a category B consists of

(i) a mapping |A| → |B| of objects, where the image of an object A ∈ |A| is
denoted by FA,

(ii) for all A, A′ ∈ |A|, a mapping A(A, A′) → B(FA,FA′), where the image of a
morphism f ∈ A(A, A′) is denoted by F f ,

such that for all A, B,C ∈ |A| and all f ∈ A(A, B) and g ∈ A(B,C) we have
F( f ◦ g) = F f ◦ Fg and F idA = idFA.
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Note that it is common in category theory to omit parentheses to simplify
notation. This also applies to composition, where, for example, one could write
GF instead of (G ◦ F).

Simple examples of functors are obtained by “forgetting” special structures
that the objects of some particular category have. For instance, there is an obvious
functor from the category of complete lattices and meet-preserving functions (up-
per adjoints) to the category of posets and monotone functions, which maps each
lattice and function to itself. Also note that a functor between posets (considered
as categories) is just a monotone function. Another particularly important functor
is the identity functor idA on a category A, which maps all objects and morphisms
to themselves.

It is obvious that functors can be composed by composing the associated map-
pings on objects and morphisms, so that the collection of all categories and all
functors is again a category. However, this would again be a kind of “set of all
sets” which is why one usually considers only the category of all small categories
(those having only a set of objects).

Yet the concept of a category of categories hints at a suitable notion for an
isomorphism of categories: it is a pair of inverse functors between two categories,
such that the compositions of both functors each yield the identity functor on
the respective category. However, such a situation rarely occurs in reality and
one often must be content when finding pairs of functors that are “inverse up to
isomorphism,” i.e. whose composition maps objects to isomorphic ones, but not
necessarily to themselves.

To formalize such generalized isomorphisms, we first have to state the follow-
ing definition, which yields a notion of morphisms between functors.

Definition 2.5.4 Given two functors F,G : A → B, a family of morphisms η =
(ηA : FA→ GA)A∈|A| is a natural transformation from F to G, if, for all morphisms
f : A → A′ of A, one has that ηA′ ◦ F f = G f ◦ ηA. This situation is denoted
η : F⇒ G. A natural transformation (ηA)A∈|A| is a natural isomorphism if all of its
members are isomorphisms.

Natural transformations, functors, and of course categories, are the three basic
ingredients of category theory and already enable us to derive many important
notions. Especially, we now have all the machinery needed to define a generalized
version of isomorphisms for the comparison of categories.

Definition 2.5.5 Consider categories A and B. An equivalence of categories A
and B is constituted by a pair of functors F : A → B and G : B → A, together
with a pair of natural isomorphisms η : GF ⇒ idA and ε : FG ⇒ idB, where idA
and idB denote the identity functors on the respective categories.
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Figure 2.1: The categorical product.

Two categories are equivalent whenever there is an equivalence of categories
between them. There are many alternative characterizations for this situation, but
we shall only make use of the one given here.

Next we consider constructions which can be defined on the objects of some
particularly well behaved categories. This process can be compared to the supre-
mum (and infimum) operations on posets, which indeed provide a special case for
this situation.

Definition 2.5.6 The terminal object of a category C is an object 1 of C such that
for every object C ∈ |C|, there is exactly one morphism C → 1.

This is the simplest case of the general notion of a limit of a graph within a
category. Considering a poset as a category, the terminal object coincides with the
greatest element. This also illustrates that terminal objects need not exist in all
cases.

Another such limit that we will encounter in this work is the binary product of
two objects.

Definition 2.5.7 Consider objects A and B of a category C. An object C with
morphisms π1 : C → A and π2 : C → B is the product of A and B if, given any
object D and morphisms ρ1 and ρ2 as in Figure 2.1, there is a unique morphism
〈ρ1, ρ2〉 that makes this diagram commute, i.e. for which we have π1 ◦〈ρ1, ρ2〉 = ρ1

and π2 ◦ 〈ρ1, ρ2〉 = ρ2.

Although the projections π1 and π2 belong to the constructed product, it is
common to denote a product (C, π1, π2) by the object C. As in most situations in
category theory, a product of two objects may (i) fail to exist at all and (ii) need
not be unique if it exists. However, the objects of all existing products are always
isomorphic.

For example, in the category of posets and monotone maps, the product is
constructed as the product order (Definition 2.1.2), together with the obvious pro-
jections to the first and second component. If a single poset is considered as a
category, the product of two elements is just its infimum. Many other products
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considered in mathematics can be described similarly as the product in a suit-
able category. Especially, the product category yields a product in a category of
categories.

Also note that the definition of a binary product can easily be extended to
arbitrary collections of factors. In the case of zero factors, the categorical prod-
uct is just the terminal object introduced above. Clearly, a category has all finite
products whenever it has binary products and a terminal object.

Given a category with binary products, one can go further and consider the
construction of function spaces.

Definition 2.5.8 A category C is cartesian closed if it has all finite products, and
there is a functor Cop ×C→ C : (A, B) 7→ BA and a natural bijection between the
homsets C(A×B,C) and C(A,CB). Objects of the form BA are called exponentials
or function spaces.

This definition is applied in Section 3.3, where cartesian closedness is shown
for a particular category. This application also might provide some further clarifi-
cation of this property.
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Chapter 3

Algebraic Lattices

This chapter, which largely agrees with [HKZ04], details major parts of the repre-
sentation theory of algebraic lattices. Above all, we study a new FCA-based rep-
resentation of algebraic lattices which has been proposed in [ZS0x] and was sub-
sequently extended in [HZ04]. In the process of relating this approach to known
results, we give a comprehensive account of the well-known relationships between
algebraic lattices, join- and meet-semilattices, Scott information systems, and the
according types of topological spaces and propositional logics.

Part of this task essentially boils down to a specialization of [Abr91] to the case
of algebraic lattices, but we are not aware of a similarly comprehensive treatment
of the according relationships.

The structure of this chapter is as follows. Section 3.1 starts the discussion
of algebraic lattices from a domain theoretic perspective, with special emphasis
on the role of the semilattice of compact elements. Thereafter, Section 3.2 intro-
duces appropriate notions of morphisms for such semilattices, which are shown
to be equivalent to Scott continuous functions between the corresponding alge-
braic lattices. Section 3.3 then introduces a category of formal contexts equivalent
to the category of algebraic lattices and Scott continuous functions, and gives an
explicit proof of the cartesian closure of this new category. Building on the proto-
typical categorical equivalences established earlier, Section 3.4 introduces further
representation theorems from logic and topology, which are then connected using
Stone duality. Finally, Section 3.5 gives pointers to further literature and hints at
possible extensions of the given results.

3.1 Algebraic lattices

In this section, we continue the recapitulation of some fundamental results on
algebraic lattices, started in Section 2.4, where we introduced algebraic lattices as
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complete lattices that have a base of compact elements (Definition 2.4.5). Now
we explain how algebraic lattices can be reconstructed from the poset of their
compacts, which thus turns out to provide an alternative means of representation.
Thereafter, we specialize the relationship between complete lattices and closure
operators to the case of algebraic lattices and Scott continuous closures.

Definition 2.4.2 introduced the set of compact elements K(P) of a dcpo P.
Using the close relationship of compactness to the order of approximation�, the
following is an immediate consequence of Proposition 2.4.4.

Corollary 3.1.1 Let L be a complete lattice with compact elements a, b ∈ K(L)
and least element ⊥. Then a ∨ b and ⊥ are compact.

We conclude that the poset K(L) of compact elements of a complete lattice is
a join-semilattice with least element under the order of L (see Definition 2.1.4).
However, for a full characterization one would also be interested in the opposite
direction, i.e. given a join-semilattice, one would like to construct a complete
lattice. The right tool for this endeavor is that of ideal completion, introduced
next.

Definition 3.1.2 Given a partially ordered set P, the ideal completion Idl(P) is
the collection of all ideals of P (Definition 2.1.7), partially ordered via subset
inclusion.

The significance of this construction is based upon the fact that all sets of the
form ↓x ∩ K(L), x ∈ L, are ideals in K(L), which is the content of Corollary 3.1.1.
The following representation theorem states that this correspondence of ideals and
elements is bijective in the case of algebraic lattices.

Theorem 3.1.3 ([GHK+03] Proposition I-4.10) Let L be an algebraic lattice and
let S be a join-semilattice with least element.

(i) K(L) is a join-semilattice with least element.

(ii) Idl(S ) is a an algebraic lattice.

(iii) S is order-isomorphic to K(Idl(S )).

(iv) L is order-isomorphic to Idl(K(L)).

Proof. Claim (i) follows from Corollary 3.1.1. For (ii), we show first that Idl(S ) is
a complete lattice. Consider any subset A ⊆ Idl(S ) of ideals of S . If A is empty,
then its infimum is just the greatest element of Idl(S ). It is easy to see that this
element exists and is equal to S . This is an ideal since any join-semilattice is
directed, where the existence of a least element guarantees non-emptiness.
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On the other hand, if A is non-empty, then its infimum in Idl(S ) is given by
⋂

A. To see that this intersection is an ideal, observe that any intersection of lower
sets is necessarily a lower set. For directedness consider elements a and b ∈

⋂

A,
i.e. a, b ∈ I for all I ∈ A. Now, by directedness, any such I contains some upper
bound c of a and b. Since a ∨ b ≤ c we find a ∨ b ∈ I for any I ∈ A. But then
a ∨ b ∈

⋂

A as required. Now clearly the ideal
⋂

A is a lower bound of A and no
lower bound can be greater with respect to the subset ordering. This proves that
Idl(S ) is a complete lattice, since arbitrary suprema can be expressed as the infima
of the sets of upper bounds.

Next we identify the compact elements of Idl(S ) as the principal ideals of S .
First consider any directed set D ⊆ Idl(S ). We show that

⋃

D is an ideal and
hence the supremum of D. Indeed, any union of lower sets is obviously a lower
set. Now let a, b ∈

⋃

D. Then there are ideals I, J ∈ D such that a ∈ I and b ∈ J.
By directedness, D contains an upper bound K of I and J. But then a, b ∈ K and
hence a ∨ b ∈ K ⊆

⋃

D as required. Now consider any a ∈ S and let D be a
directed set as before. If ↓a ⊆

⋃

D then clearly a ∈ I for some I ∈ D. But then
↓a ⊆ I such that ↓a is indeed compact. Likewise, all compacts in Idl(S ) are of
this form: any ideal I ∈ Idl(S ) is of the form I =

⋃

{↓a | a ∈ I}, where the latter
is directed since S is a join semilattice. But this also shows algebraicity of Idl(S )
and settles Claim (ii).

For (iii) we note that the mapping f : S → K(Idl(S )) : a 7→ ↓a is the re-
quired order-isomorphism. Indeed, by the above characterization of K(Idl(S )), f
is bijective and monotone. Its inverse f −1 : K(Idl(S ))→ S clearly enjoys the same
properties.

Finally, (iv) is established by defining the function g : L → Idl(K(L)) : x 7→
↓x ∩ K(L), which is clearly monotone. We claim that h : Idl(K(L)) → L : I 7→

∨

I
yields its inverse. By algebraicity, we know that h( f (x)) = x for any x ∈ L. For the
converse consider any I ∈ Idl(K(L)). It is easy to see that I ⊆ f (h(I)). Conversely,
for any a ∈ f (h(I)), we have a ∈ K(L) and a ≤

∨

I by definition. Compactness of
a requires the existence of an element b ∈ I with a ≤ b. Consequently a ∈ I and
f (h(I)) ⊆ I. This finishes the proof, since monotonicity of h is also obvious. �

This result demonstrates that we can represent any algebraic lattice – up to
order-isomorphism – by an appropriate semilattice and vice versa. We subse-
quently obtain a number of alternative characterizations from this statement and
its proof. A first observation is that Theorem 3.1.3 assures that every algebraic lat-
tice is isomorphic to a lattice of sets. More precisely, for an algebraic lattice L, we
established an isomorphism to a subset of the powerset of its compact elements
2K(L).

In order to characterize those substructures of powersets which yield algebraic
lattices, one can make use of closure operators as discussed in Section 2.2.2. In-
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deed, the proof of Theorem 3.1.3(ii) shows that Idl(S ) is closed under arbitrary in-
tersections. Hence it is a closure system on 2S which, according to Corollary 2.2.9,
can be uniquely characterized by a closure operator. However, not every closure
system is an algebraic lattice, such that a further restriction on the class of closure
operators is required. It turns out that Scott continuity (Definition 2.2.2) is what is
needed to further extend the representation of algebraic lattices.

Theorem 3.1.4 ([GHK+03] Corollary I-4.14) Any algebraic lattice L is order-
isomorphic to the image of a Scott continuous closure operator on the powerset
2K(L).

Conversely, the image of any continuous closure operator is an algebraic lat-
tice, where the compacts are exactly the images of finite sets of compacts.

Proof. The first statement is easily derived from what was already said. For an
algebraic lattice L, we noted that Idl(K(L)) is closed under arbitrary infima in 2K(L).
The induced closure operator c : 2K(L) → Idl(K(L)) is given by assigning to any
set of compacts the least ideal which contains this set.

For Scott continuity, consider any directed collection D ⊆ 2K(L) of subsets of
K(L). By monotonicity, the image c(D) of D under c is directed. In the proof of
Theorem 3.1.3, we showed that Idl(K(L)) is closed under directed unions, hence
∨

c(D) =
⋃

c(D). But this is clearly the least set that contains c(d) for any set
d ∈ D, thus it is the closure of

⋃

D, such that c(
∨

D) =
∨

c(D) as required.
For the other direction, we recall that the compact elements of a powerset

2S are just its finite subset. It is now easy to see that a Scott continuous closure
operator c preserves compact elements: Consider a finite set A ∈ 2S and a directed
set D ⊆ c(2S ). If c(A) ⊆

⋃

D then A ⊆
⋃

D and thus A ⊆ B for some B ∈ D.
Monotonicity shows that c(A) ⊆ c(B). But D is assumed to be a set of closed sets
such that c(B) = B and c(A) ⊆ B as required. Note that preservation of directed
unions now implies that every closed set is in fact the union of a set of finitely
generated closures and c(2S ) is indeed algebraic. Furthermore this shows that any
compact element of the closure system is indeed finitely generated. �

This gives us a third characterization of algebraic lattices. One is tempted to
develop a similar statement for join-semilattices with least element. Indeed, any
closure operator on the semilattice of finite elements of a powerset can uniquely
be extended to a Scott continuous closure on the powerset. However, it is not
true that all join-semilattices are images of closure operators on the semilattice of
finite subsets of some set. This is easy to see by noting that any collection of finite
sets can only have finite descending chains, i.e. it satisfies the descending chain
condition (see [DP02]). Yet there are join-semilattices with least element that do
not have this property, like for example the non-negative rational numbers in their
natural order. What we can say is the following.
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Corollary 3.1.5 For any join-semilattice S with least element, there is a closure
operator c : 2S → 2S , such that S is isomorphic to the image of the finite ele-
ments of 2S under c. Conversely, the finite-set image of any closure operator on a
powerset is a join-semilattice with least element.

Proof. Note that any closure operator c on a powerset induces a unique Scott
continuous closure c′ by setting c′(X) =

⋃

{c(A) | A ⊆ X, Afinite}, where c′ agrees
with c on all finite sets. Then combine Theorems 3.1.3 and 3.1.4, especially the
characterization of compact closed subsets. �

The significance of this statement will become apparent in Section 3.3.

3.2 Approximable mappings
So far we have only provided object-level correspondences between algebraic lat-
tices and join-semilattices. We supplement this with suitable morphisms which
turn these relations into an equivalence of the respective categories (see Defini-
tion 2.5.5). On the side of algebraic lattices, one typically employs Scott con-
tinuous functions to form the category Alg. This definition leads to a rather ad-
vantageous property, namely cartesian closedness, which will be discussed in the
next section. The aim of this section is to identify a notion of morphism for join-
semilattices that produces a category which is equivalent to Alg.

Now it is well-known that a functor F : A → B that is part of an equivalence
of categories must be full and faithful, i.e. there must be a bijection between the
homsets A(A, A′) (the set of all morphisms from A to A′) and B(FA,FA′). Thus our
next goal is to define a set of morphisms between each pair of join-semilattices
which corresponds bijectively to the set of Scott continuous mappings between
the associated algebraic lattices. It is easy to see that we cannot expect to use
functions for this purpose for mere cardinality reasons: the set of compacts can
be significantly smaller than its algebraic lattice. This problem was already solved
by Scott in the closely related case of his information systems [Sco82a], which we
shall also encounter later on. The idea is to shift to a special set of relations, called
approximable mappings. To our knowledge, the notion of approximable mappings
has not yet been introduced to the study of join-semilattices, so we spell out the
details.

Definition 3.2.1 Consider join-semilattices S and T with least elements ⊥S and
⊥T , respectively. A relation{ ⊆ S ×T is an approximable mapping if the follow-
ing hold:

(am1) a{ ⊥T (non-emptiness)
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(am2) a{ b and a{ b′ implies a{ b ∨ b′ (directedness)

(am3) a ≤ a′, a { b, and b′ ≤ b imply a′ { b′ (monotonicity and downward
closure)

for all elements a, a′ ∈ S and b, b′ ∈ T . This situation is denoted by writing
S { T .

The labels for the above properties already indicate their purpose: for every
element a ∈ S the set {b ∈ T | a { b} is an ideal of T and the resulting assign-
ment S → Idl(T ) is monotone. It is now rather obvious how this encodes Scott
continuous functions: The image of a compact element is given explicitly via the
ideal of compacts which approximates it. The image of a non-compact element is
obtained by representing it as directed supremum of compacts and applying Scott
continuity.

Some easy checks show that join-semilattices with least element together with
approximable mappings indeed constitute a category Sem∨, where composition
of morphisms is defined as the usual composition of relations. Thus for two ap-
proximable mappings S {1 R and R{2 T , one defines

{2 ◦{1 = {(s, t) | there is r ∈ R such that (s, r) ∈{1 and (r, t) ∈{2}.

Clearly,{2 ◦{1 satisfies (am1) since a{1 ⊥R and ⊥R {2 ⊥T . Likewise, under
the assumptions of (am2), one finds intermediate values r, r′ ∈ R with a{1 r{2

b and a {1 r′ {2 b′. By (am2) a {1 r ∨ r′, and by (am3) r ∨ r′ {2 b and
r ∨ r′ {2 b′. Hence a {1 r ∨ r′ {2 b ∨ b′ by another application of (am2).
Finally, suppose the assumptions for (am3) hold for{2 ◦{1. Then there is r ∈ R
such that a {1 r {2 b and hence a′ {1 r {2 b′ as required. The identity
morphism on a semilattice S ∈ |Sem∨| is just its greater-or-equal relation ≥S .
The fact that this yields an identity under relational composition is just statement
(am3). Associativity is inherited from relational composition.

Lemma 3.2.2 The object mappings Idl and K from Section 3.1 can be extended
to morphisms as follows.

• For any approximable mapping{ ⊆ S ×T , define Idl({) : Idl(S )→ Idl(T )
as Idl({)(I) = {b | there is a ∈ I with a{ b}.1

• For any Scott continuous mapping f : L → M, define K f ⊆ KL × KM by
setting K f = {(a, b) | b ≤ f (a)}.

These definitions produce functors Idl : Sem∨ → Alg and K : Alg→ Sem∨.

1Note that in the notation of Definition 2.3.1 this mapping could also be written as I 7→{(I).
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Proof. To see that Idl is indeed well-defined, observe that for any a ∈ S ,
Idl({)(↓a) = {b | a { b}, by (am3). This set has already been recognized as an
ideal, and hence Idl({) is well-defined for the compact elements of Idl(S ). By al-
gebraicity, any ideal I is equal to the directed union

⋃

a∈I ↓a, and hence, observing
that Idl({) preserves all unions, Idl({)(I) =

⋃

a∈I Idl({)(↓a). This observation
shows that, as a directed union of ideals, Idl({)(I) is an ideal, and that Idl({) is
Scott continuous.

It is immediate that Idl({) maps the identity approximable mapping ≥ to the
identity function. To see that it also preserves composition, note that Scott con-
tinuity allows us to restrict to the case of principal ideals. Thus consider two ap-
proximable mappings S {1 R and R {2 T and some principal ideal ↓a, a ∈ S .
Preservation of composition is established by the following computation

(

Idl({2) ◦ Idl({1)
)

(↓a) = Idl({2){r | a{1 r}
= {b | there is r with a{1 r and r{2 b}
= {b | a({2 ◦{1)b}
= Idl({2 ◦{1)(↓a).

In the case of K, first observe that K f clearly has properties (am1) to (am3). For
functoriality consider Scott continuous functions f1 : L → M and f2 : M → N.
It is easy to see that for a ∈ KL and c ∈ KN, whenever there is b ∈ KM with
b ≤ f1(a) and c ≤ f2(b), one has c ≤ f2( f1(a)). Since the converse also holds, we
find that

K( f2 ◦ f1) = {(a, c) | c ≤ f2( f1(a))}
= {(a, c) | there is b ∈ KM with b ≤ f1(a) and c ≤ f2(b)}
= K f2 ◦ K f1.

Finally, applying K to the identity function clearly yields the identity approx-
imable mapping. �

We finish this section by showing the expected categorical equivalence:

Theorem 3.2.3 The functors Idl and K of Section 3.1 yield an equivalence of the
categories Alg and Sem∨.

Proof. For an algebraic lattice L let ηL : L → Idl(K(L)) : x 7→ ↓x ∩ K(L) be the
isomorphism as established in Theorem 3.1.3. Now consider an algebraic lattice
M and a Scott continuous function f : L → M. For any element x ∈ L, Idl(K( f ))
maps the ideal ηL(x) to the ideal {b | there is a ∈ K(L) with a ≤ x and b ≤ f (a)}.
Since Scott continuity guarantees that the supremum of { f (a) | a ∈ K(L), a ≤ x} is
f (x), the above is just the set ηM( f (x)) of all compacts below f (x). Consequently,
Idl(K( f ))(ηL(x)) = ηM( f (x)), i.e. η is a natural transformation (Definition 2.5.4).

For a join-semilattice S with least element, we define εS ⊆ S × K(Idl(S )) by
setting εS = {(a, I) | I ⊆ ↓a}. From Theorem 3.1.3 we derive that every compact
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ideal I is of the form ↓b, hence εS = {(a, ↓b) | b ≤ a}. It is now obvious that εS

is an isomorphism whose inverse is given by {(↓b, a) | a ≤ b}. For naturality of
ε, consider some approximable mapping S { T . We compute K(Idl({)) ◦ εS =

{(a, ↓b) | there is a′ ∈ S with a′ ≤ a and (↓a′, ↓b) ∈ K(Idl({))}. Expanding the
condition (↓a′, ↓b) ∈ K(Idl({)), we find it equivalent to ↓b ⊆ Idl({)(↓a′), which
in turn is true iff ↓b ⊆ {t | a′ { t}, exploiting the fact that ↓a′ is compact. Finally,
by (am3) this is equivalent to a′ { b, and we obtain K(Idl({))◦εS = {(a, ↓b) | a{
b}, again by (am3). On the other hand, εT ◦{ = {(a, ↓b) | there is b′ ∈ T with a{
b′ and b ≤ b′}. Using (am3) once more, this evaluates to {(a, ↓b) | a { b}, which
finishes the proof of naturality of ε. �

3.3 A cartesian closed category of formal contexts
In Section 2.3, we introduced formal concept analysis as an alternative represen-
tation of complete lattices as concept lattices of certain formal contexts. In the
present section, we further investigate an alternative means of deriving lattices
from formal contexts, which produces complete lattices that are algebraic and
that was originally proposed in [ZS0x]. We review the result of [HZ04] that the
according construction extends to an equivalence of categories between Alg and
an appropriate category of formal contexts, though we will take a more direct
route for showing this. Furthermore, we take the opportunity to establish cartesian
closedness of Alg (Definition 2.5.8) by developing the necessary constructions for
formal contexts.

As explained in Section 2.3, the complete lattice usually assigned to a formal
context (G, M, I) is the closure system that is induced by the extent closure op-
erator ·II : 2G → 2G. We now take a slightly different approach and focus our
attention on the operation of ·II : 2M → 2M on K(2M), the join-semilattice with
least element given by the finite subsets of M. The decision for working with in-
tents instead of extents is quite arbitrary (compare Theorem 2.3.4), but it turns out
to be more in line with existing literature when we come to the treatment of logics
in Section 3.4.1, since formulae are usually expected to be attributes rather than
objects.

Given that we already found algebraic lattices to be equivalent with certain
semilattices, the desired representation reduces to constructing arbitrary join-
semilattices with least element from formal contexts. To this end, Corollary 3.1.5
suggests the following solution.

Corollary 3.3.1 For every formal context K = (G, M, I), the set Sem(K) = {X II |

X ∈ K(2M)} is a join-semilattice with least element. Conversely, every such semi-
lattice can (up to isomorphism) be represented in this way.
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Proof. In spite of our earlier considerations, we give the easy direct proof. For
two finite sets X and Y , (X ∪ Y)II is the least closed set that contains X and Y
(Corollary 2.2.9), and thus also X II and Y II . Hence XII ∨ Y II = (X ∪ Y)II (which
is just a specialization of Theorem 2.3.4). The first part of the proof is finished by
noting that ∅II is the least closed set.

Conversely, for a join-semilattice with least element S , consider the context
(S , S , I), with I = ≥S . Then for any finite X ⊆ S , X II is the set of all lower bounds
of all upper bounds of X. But this is easily recognized as ↓

∨

X. Note that the least
upper bound of the empty set is just the least element. The obvious isomorphism
between S and the semilattice ({↓s | s ∈ S },⊆) suffices to complete the proof. �

By Theorem 3.1.3 the above shows that every algebraic lattice can be repre-
sented by some formal context and vice versa. To make this explicit, we can extend
the closure operator of Corollary 3.3.1 to a Scott continuous closure operator on
2A, as done before in the proof of Corollary 3.1.5. In this way we can recover the
following result from [ZS0x].

Corollary 3.3.2 Consider a formal context K = (G, M, I) and the mapping c :
2M → 2M : x 7→

⋃

{XII | X ⊆ x, X finite}. Then Alg(K) = c(2M) is an algebraic
lattice and every algebraic lattice is of this form (up to isomorphism).

Proof. Clearly, c is just the unique Scott continuous closure operator induced by
·II as in Corollary 3.1.5. By Theorem 3.1.4 its closure system is indeed an alge-
braic lattice. For the other direction combine Theorem 3.1.4 and Theorem 3.1.3
to see that c(2M) is isomorphic to the ideal completion of Sem(K). Since every
algebraic lattice is of this form for some join-semilattice with least element, the
claim follows from Corollary 3.3.1. �

Closed sets with respect to the operator c from the above proposition have been
termed approximable concepts in [ZS0x]. Naturally, it is also possible to extend
this result to a categorical equivalence. For this purpose we define a category Cxt
of formal contexts. The morphisms between two contexts K and L are defined by
setting Cxt(K,L) = Sem∨(Sem(K),Sem(L)).2 The following is readily seen.

Theorem 3.3.3 The categories Sem∨ and Cxt are equivalent.

The functors needed for this result are obvious: on the object level, we obtain
suitable mapping from Corollary 3.3.1, and the situation for morphisms is trivial.

2In [HZ04] a slightly different definition of morphisms is given. In the formulation given there,
the corresponding approximable mapping is not defined on the closed sets Sem(K) but on all finite
attribute sets. We get a context morphism in this sense by extending our approximable mappings,
relating two finite sets iff their closures are related.
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Figure 3.1: The product construction in Cxt.

The construction of the natural isomorphisms is similar to the one of ε in Theo-
rem 3.2.3, where the identity approximable mapping was modified using the given
order-isomorphism of the semilattices.

In the remainder of this section we investigate the categorical constructions
that are possible within the categories Alg, Sem∨, and Cxt, where the latter will
be the explicit object of study. Because Cxt is equivalent to Alg, we know that it
is cartesian closed (see [GHK+03]). We make the required constructions explicit
in the sequel, and thus give a mostly self-contained proof of cartesian closedness
of Cxt.

Exact requirements for showing this were given in Definition 2.5.8. We first
consider the empty product of Cxt, i.e. the terminal object, which turns out to
be given by the formal context 1 = (∅, ∅, ∅). Indeed, for every formal context
K = (G, M, I), there is a unique approximable mapping K { 1 that relates every
finite subset of M to the empty set. The situation for binary products is not much
more difficult.

Proposition 3.3.4 Consider two formal contextsK = (G, M, I) and L = (H,N, J),
and define a formal context K + L = (G ] H, M ] N,⊕), where ⊕ = I ] J ] (G ×
N) ] (H × M), ] denoting disjoint union.

Then K + L is the categorical product of K and L, i.e. there are approximable
mappings πK : K + L → K and πL : K + L → L such that, given approximable
mappings{K and{L as in Figure 3.1, there is a unique approximable mapping
〈{K ,{L〉 that makes this diagram commute.

Proof. Since context morphisms were defined with reference to the induced semi-
lattices, we first look at Sem(K+L). It is easy to see that concept closure inK+L is
computed by taking disjoint unions of closures in K and L, i.e. for sets X ⊆ M and
Y ⊆ N, one finds that (X ] Y)⊕⊕ = XII ] Y JJ . Hence every element of Sem(K+L)
corresponds to a unique disjoint union of elements of Sem(K) and Sem(L).

We can now define the projections by setting (X ] Y, X′) ∈ πK iff X′ ⊆ X and
(X ] Y, Y ′) ∈ πL iff Y ′ ⊆ Y , for all X, X′ ∈ Sem(K) and Y , Y ′ ∈ Sem(L). It is
readily seen that these morphisms satisfy the properties of Definition 3.2.1.
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Now consider{K and{L as in Figure 3.1. We define the relation 〈{K ,{L〉

by setting (Z, X ] Y) ∈ 〈{K ,{L〉 iff Z {K X and Z {L Y , for all concepts X, Y ,
Z from the corresponding semilattices. Again it is easy to check the conditions of
Definition 3.2.1, since they follow immediately from the corresponding properties
of{K and{L. Furthermore, if there is X ] Y ∈ Sem(K + L) with (Z, X ] Y) ∈
〈{K,{L〉 and (X ] Y, X′) ∈ πK then Z {K X′ by the definition of πK and (am3).
Conversely, if Z {K X′ then one finds that X′ ] ∅⊕⊕ ∈ Sem(K + L) yields the
required intermediate element to show that (Z, X′) ∈ πK ◦ 〈{K ,{L〉. Since a
similar reasoning applies to{L, Figure 3.1 commutes as required.

Finally, for uniqueness of 〈{K ,{L〉 consider R{ K + L with πK ◦{ ={K

and πL ◦{ = {L. If Z { X ] Y , then (Z, X) ∈ πK ◦{ and hence Z {K X and,
by a similar reasoning, Z {L Y . Conversely, if Z {K X then there must be some
X′ and Y ′ such that X ⊆ X′ and Z { X′ ] Y ′. By (am3) this implies Z { X ] Y ′.
The same argument can be applied to{L. Thus whenever Z {K X and Z {L Y ,
there are X′ and Y ′ with Z { X ] Y ′ and Z { X′ ] Y . Invoking properties (am2)
and (am3) for{, this shows that Z { X]Y . We have just shown that Z { X ]Y
iff Z {K X and Z {L Y , and hence that{ = 〈{K ,{L〉 as required. �

The above product construction is also known in formal concept analysis as
the direct sum of two contexts [GW99] (which is the reason for our choice of
notation). However, it is not the only possible specification of the products in Alg.
For each formal context K = (G, M, I), we define a context K+ = (G+, M+, I+),
where G+ = G ∪ {o} and M+ = M ∪ {a}, with o and a being fresh elements: o < G
and a < M. For defining the incidence relation, we set g I+ m whenever g I m
(requiring that m ∈ M and g ∈ G) or g = o or m = a. Thus K+ emerges from K by
“adding a full row and a full column.”

Now let K = (G, M, I) and L = (H,N, J) be formal contexts. Define a new
formal contextK Z L = (G+×H+, M+×N+,⊗) ofK and L by setting (g, h)⊗(m, n)
iff g I+ m and h J+ n. This turns out to be an alternative description of the products
in Cxt.

Proposition 3.3.5 Given formal contexts K = (G, M, I) and L = (H,N, J), the
contexts K + L and K Z L are isomorphic in Cxt. Equivalently, K Z L is the
object part of the categorical product of K and L in Cxt.

Proof. The required isomorphism corresponds to an iso approximable mapping
between the semilattices Sem(K + L) and Sem(K Z L). The elements of the
former were already recognized as disjoint unions of concepts from K and L.
In the latter case, concepts are easily recognized as products of concepts from
K+ and L+. Adding the additional elements a and o guarantees that neither of
these extended formal contexts allows for the empty set as a concept, so that each
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element of Sem(K ⊗ L) is indeed of the form X × Y for two uniquely determined
concepts X = X II ∈ Sem(K+) and Y = Y JJ ∈ Sem(L+).

We define a relation{+ ⊆ Sem(K + L) × Sem(K Z L) by setting X {+ Y
whenever p1(Y) ∩ M ⊆ X and p2(Y) ∩ N ⊆ X, where pi denotes the projection
to the ith components in a set of pairs. Conversely, a relation {− ⊆ Sem(K Z
L) × Sem(K + L) is specified by setting Y {− X whenever X ∩ M ⊆ p1(Y) and
X ∩ N ⊆ p2(Y).

We claim that{+ and{− are mutually inverse approximable mappings be-
tween Sem(K + L) and Sem(K Z L). The properties of Definition 3.2.1 fol-
low immediately from our use of set-theoretic operations in the definitions. Fur-
thermore it is easy to see that X({− ◦{+)X′ implies X′ ⊆ X for any two el-
ements X, X′ ∈ Sem(K + L). The converse implication also holds, which can
be concluded from the obvious relationships X {+ (X ∩ M)II × (X ∩ N)JJ ,
(X′∩M)II × (X′∩N)JJ

{
− X′, and (X′∩M)II × (X′∩N)JJ ⊆ (X∩M)II × (X∩N)JJ .

Hence{−◦{+ is indeed the identity approximable mapping. A similar reasoning
shows that the same is true for{+ ◦{−, thus finishing the proof.

Finally, the assertion that this makes Z an alternative product construction
is a basic fact from category theory. The required projections are obtained by
composing{− with the projections from the proof of Proposition 3.3.4. �

The construction of exponentials in Cxt turns out to be slightly more intricate.
To fully understand the following definition, it is helpful to look at the function
spaces in Alg. These are just the sets of all Scott continuous maps between two
algebraic lattices under the pointwise order of functions (Definition 2.2.1). The
standard technique for describing the compact elements of this lattice are so-called
step functions. Given two algebraic lattices L and M and two compacts a ∈ K(L)
and b ∈ K(M), one defines a function |a ⇒ b| : L → M, that maps an element
x to b whenever a ≤ x, and to ⊥M otherwise. It is well-known that any such step
function is Scott continuous and compact in the function space of L and M (see
[GHK+03]). However, not all compacts are of this form, since finite joins of step
functions are also compact maps that can usually take more than two different
values.

Our goal is to construct a formal context that represents the join-semilattice
of all compact Scott continuous functions in the sense of Corollary 3.3.1. Intu-
itively, the collection of all step functions suggests itself as the set of attributes.
Finitely generated concepts should represent finite joins of step functions, which
in turn correspond bijectively to lower sets with respect to the pointwise order of
step functions. In order to obtain a formal context that yields this lower closure,
one is tempted to take some subset of Scott continuous functions for objects, and
to employ the inverted pointwise order as an entailment relation. This is indeed
feasible, but our supply of step functions unfortunately is insufficient to serve as
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object set in this case. We end up with the following definition:

Definition 3.3.6 Consider two formal contexts K and L, and the sets M =

Sem(K) × Sem(L) and G = Fin(M). A formal context [K { L] = (G, M,5)
is defined by setting {(ai, bi)} 5 (a, b) iff b ⊆

∨

{bi | ai ⊆ a}, where
∨

is the join
operation from the semilattice Sem(L).

This definition derives from the above discussion by representing step func-
tions |a ⇒ b| via pairs (a, b).3 Hence, the approximable concepts of [K { L] as
obtained in Corollary 3.3.2 are sets of such pairs, i.e. relations between Sem(K)
and Sem(L). The reader’s suspicion about the true nature of these relations shall
be confirmed:

Lemma 3.3.7 Given contexts K and L, the algebraic lattice L = Alg[K { L] of
approximable concepts of [K{ L] coincides with the lattice of all approximable
mappings from K to L, ordered by subset inclusion.

Proof. Consider any approximable concept x ∈ L. Definition 3.3.6 implies that
the pairs of arbitrary elements a ∈ Sem(K) and the least element of Sem(L)
are modelled by any object of [K { L], i.e. (am1) of Definition 3.2.1 holds for
x. For (am2), assume (a, b1) ∈ x and (a, b2) ∈ x. Following the construction in
Corollary 3.3.2, one finds that {(a, b1), (a, b2)}55 ⊆ x. However, for any object o
of [K{ L], o5(a, b1) and o5(a, b2) clearly implies o5(a, b1∨b2), by expanding
the definition of 5, and thus (a, b1 ∨ b2) ∈ x. Finally, for (am3) consider some
(a, b) ∈ x, a′ ⊇ a, and b′ ⊆ b. Clearly, we have {(a, b)}55 ⊆ x. The definition of
5 shows immediately that every object that models (a, b) must also model (a′, b′),
and thus (a′, b′) ∈ {(a, b)}55 as required.

For the converse consider any approximable mapping K { L. We show that
{ ∈ L. Given any finite subset X = {(ai, bi)} ⊆ {, one finds that X 5 (an, bn) for
all (an, bn) ∈ X. Thus X ∈ X5 and, whenever (a, b) ∈ X55, one also has X 5 (a, b),
i.e. b ⊆

∨

{b j | a j ⊆ a}. Defining J = { j | a j ⊆ a}, one finds that for every n ∈ J,
an ⊆

∨

{a j | j ∈ J} and hence
∨

{a j | j ∈ J} { bn by (am3). Since J is finite, one
can employ an easy induction to show that

∨

{a j | j ∈ J} {
∨

{b j | j ∈ J}, where
the case J = ∅ follows from (am1) and the induction step uses (am2). Obviously
∨

{a j | j ∈ J} ⊆ a and b ⊆
∨

{b j | j ∈ J}, and hence a{ b by (am3). This shows
that{ is an approximable concept. �

The above considerations shed additional light on approximable mappings in
general: they can in fact be viewed as lower sets of step functions, the joins of
which uniquely determine an arbitrary Scott continuous map between the induced

3This correspondence is not injective. In fact, the context [K { L] in general contains both
duplicate rows and duplicate columns.
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algebraic lattices. We remark that this also hints at an alternative formulation of
the constructions in Lemma 3.2.2.

It remains to show that the above construction does indeed yield a function
space in the sense of category theory:

Proposition 3.3.8 The construction [· { ·] yields the categorical function space
of two contexts, i.e. for all contexts K, L, and R, there is a bijection between
the sets Cxt(K × L,R) and Cxt(K, [L { R]), and this bijection is natural in all
arguments.

Proof. Our earlier results can be employed to simplify this proof. The algebraic
lattices associated with the above contexts is denoted by L = Alg(K), M = Alg(L),
and N = Alg(R), and we write [M → N] for the lattice of all Scott continuous
functions from M to N, ordered pointwise. The categorical equivalences between
Cxt, Sem∨, and Alg (Theorems 3.2.3 ald 3.3.3) and the categorical role of the
product construction L×R (Proposition 3.3.4) establish natural bijections between
the sets Cxt(K × L,R) and Alg(L × M,N), where L × N is the standard product
order. Likewise, using the same equivalences and the bijection of function spaces
from Lemma 3.3.7, one finds another natural bijection between Cxt(K, [L{ R])
and Alg(L, [N → M]).

The proof is completed by providing the well-known natural bijection of the
sets Alg(L×M,N) and Alg(L, [N → M]). This standard proof can for example be
found in [GHK+03].4 �

Summing up these results, we obtain:

Theorem 3.3.9 The categories Alg, Sem∨, and Cxt are cartesian closed.

Proof. Cxt was shown cartesian closed in Proposition 3.3.4 and Proposition 3.3.8.
Closure of the other categories follows by their categorical equivalence (Theo-
rem 3.2.3 and Theorem 3.3.3). �

We stress the fact that our novel interpretation of formal contexts agrees with
the classical one, as long as finite contexts or lattices are considered, which covers
most of the current FCA applications in Computer Science. On the other hand, the
different treatment of infinite data structures displays a deviation from the classi-
cal philosophically motivated viewpoint towards one that respects the practical
constraints of finiteness and computability. The drawback of this is of course, that
duality between extents and intents as an essential feature of FCA is lost.

4Of course, this part of the proof is the essential one from the viewpoint of category theory.
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3.4 Further representations
So far, we encountered three equivalent representations for algebraic lattices. In
this respect, the hardest part was to establish the equivalence of the rather diverse
categories Alg and Sem∨. Many other equivalent categories can now be recog-
nized by relating them to one of these two – an objective that will in general be
accomplished rather easily. A typical example for this has already been given in
form of the category Cxt, that was easily seen to be equivalent to Sem∨.

The representations given below are grouped according to these observations:
we start with “logical” descriptions that have their closest relationships to the cat-
egories Cxt and Sem∨, and then proceed to formulations that can more naturally
be connected to Alg. Classifying representations in this way is by no means arbi-
trary: as we will see the end of this section, our arrangement reflects the “localic”
respectively “spacial” side of a very specific case of Stone duality.

3.4.1 Logic and information systems
The representation of join-semilattices via formal contexts did already incorporate
some logical flavor: approximable concepts can be viewed as sets closed under
a certain entailment relation. Scott continuity of this closure is reminiscent of
the compactness property of a logic. However, we will see that a much closer
connection to some very well-known logics can be made. The reader is referred
to [DH01] for related considerations.

Definition 3.4.1 Given a set A of propositions, the set of well-formed conjunctive
propositional formulae S (A) over A is given by the following expression:

S (A) F > | a ∈ A | (S (A) ∧S (A))

A relation ` ⊆ S (A) × S (A) is a consequence relation of conjunctive proposi-
tional logic (CP logic) if it is closed under application of the following rules:

F ` > (T) F ` F (R)
F ` G, G ` H

F ` H
(Cut)

F ` (G ∧ H)
F ` G

(W1)
F ` (G ∧ H)

F ` H
(W2)

F ` G, F ` H
F ` (G ∧ H)

(And)

In this case (S (A), `) is a deductive system (of CP logic). For any two formulae
F,G ∈ S (A), the situation where F ` G and G ` F is denoted F ≈ G.

Hence deductive systems are logical systems of the conjunctive fragment of
propositional logic, together with a (not necessarily minimal) consequence rela-
tion. The following properties are easily verified.
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Lemma 3.4.2 Consider a deductive system (S (A), `). The following hold for all
formulae F, G, and H ∈ S (A):

• ((F ∧G) ∧ H) ≈ (F ∧ (G ∧ H))

• (F ∧G) ≈ (G ∧ F)

• F ≈ (F ∧ F)

• F ≈ (F ∧ >)

Hence we see that the rules (W1), (W2), and (And) imply associativity,
commutativity, and idempotency of ∧. Furthermore, occurrences of > can be
eliminated. Consequently, we henceforth write formulae of CP in the form
a1∧a2∧ . . .∧an (ai ∈ A), knowing that this determines a set of “real” formulae up
to proof-theoretic equivalence. Additionally, for the case n = 0 the above expres-
sion is interpreted as the singleton set {>}. Any statement about formulae in this
notation represents the corresponding set of statements about the original formu-
lae. We can now consider the algebraic semantics (see [DH01]) of these logics.
This is based largely on the following notion:

Definition 3.4.3 Consider a deductive system (S (A), `). The Lindenbaum alge-
bra of (S (A), `) is the poset obtained from the preorder (S (A), `) through factor-
ization by the equivalence relation ≈, i.e. [F]≈ ≤ [G]≈ iff F ` G. The Lindenbaum
algebra is denoted by LA(S (A), `).

Hence the Lindenbaum algebra is a partially ordered set of ≈-equivalence
classes of formulae, ordered by syntactic entailment. Since it can cause hardly
any confusion, we take the freedom to denote equivalence classes by one of their
representatives or even by the simplified notation introduced above. Of course,
this creates possible ambiguity between the conjunction symbol and the meet op-
eration within the Lindenbaum algebra. The following lemma shows that this is
not a problem.

Lemma 3.4.4 Consider a deductive system (S (A), `) and formulae F,G ∈ S (A).
Then [F]≈ ∧ [G]≈ = [F ∧G]≈.

Proof. We have to show that F ∧ G ` F, F ∧ G ` G, and that for any formula H
such that H ` F and H ` G, we find H ` F ∧ G. These assertions are obvious
consequences of the proof rules of CP. �

Since the meet operation yields a unique result, this shows that F ≈ F ′ and
G ≈ G′ imply F ∧ G ≈ F′ ∧ G′, which is just the Replacement Theorem [DH01]
for CP logics. We now state the now obvious representation theorem.
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Theorem 3.4.5 For any deductive system (S (A), `), the Lindenbaum algebra
LA(S (A), `) is a meet-semilattice with greatest element. Conversely, every such
semilattice is isomorphic to the Lindenbaum algebra of some deductive system.

Proof. Lemma 3.4.4 already showed the existence of binary meets. We conclude
the first part of the proof by noting that [>]≈ is the required greatest element.

For the converse let S be a meet-semilattice with greatest element. We define
a consequence relation ` on S (S ) by setting, for all a1, a2, . . . , an, b1, b2, . . . , bm ∈

S , a1∧a2∧. . .∧an ` b1∧b2∧. . .∧bm whenever a1∧a2∧. . .∧an ≤ b1∧b2∧. . .∧bm.
One can easily check that this definition satisfies all of the required rules. Note that
(T) follows by our convention to represent > by the empty conjunction. To reduce
confusion, we denote meets in S by

∧

and meets in LA(S (S ), `) by
∧

≈.
We claim that S is isomorphic to LA(S (S ), `). Indeed, one can define map-

pings f : S → LA(S (S ), `) and g : LA(S (S ), `)→ S by setting f (a) = [a]≈ and,
for propositions ai, 1 ≤ i ≤ n, g[

∧

≈ ai]≈ =
∧

ai. To see that g is well-defined, note
that for any two formulae

∧

≈ ai,
∧

≈ b j ∈ S (S ) we have that
∧

≈ ai ≈
∧

≈ b j (in
S (S )) implies

∧

ai =
∧

b j (in S ) by the definition of `.
Finally, we show that g and f are inverse to each other. By what was said

above, g( f (a)) = a is immediate. On the other hand, any formula
∧

≈ ai is syntac-
tically equivalent to

∧

ai by the definition of `. This shows bijectivity of f and g.
Monotonicity of both functions is obvious from their definition. �

This relationship closes the gap to our prior category Sem∨, since the above
meet-semilattices are just the order duals of the objects within this category. By an
approximable mapping between two meet-semilattices with least element or two
deductive systems of CP logic, we mean an approximable mapping between the
induced join-semilattices. The following then is immediate.

Theorem 3.4.6 Consider the categories Sem∧ and CP of meet-semilattices with
greatest element and deductive systems of CP logic, respectively, together with
approximable mappings as morphisms. Then Sem∨, Sem∧, and CP are equivalent.

The insights just obtained allow to relate our study with results obtained in
[HW03, Hit04], where the conjunctive fragment of the logic RZ (introduced in
[RZ01]), was found to be closely related to concept closure in FCA. We derive a
very similar result, but some preparations are needed first.

An algebraic cpo D is a dcpo with least element⊥ such that every e ∈ D is the
directed supremum of all compact elements below it. Note that this definition is
in fact very similar to that of an algebraic lattice, with the additional requirement
that the mentioned sets of compact elements be directed, which is automatic in
the case of lattices (Corollary 3.1.1). A coherent algebraic cpo is an algebraic cpo
with a coherent Scott topology (see Definitions 2.4.8 and 2.4.11).
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These notions can be found in [RZ01], along with a characterization of the
Smyth Powerdomain of any given coherent algebraic cpo D by means of a logic
defined on D, which we call the logic RZ. We will only be concerned with the
conjunctive fragment of RZ, which can be given as follows. For compact ele-
ments c1, . . . , cn, d1, . . . , dm we write c1 ∧ . . . ∧ cn ` d1 ∧ . . . ∧ dm iff any minimal
upper bound of {c1, . . . , cn} is above all di. This way, we obtain a deductive system
(K(D), `), and the following result, which is related to those in [HW03, Hit04],
and such considerations were put to use in [Hit04] for developing a generic non-
monotonic rule-based reasoning paradigm over hierarchical knowledge.

Theorem 3.4.7 Let K = (G, M, I) be a formal context. Then there is a coherent
algebraic cpo D and a mapping ι : M → D such that for every finite set X =
{m1, . . . ,mn} ⊆ M we have XII = {m | ι(m1) ∧ . . . ∧ ι(mn) ` ι(m)}.

Proof. Define D = Alg(K) and set ι(m) = {m}II for m ∈ M. Since D is a complete
algebraic lattice, it is a coherent algebraic cpo.

Now consider the finite set X as above. Using the completeness of the lattice,
we obtain that ι(X) has X II as supremum, which suffices. �

The difference between Theorem 3.4.7 and the results in [HW03, Hit04] lies in
the fact that the latter were proven by taking D to be a sublattice of the (classical)
formal concept lattice, instead of Alg(K), which facilitates reasoning with formal
contexts in a natural way.

Finally, we come to another popular description of algebraic lattices, that fits
well into the above discussion, and will also shed additional light on morphisms
of CP.

Definition 3.4.8 Consider a structure (A,
), where A is a set, and 
 ⊆ Fin(A) × A
is a relation between finite subsets of A and elements of A. Then (A,
) is a Scott
information system (with trivial consistency predicate) if the following hold:

(IS1) a ∈ X implies X 
 a,

(IS2) if X 
 y for all y ∈ Y and Y ` a, then X 
 a.

Scott information systems were introduced in [Sco82a] as a logical characteri-
zation of order structures arising in denotational semantics. The connection to CP
logic is as follows.

Proposition 3.4.9 There is a bijective relationship between Scott information sys-
tems and deductive systems of CP logic.

Proof. Consider a Scott information system (A,
). Using the set A as propositions,
we obtain the set of CP formulae S (A). A consequence relation ` for S (A) is
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defined by setting a1∧a2∧ . . .∧an ` b1∧b2∧ . . .∧bm whenever {a1, a2, . . . , an} 


bi for all i = 1, . . .m. We have to verify that ` is closed under the rules given
in Definition 3.4.1. For the case m = 0 the condition is obviously true so that
we obtain axiom (T). Likewise, the conditions for axiom (R) are satisfied due to
condition (IS1) in Definition 3.4.8. Similarly, the (Cut) rule follows immediately
from (IS2). For the rules (W1), (W2), and (And), we simply notice that these are
direct consequences from our definition of `.

Now for the opposite direction, consider a deductive system (S (A), `). Using
the set of propositions of S (A) as attributes, we construct a Scott information
system (A,
), where we define {a1, a2, . . . , an} 
 b whenever a1∧a2∧ . . .∧an ` b.
Again it is straightforward to check that this is indeed an information system.
(IS1) can be deduced from the rules (R) and iterated applications of (W1) and
(W2). Under the assumption of (IS2), we see that the (And) rule allows us to
construct a conjunction that corresponds to the premise Y of the second rule. By
(Cut) this yields the required entailment.

To complete the proof, we note that these two constructions are in fact inverse
to each other. The identity on Scott information systems is trivial. For CP logics,
we note that any sequent a1∧a2∧. . .∧an ` b1∧b2∧. . .∧bm induces via (W1)/(W2)
the existence of sequents a1 ∧ a2 ∧ . . . ∧ an ` bi, for all i = 1, . . . ,m. The original
sequent can then be reconstructed from the entailment of the Scott information
system induced from these relations. �

Note that this proposition yields a bijective correspondence, not just a rela-
tionship up to isomorphism. Indeed Scott information systems are essentially an
efficient formulation of conjunctive propositional logic, where the properties of ∧
are obtained implicitly by using sets in the first place. The category of Scott infor-
mation systems and approximable mappings between the induced semilattices is
denoted SIS.5 From Proposition 3.4.9 one easily concludes that SIS is isomorphic
to CP, and hence also equivalent to all categories mentioned earlier.

Furthermore, approximable mappings between CP logics need not be ex-
pressed on the level of their Lindenbaum algebras, but could be formulated di-
rectly on formulae. From this viewpoint, approximable mappings appear as conse-
quence relations between different logical languages. Indeed, all the requirements
of Definition 3.2.1 do still have a very intuitive reading under this interpretation:
(am1) and (am2) correspond to (T) and (And) of Definition 3.4.1, respectively,
while (am3) can be viewed as a modified (Cut) rule, that also subsumes (W1) and
(W2). Hence we recognize approximable mappings as a simple form of multilin-
gual sequent calculi as introduced in [JKM99] for the more complicated case of

5Historically, this is indeed the first context for which approximable mappings were defined
[Sco82a].
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positive logics (i.e., logics including conjunction and disjunction) without the rule
(T). We will come back to the idea of such consequence relations in Chapter 5.

We remark that one could as well have connected CP logic or information
systems directly to algebraic lattices, instead of presenting the ideal completion
for semilattices of compacts. In the case of logics, algebraic lattices are obtained
directly as sets of models of a deductive system, where models are considered
as deductively closed sets of (true) formulae. These turn out to be exactly the
filters (Definition 2.1.7) within the corresponding Lindenbaum algebras, and the
duality to ideal completion is immediate. The reader may care to consult [DH01]
for a general treatment of such matters. For Scott information systems, algebraic
lattices are constructed similarly as sets of elements. As defined in [Sco82a], an
element of an information system (A,
) is a subset x ⊆ A such that a ∈ x whenever
there is some finite set X ⊆ x with X 
 a.

Our logical considerations can also be put to practical use by noting that every
definite logic program (see, e.g., [Llo87]) can be expressed by a deductive system
in the above sense. This has also been mentioned in [Zha03]. Considering the fact
that the theory of definite logic programs is quite well-developed, these insights
are merely providing some further explanation for the situation in this field. In the
light of the connections to Stone duality outlined below and the immediate con-
nection to algebraic semantics of logical systems, one could also further analyze
the situation for more expressive logical languages from this perspective.

Note that only a small portion of Scott information systems and algebraic lat-
tices can be obtained from definite logic programs. The reason is that there are
only countably many different programs, but uncountably many Scott informa-
tion systems (even for countable sets of generators). We also remark that, while
algebraicity always makes fixed point computation possible in theory, the specific
structure of the information systems of logic programs is employed to ensure that
the semantic operator suitable for logic programs is indeed effectively computable.

We do not bother to give a category of logic programs, although this could be
done by adjusting the formalism of approximable mappings. However, it is not
clear to us how the subcategory of algebraic lattices that arises in this way can be
characterized.

3.4.2 The Scott topology
Next we want to study the spacial side of Stone duality. It is here where we find
the models and their semantic entailment, while the localic side is inhabited by
syntactic representations and their proof theory. We already mentioned that mod-
els in our case take the specific form of algebraic lattices. From a domain theoretic
perspective, the natural topology for these structures is the Scott topology as in-
troduced in Definition 2.4.8. The practical justification for this choice is that this
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topology, when defined on an algebraic lattice, has some rather specific properties
such as order consistency and coherency (Definitions 2.4.10 and 2.4.11). Proof for
the following statements can also be found in [AJ94, GHK+03, Joh82].

Proposition 3.4.10 Consider an algebraic lattice L. We have the following:

(i) Σ(L) is order consistent.

(ii) The set B = {↑c | c ∈ K(L)} is a base for σ(L).

(iii) The compact opens of Σ(L) are exactly the finite unions of members of B.

(iv) σ(L) is coherent.

(v) σ(L) is sober.6

Proof. For (i) consider x ≤ y. Then clearly y is contained in any Scott open that
contains x. We still have to show the converse: if x � y then there is a Scott open
set O such that x ∈ O and y < O. By algebraicity, every element is the supremum
of the compact elements below it. Thus, there is a compact c ≤ x such that c � y,
since otherwise monotonicity of join would imply x ≤ y. Now it is easy to see
that ↑c is Scott open: it is certainly an upper set and inaccessibility by directed
suprema is just the compactness of c. Since x ∈ ↑c and y < ↑c this shows that
x � y in the specialization order.

For (ii) we already noted that all members of B are Scott open. Now whenever
a Scott open contains an element x then it also contains some compact element
below x, since the directed supremum of all such compacts is x. Hence any open
set is indeed the union of all members of B it contains.

To show Claim (iii), note that a finite union O of elements of B is compact,
since any directed set of opens is closed under finite unions. The converse is ob-
vious.

Item (iv) is an easy consequence of (iii). Consider two compact Scott opens O
and O′, where O =

⋃

↑ci and O′ =
⋃

↑c j for two finite families (ci)i∈I and (c j) j∈J

of compacts. Then O ∩ O′ =
⋃

{↑(ci ∨ c j) | i ∈ I, j ∈ J}, where each of the joins
is compact by Proposition 3.1.1. By (iii) O ∩ O′ is compact open.

For (v) see [GHK+03, Corollary II-1.12]. We also obtain this as a corollary of
our topological presentation theorems in the next section. �

Order consistency insures that algebraic lattices and their Scott topologies
uniquely characterize each other. A category ΣAlg of Scott topologies on algebraic
lattices is readily obtained by employing continuous maps between topologies as
morphisms.

6We did not define sobriety in this document. Readers who are not familiar with this concept
may safely ignore this statement.
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Theorem 3.4.11 The categories Alg and ΣAlg are isomorphic, hence equivalent.

Proof. The required functors are defined on objects by taking the Scott topology
and the specialization order of the arguments, respectively. By order consistency
of the topologies, this yields a bijection between the classes of objects. Since the
carrier sets of lattices and topologies remain unchanged, one can consider every
function between algebraic lattices directly as a function between spaces and vice
versa. To finish the proof, we use that a function between algebraic lattices is
Scott continuous iff it is continuous with respect to the Scott topologies (Proposi-
tion 2.4.9). �

In the next section, we see that the topological spaces of ΣAlg are indeed very
specific.

3.4.3 Stone duality

Since the very beginning of the theory, Stone duality has been recognized as a tool
for relating proof theory, algebraic semantics, and model theory of logical systems
(see [Sto37b]). One direction of this investigation has already been mentioned in
Section 3.4.1: Lindenbaum algebras can be represented by corresponding model
theories, where models are characterized as subsets (filters) of formulae. Dually,
one could also have presented every formula by the set of its models. The concep-
tual step from such systems of specific subsets to topological spaces was the key
to the strength and utility of Stone’s original representation theorems.

However, it still took decades to recognize that it would be even more advan-
tageous to undo this step to the spacial side of Stone duality and to return to the
more abstract world of partially ordered sets. It became apparent that topologies
could not only serve as a representation for specific ordered structures, but that
conversely orders could serve as a general substitute for topological spaces. In-
deed, the leap to the spacial side is usually not an easy one – in many cases it
cannot be made within classical Zermelo-Fraenkel set theory (ZF). The localic
side on the other hand can mimic most of the features of the original topological
setting, while being freed from the weight of points which often prevent purely
constructive reasoning.

In what follows we embed our specific scenery into the setting of Stone du-
ality. However, it turns out that the special case we consider does not justify to
present the theory in its common generality. Hence we give explicit proofs for the
object level relationships in our specialized setting and hint at the connections to
more abstract versions of Stone duality where appropriate. Other than providing
the merit of a more self-contained presentation, this also enables us to work ex-
clusively in ZF, with no additional choice principles whatsoever. In contrast, in
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Chapter 5 we will obtain various results that are only valid when Axiom 2.1.9 is
assumed to hold. As a general reference on Stone duality, we recommend [Joh82].

The passage from spaces to orders is a particularly simple one: the open set
lattice of a topology is already a poset. The class of posets arising in this way are
the spacial locales.

Definition 3.4.12 A complete lattice L is a locale if the following infinite dis-
tributive law holds for all S ⊆ L and x ∈ L:

x ∧
∨

S =
∨

{x ∧ s | s ∈ S }.

A point of a locale is a principal prime ideal of L, i.e. a subset p ⊆ L such that
p = ↓

∧

p and, for any x ∧ y ∈ p, x ∈ p or y ∈ p. The set of all points of L is
denoted pt(L).

A locale is spacial if, for any two elements x, y ∈ L with x � y, there is a point
p ⊆ L such that x ∈ p and y < p. L is spectral if L is algebraic, its greatest element
is compact, and the meet of any two compact elements of L is compact.

We remark that locales are also called frames, and that structures of this kind
are equivalently characterized as complete Heyting algebras.7

It is now easy to see that any open set lattice yields a locale, where distributiv-
ity follows from the corresponding distributivity of finite intersections over infinite
unions. Furthermore, Proposition 3.4.10 (ii), (iii), and (iv) show that, for an alge-
braic lattice L, (σ(L),⊆) is even a spectral locale. We shall find that these locales
are even more specific than this.

Our starting point for investigating topologies were algebraic lattices, which
we have earlier recognized as the model theories of deductive systems of CP log-
ics. The abstraction to (certain) spectral locales brings us back to proof theory. We
now characterize the above locales by relating them to Lindenbaum algebras of
CP logic, and reobtain topological spaces from this data.

We consider arbitrary meet-semilattices with greatest element, knowing that
they are up to isomorphism just the Lindenbaum algebras of CP (Theorem 3.4.5).
Furthermore, we already mentioned that the collections of all filters (the order-
dual concepts of the ideals) of such semilattices are just the algebraic lattices,
which follows immediately from Theorem 3.1.3. We can now give a characteriza-
tion for the locale of Scott open sets of algebraic lattices:

Theorem 3.4.13 Consider a meet-semilattice S with greatest element and the cor-
responding algebraic lattice (Flt(S ),⊆) of filters of S . The collection of lower sets
of S , ordered by subset inclusion, is isomorphic to σ(Flt(S )). Every Scott open set
lattice of an algebraic lattice is of this form.

7A complete Heyting algebra is a Heyting algebra (Definition 2.2.6) that is a complete lattice.
The interested reader will find details in [Joh82, GHK+03].
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Proof. Theorem 3.1.3 shows the bijective correspondence between the elements
of S and the compacts of Flt(S ), since S is dually order-isomorphic to K(Flt(S )).
Proposition 3.4.10 demonstrates that every Scott open set is characterized by the
compact elements it contains. Now it is obvious that such sets of compacts corre-
spond to upper sets in the join-semilattice of compacts, and thus to lower sets in its
dual meet-semilattice. The other direction is also immediate from the according
part of Theorem 3.1.3. �

Hence the spectral locales of the form σ(L) for some algebraic lattice L are
more precizely characterized as the lower set topologies of meet-semilattices with
greatest element, and the Scott topology on L coincides with the Alexandrov to-
pology on K(L)op. Note also that all meets and joins within these locales are really
given by the corresponding set operations. By σAlg we denote the category of all
locales isomorphic to the collection of lower sets on some meet-semilattice with
greatest element together with frame homomorphsism, i.e. functions that preserve
finite meets and arbitrary joins.8

Next we want to connect up with the common constructions of Stone duality.

Lemma 3.4.14 Consider a meet-semilattice with greatest element S and its locale
of lower sets σ. Then the meet-prime elements of σ are exactly the complements
of the filters of S .

Proof. Let F ⊆ S be a filter and set A = S \ F ∈ σ. Now assume there are lower
sets B1, B2 ∈ σ such that B1 ∩ B2 = A. For a contradiction, assume that there are
elements b1 ∈ B1∩F and b2 ∈ B2∩F. Then b1∧b2 ∈ F and b1∧b2 ∈ B1∩B2 = A –
a contradiction. Hence, one of B1, B2 contains just the elements of A as required.

Conversely, let A ∈ σ be meet-prime and consider the upper set F = S \ A.
For any two elements a, b ∈ F it is easy to see that ↓a ∩ ↓b = ↓(a ∧ b). Hence, if
a ∧ b ∈ A then ↓a ∪ A and ↓b ∪ A are elements of σ with intersection A, which
cannot be. Hence a ∧ b ∈ F as required. �

This gives us all necessary information about the points of these locales (see
Definition 3.4.12), since these were defined to be just the principal ideals gener-
ated by meet-prime elements. We can thus identify the set of points pt(σ) with
the set of all meet-prime elements of σ.9 Our insights allow us to give a direct
description of the topological spaces associated with semilattices.

8Typically, a category of locales would rather be described by the dual of this category, which of
course has an easy concrete representation: According to Theorem 2.2.5, frame homomorphisms
are lower adjoints and thus induce unique upper adjoints in the opposite direction. We have chosen
to trade some terminological precision for conciseness of the presentation.

9Furthermore, we remark that this guarantees a sufficient supply of prime elements without
invoking any additional choice principles, i.e. we are dealing with a class of locales that is spacial
in Zermelo-Fraenkel set theory. This contrasts with the class of all spectral locales, which are
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Corollary 3.4.15 Let S be a meet-semilattice with greatest element, let L be an
algebraic lattice, and let σ be a spectral locale, such that

• S op is isomorphic to K(L) and

• σ is isomorphic to σ(L).

Then the following are homeomorphic:

(i) (L, σ(L)), the Scott topology on L;

(ii) the topology on Flt(S ) generated from the basic open sets

Oa = {F ∈ Flt(S ) | a ∈ F} for all a ∈ S ;

(iii) the topology on pt(σ) given by the open sets

PA = {p ∈ pt(σ) | A < p} for all A ∈ σ.

Proof. Most of the above should be obvious at this stage, so we spare out some
details. Suitable bijections between L, Flt(S ), and pt(σ) have been obtained in
3.1.3 and 3.4.14. First we show the homeomorphism between (i) and (ii) (which
induces also that (Oa) is indeed a base). For this we only have to note that
Oa = {F ∈ Flt(S ) | ↑a ⊆ F}. Using the bijection between (principal) filters and
(compact) elements from Theorem 3.1.3, one sees that Oa corresponds to an open
set ↑c, c ∈ K(L), of (i). The fact that these subsets are open and form the basis for
the Scott topology has been shown in Proposition 3.4.10.

For the homeomorphism between (ii) and (iii), we consider the locale of lower
sets of S , which is isomorphic to σ by Theorem 3.4.13. Clearly this affects the
topology of (iii) only up to homeomorphism. Now in the locale of lower sets, a
point (principal prime ideal) p = ↓B is in PA iff the corresponding meet-primeB
does not contain A. But this is the case iff the complement of B intersects A.
Hence, by Lemma 3.4.14, PA corresponds exactly to the collection of those filters
of S that contain some element of A, i.e. to the set

⋃

{Oa | a ∈ A}. But these are
precisely the open sets of the topology of (ii). �

With respect to the given preconditions on the relationship between S , L, and
σ, note that the various transformations between semilattices, algebraic lattices,
and locales established earlier yield a variety of equivalent ways to state that the
three given objects describe “the same thing.”

To complete the targeted categorical equivalence between the dual category
of σAlg and ΣAlg (Alg, Sem∨, . . . ), one still needs to prove a suitable bijection of

only spacial when the existence of prime ideals is explicitly postulated, i.e. when Axiom 2.1.9 is
assumed to hold.
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homsets. This correspondence between inverse frame homomorphisms and con-
tinuous functions is a basic result of Stone duality which we will obtain later on
as a corollary of Theorem 5.3.1. Another possible construction can be found in
[Joh82] or [WP, Article “Stone duality”].

3.5 Summary and further results
We provided characterizations of the category of algebraic lattices by means of
structures from logic, topology, domain theory, and formal concept analysis. More
precisely, we characterized algebraic lattices by certain semilattices, formal con-
texts, and deductive systems of the conjunctive fragment of propositional logic.
The novel category Cxt of formal contexts and approximable mappings was used
to establish the cartesian closure of these categories, and the categorical construc-
tions needed for this were explicitly given. Other representations referred to spe-
cial classes of closure systems, Scott topologies, locales, and definite logic pro-
grams. An overview of the major equivalences given herein is displayed in Fig-
ure 3.2.

Although this treatment is quite comprehensive, one could still add some more
equivalent formalisms. Especially, we left out the coverage technique of [Joh82]
(see also [Sim04]), which represents locales in a syntactical way that relates
closely to Scott information systems. Furthermore, we deliberately ignored Scott’s
earlier approach to presenting domains via neighborhood systems [Sco82b], since
these structures are not much more than a mixture of the later (token-set based)
information systems and continuous closure operators.

3.5.1 Further logics
In this chapter we have also presented a unified treatment of the basic techniques
and mechanisms that are applied to join domain theory, algebra, logic, and topol-
ogy. Algebraic lattices turn out to be the simplest case where such a discussion
is feasible, but the given results can be extended to the case of more expressive
logics.

For classical propositional logic, one obtains Boolean algebras as Lindenbaum
algebras. Given a model of this logic, one finds that a formula (F ∨G) is mapped
to true, only if at least one of F and G is. Further investigations reveal that the
set of models can indeed be identified with the set of prime filters of a Boolean
algebra – a statement that is also true for other propositional logics that allow for
disjunction.

Thus one cannot extend the results of this chapter by simply considering
Boolean algebras as special cases of meet-semilattices, since the notion of a prime
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Figure 3.2: Summary of all established equivalences with reference to the corre-
sponding (object-level) statements. Labels at the arrow tips specify the name of
the functor that was used in a construction, where Down denotes the construction
of the lower set topology from a meet-semilattice, Prm yields the set of principal
prime ideals of a locale, ordered by subset inclusion, and ≤ denotes the construc-
tion of the specialization order from a topological space.

filter is not feasible in this case. Instead, we need to base our considerations on
lattices which are distributive (since this is a basic feature of conjunction and
disjunction in logic) and bounded (to account for truth and falsity). Within the
framework of Stone duality, such lattices appear as the lattices of compact ele-
ments of a spectral locale (Definition 3.4.12). We already noticed that the locales
in the above investigations have always been spectral, and thus we immediately
obtain a bounded distributive lattice for every meet-semilattice. Another possibil-
ity to obtain this lattice is to construct the free bounded distributive lattice over a
given meet-semilattice with greatest element.

The filters (models) of the semilattice are in bijection with the prime filters
of this newly constructed lattice, which generally suggests to base further logical
considerations on bounded distributive lattices and their prime filters. As men-
tioned above, spectral locales arise in this setting as the ideal completions of
bounded distributive lattices. On the spacial side, however, one obtains topologi-
cal spaces that might no longer be described by the Scott topology. Indeed, of all
the descriptions given in Corollary 3.4.15, only item (iii) yields a description of
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the topological space that emerges in the general case.10 With this framework in
mind, we can give an overview of the results for some other logics.

The easiest extension of CP logic is to add logical falsity ⊥. In terms of proof
theory, this allows for additional constraints of the form

∧

X 
 ⊥, assuring the
inconsistency of the finite set X – a construction well-known under the notion of
integrity constraint in database theory. The according Lindenbaum algebras are
meet-semilattices that have both a greatest and a least element. Since this least
element is preserved when constructing the free bounded distributive lattice, the
prime filters of this lattice now correspond to the proper filters of the semilat-
tice (which are exactly those filters that do not contain the least element). The
posets of models obtained in this way turn out to be exactly the Scott domains
(the bounded complete algebraic cpos), and their Scott topology coincides with
the resulting Stone space. This case has originally been studied by Scott and lead
to the definition of his information systems [Sco82a].

As another step, one can include disjunction into the formalism to obtain pos-
itive logic with falsity. This already leads to a substantial complication of the
theory: some choice principle like Axiom 2.1.9 is now needed to find sufficiently
many models. Lindenbaum algebras now are bounded distributive lattices, and
the emerging class of locales are exactly the spectral ones. Ordering prime filters
(models) by inclusion, one finds a curious class of dcpos that have been termed
information domains in [DG90]. Later the direct construction of distributive lat-
tices and locales from the according deductive systems was studied in [CC00] and
[CZ00].

Further strengthening of the logic is possible by including some internal nega-
tion operation. Intuitionistic negation yields Heyting algebras as Lindenbaum al-
gebras. The resulting topologies are already studied in [Sto37b], though the sig-
nificance of specialization orders and domain theoretic concepts were not yet rec-
ognized at this time. In fact, we are not aware of a treatment that investigates the
posets of models that appear in this setting from a domain theoretical perspec-
tive. However, also in the light of the next paragraph, one might presume that the
order-theoretical features of such posets are very weak.

If classical negation is introduced, thus yielding classical propositional logic,
the class of Boolean algebras provides the well-known algebraic semantics. While
topological representation via Stone’s theorem is rather pleasant in this case, the
domain theoretic aspects are quite disappointing: the specialization order of mod-
els is discrete. Since the emerging Stone spaces are not discrete, the Scott topology
is not an appropriate tool in this situation. Related approaches nevertheless have
been taken for the context of negation in logic programming [Sed95, Hit04], but

10The according topology is always coarser than the Scott topology, see [AJ94, Proposi-
tion 7.2.13].
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the domain-theoretic content of these investigations remains to be determined.
For reasons as those just described, internal negation is usually not considered

in domain-theoretical studies. However both inconsistency of finite subsets and
finite disjunctions can be employed with various restrictions to obtain classes of
domains that are more general than the Scott domains. A slight constraint on ei-
ther the logical ([DG90]) or the localic level ([Abr91]) restricts the obtained class
of dcpos (of models) to the coherent algebraic dcpos. However, while this is a
well-known concept in domain theory, it results in rather unusual restrictions on
the logics (Lindenbaum algebras, locales). Further conditions will lead to SFP-
domains [Abr91, Zha91]. On the other hand, conditions that characterize a class
of deductive systems that produces exactly the L-domains have been studied in
[Zha92].

One result from these considerations is that all the above logics are basically
specializations of positive logic – the logic of distributive lattices with greatest
element. Conjunctive logic and Scott information systems restrict to certain free
distributive lattices, while intuitionistic logic and classical logic focus on sub-
classes with additional lattice-theoretic operations. This observation allows for
the application not only of Stone’s but also of Priestley’s representation theorem
([DP02, Joh82]) on these structures.

Techniques similar to those described above were also applied to a clausal
logic in [RZ01], leading to a characterization of Smyth powerdomains. Subse-
quently, this logic was extended to non-monotonic reasoning paradigms on hier-
archical knowledge [RZ01, Hit04].
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Chapter 4

Morphisms in FCA

The theme of this chapter is the extension of the theory of morphisms between
formal contexts, both in order to enhance our understanding of the mathemati-
cal foundations within this field, and to prepare useful results for Chapter 5. The
following exposition largely agrees with [KHZ05].

The struture of this chapter is as follows. In Section 4.1, we study dual bonds
and their relationships to direct products of formal contexts and Galois connec-
tions. In Section 4.2, dual bonds featuring certain continuity properties will be
identified as an important subclass. Section 4.3 will deal with the relationship be-
tween scale measures, functional types of dual bonds, and Galois connections,
while Section 4.4 is devoted to infomorphisms. In Section 4.5, we summarize
some of our results in form of a concept lattice of context-morphisms, which we
obtain by attribute exploration. We conclude our results by discussing various
possible directions for future research in Section 4.6.

4.1 Dual bonds and the direct product
The construction of concept lattices exploits the fact that the derivation operators
·I form an antitone Galois connection (see Section 2.3). Hence Galois connec-
tions naturally are also of special interest when looking for suitable morphisms
between concept lattices.1 In order to represent Galois connections on the level
of contexts, functions between the sets of attributes or objects turn out to be too
specific. Instead, one makes use of certain relations called dual bonds which we
shall study in this section. Most of the material before Lemma 4.1.7 can be found
in [GW99, Xia93, Gan04].

1We will mainly work with antitone Galois connections within this chapter, since these are
much more common in FCA than their monotone relatives.

64



4.1 D     

Definition 4.1.1 A dual bond between formal contexts K = (G, M, I) and L =
(H,N, J) is a relation R ⊆ G × H for which the following hold:

• for every object g ∈ G, gR (which is equal to R(g)) is an extent of L and

• for every object h ∈ H, hR (which is equal to R−1(h)) is an extent of K.

This definition is motivated by the following result.

Theorem 4.1.2 ([GW99] Theorem 53) Consider a dual bond R between con-
texts K and L as above. The mappings

~φR : Bo(K)→ Bo(L) : X 7→ XR and ~φR : Bo(L)→ Bo(K) : Y 7→ YR

form an antitone Galois connection between the (object) concept lattices of the
contexts K and L.

Conversely, given such an antitone Galois connection (~φ, ~φ), the relation
R(~φ, ~φ) =

{

(g, h) | h ∈ ~φ(gII)
}

=
{

(g, h) | g ∈ ~φ(hJJ)
}

is a dual bond, and these con-
structions are mutually inverse in the following sense:

~φ = ~φR(~φ, ~φ)
~φ = ~φR(~φ, ~φ)

R = R~φR, ~φR

Hence, formal contexts with dual bonds are “equivalent” to complete lattices
with antitone Galois connections. However, antitone Galois connections of course
cannot be composed, such that none of the above form a category and we cannot
make this statement of equivalence formal in the sense of Definition 2.5.5. Of
course, some straightforward dualizing will fix the situation, but following this
path will not give us much additional insights.

Before proceeding, let us note the following consequence of Lemma 2.3.5.

Lemma 4.1.3 Consider a dual bond R between contexts K = (G, M, I) and L =
(H,N, J). Then R(gIrIr) = R(g) and R−1(hJrJr) = R−1(h) holds for any g ∈ G, h ∈ H.
Especially, R(gIrIr) and R−1(hJrJr) are extents.

Proof. The inclusion R(g) ⊆ R(gIrIr) is obvious for any relation R, since g ∈ gIrIr.
For the converse, assume that h ∈ R(gIrIr), i.e. there is some g′ ∈ gIrIr such that
g′ R h. By Lemma 2.3.5 we conclude g ∈ g′II which is a subset of R−1(h) since the
latter is an extent. This shows h ∈ R(g) as required. The statement for R−1 follows
by a similar reasoning. �

Now we want to ask how the dual bonds between two contexts can be repre-
sented. Since extents are closed under intersections, the same is true for the set of
all dual bonds between two contexts. Thus the dual bonds form a closure system
and one might ask for a way to cast this into a formal context which has dual
bonds for concepts. An immediate candidate for this purpose is the direct product
of the contexts.
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Definition 4.1.4 Given contexts K = (G, M, I) and L = (H,N, J), the direct prod-
uct of K and L is the context K × L = (G × H, M × N,∇), where (g, h) ∇ (m, n) iff
g I m or h J n.

Proposition 4.1.5 ([Gan04]) The extents of a direct productK×L are dual bonds
from K to L.

Proof. It suffices to show that attribute extents are dual bonds, because any extent
is an intersection of attribute extents and intersections of dual bonds are still dual
bonds. Thus consider (m, n) ∈ M × N and define R = (m, n)∇. We find that R =
(mI × H) ∪ (G × nJ). Thus, for any g ∈ G, gR = H or gR = nJ , both of which are
extents in L. Likewise, for h ∈ H, hR = mI or hR = H, such that R is indeed a dual
bond. �

However, it is known that the converse of this result is false in the general case,
i.e. there are dual bonds which are not extents of the direct product. We give the
following counterexample:

Counterexample 4.1.6 Consider the context K = ({a, b, c}, {1, 2, 3}, I) with inci-
dence relation I given as follows:

I 1 2 3
a ×
b ×

c ×

Obviously, the relation R = {(a, a), (b, b), (c, c)} is a dual bond from K to itself,
since all singleton sets are extents. However, we find R∇ = ∅ in K × K. Thus
R , R∇∇ = {a, b, c} × {a, b, c} is not an extent of the direct product.

In consequence, the direct product only represents a distinguished subset of
all dual bonds. In order to find additional characterizations for these relations, we
will use the following result. The notation R∇ indicated the intent of the relation R
considered as a set of objects in the direct product.

Lemma 4.1.7 Consider the contexts K = (G, M, I) and L = (H,N, J) and a rela-
tion R ⊆ G × H. For any attribute m ∈ M, the following sets are equal:

• X1 B R∇(m) = {n ∈ N | (m, n) ∈ R∇}

• X2 B R(mIr)J = {h ∈ H | there is g ∈ G with g Ir m and (g, h) ∈ R}J

• X3 B
⋂

g∈mIr R(g)J

Furthermore, R∇∇(g) = R∇(gIr)J =
⋂

m∈gIr R(mIr)JJ holds for any object g ∈ G.
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Proof. We first show the equality between X1 and X2. If (m, n) ∈ R∇ then
(g, h)∇(m, n) holds for all (g, h) ∈ R. Thus, if g Ir m for some (g, h) ∈ R, one
certainly has h J n. Hence n ∈ X2 and we obtain X1 ⊆ X2. For the other direc-
tion consider some n ∈ X2. Then for all (g, h) ∈ R, g Ir m implies h J n. Hence
(m, n) ∈ R∇ and X2 ⊆ X1 as required.

Next observe that X2 clearly can be expressed as
(

⋃

g∈mIr R(g)
)J

. The fact that
this is equal to X3 has been shown as the second part of Theorem 2.3.4.

For the rest of the proof, note that R∇ is a relation between the sets of objects
of the dual contexts Kd and Ld. Thus we can apply the first part of the lemma on
R∇ to obtain the equality

R∇∇(g) = R∇(gIr)J =
⋂

m∈gIr

R∇(m)J .

Another application of the above results shows that R∇(m) = R(mIr)J and we obtain
⋂

m∈gIr R∇(m)J =
⋂

m∈gIr R(mIr)JJ as required. �

Now we can state a characterization theorem for dual bonds in the direct prod-
uct.

Theorem 4.1.8 Consider the contexts K = (G, M, I) and L = (H,N, J) and a
relation R ⊆ G × H. The following are equivalent:

(i) R is an extent of the direct product K × L.

(ii) For all g ∈ G, R(g) = R∇(gIr)J
(

=
⋂

m∈gIr R(mIr)JJ
)

.

(iii) R is a dual bond and, for all g ∈ G,
⋂

m∈gIr R(mIr)JJ = R(gIrIr)

Proof. The equivalence of (i) and (ii) follows immediately from Lemma 4.1.7
where we established that R∇(gIr)J =

⋂

m∈gIr R(mIr)JJ = R∇∇(g). Using Lemma 4.1.3
on condition (iii) yields

⋂

m∈gIr R(mIr)JJ = R(g), which is just condition (ii). �

Another feature of the dual bonds in the direct product allows for the construc-
tion of Galois connections other than those considered in Theorem 4.1.2. Given a
dual bond R in K × L, its intent R∇ is a dual bond from Kd to Ld, which induces
another antitone Galois connection between the dual concept lattices. This Galois
connection appears to have no simple further relationship to the antitone Galois
connection derived from R.

Corollary 4.1.9 Consider the contexts K = (G, M, I) and L = (H,N, J) and an
extent R of the direct product K × L. There are two distinguished Galois connec-
tions φR : Bo(K)→ Bo(L) and φR∇ : Bo(K)op → Bo(L)op and each of R, R∇, φR and
φR∇ uniquely determines the others.
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Proof. Just use Theorem 4.1.2 on R and R∇. �

Of course any antitone Galois connection between two posets contravariantly
induces another antitone Galois connection, obtained by exchanging both adjoints
(see Section 2.2.1). But there appears to be no general way to bijectively construct
an additional antitone Galois connection between the order duals of the original
posets, which, in the light of Theorem 2.2.8, would mean to establish a bijective
relation between closure operators on a complete lattice L and closure operators
on Lop. The following results on extents of direct products can always be extended
to this second Galois connection, but we will often prefer to save space and refrain
from stating these explicitly.

4.2 Continuity for dual bonds

In Section 2.4.2, we already considered continuity – the preservation of certain
structures in the preimage – for functions between topological spaces. Now con-
tinuity is an important concept in many branches of mathematics, and is also of
relevance in formal concept analysis. However, we will generally not be dealing
with functions but with relations such as dual bonds, and the notion of continuity
will be lifted accordingly as follows, which is partially taken from [GW99].

Definition 4.2.1 Consider contexts K = (G, M, I) and L = (H,N, J). A relation
R ⊆ G × H is extensionally continuous if it reflects extents of L, i.e. if for every
extent O of L the preimage R−1(O) is an extent of K.

R is extensionally object-continuous (attribute-continuous) if it reflects all
object extents (attribute extents) of L, i.e. if for every object-extent O = hJJ

(attribute-extent O = nJ) the preimage R−1(O) is an extent of K (but not nec-
essarily an object-extent).

A relation is extensionally closed from K to L if it preserves extents of K,
i.e. if its inverse is extensionally continuous from L to K. Extensional object- and
attribute-closure are defined accordingly.

The dual definitions give rise to intensional continuity and closure properties.

Lemma 4.1.3 above shows that extensional object-continuity and -closure are
properties of any dual bond when considered as a relation between one context and
the complement of the other. We thus focus on extensional attribute-continuity and
-closure in the present section. The other notions will however become important
later on in Section 4.3.

Whenever it is clear whether we are dealing with a relation on attributes or
on objects, we will tend to omit the additional qualifications “extensionally” and
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I 1 2
a ×
b ×

J 3 4 5
c ×
d ×

I 1 2 3
a ×
b ×

c

Figure 4.1: Formal contexts for Counterexamples 4.2.3 (left) and 4.2.4 (right).

“intensionally.” We also remark that neither object- nor attribute-continuity is suf-
ficient to obtain full continuity in the general case, as can be seen from R∇ in
Counterexample 4.2.3.

Now we can investigate the interaction between continuity and the representa-
tion of dual bonds.

Theorem 4.2.2 Consider a dual bond R from K = (G, M, I) to L = (H,N, J). If
R is extensionally attribute-continuous from K to Lc, then R is an extent of K × L
and R∇ is intensionally object-closed from Kc to L.

Proof. We will first show that R(g)J = R∇(gIr) holds for arbitrary g ∈ G (∗).
Clearly, R∇(gIr) ⊆ R(g)J , since n ∈ R(g)J for any (m, n) ∈ R∇ for which g Ir m.

For the other direction, assume that there is n ∈ R(g)J , i.e. all objects which
are R-related to g satisfy n. Thus g relates to no objects that do not satisfy n,
i.e. g < R−1(nJr). Due to attribute-continuity of R, the latter is closed in K and
thus there must be some element m ∈ R−1(nJr)I such that g Ir m. We want to
show that (m, n) ∈ R∇ which follows if any pair in R is ∇-related to (m, n). We
only need to consider pairs which have a first component g′ such that g′ Ir m.
But then g′ < R−1(nJr)II = R−1(nJr) and we find that n ∈ R(g′)J . Hence all pairs
(g′, h′) ∈ R satisfy (m, n) and we conclude that (m, n) ∈ R∇. Together with the
above information that g Ir m, this finishes the proof of (∗).

Now it is immediate that R is an extent of the direct product. Indeed, by prop-
erty (∗), we obtain R(g)JJ = R∇(gIr)J . Now since R(g) = R(g)JJ , this yields condi-
tion (ii) of Theorem 4.1.8 which establishes the claim.

Finally, note that (∗) also shows that the set R∇(gIr) is an intent of L, such that
R∇ is indeed object-closed. �

Of course, analogous results can be obtained for closure by exchanging the
roles of K and L. One may wonder whether similar statements can be proven for
dual bonds which are fully continuous and/or closed. However, this is not the case:

Counterexample 4.2.3 Consider the formal contexts K = ({a, b}, {1, 2}, I) and
L = ({c, d}, {3, 4, 5}, J) depicted in Figure 4.1 (left).

Define R = {(a, c), (b, d)}. All subsets of {a, b} are extents of both K and Kc.
Likewise, all subsets of {c, d} are extents of L and Lc. Thus R is trivially closed
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and continuous in every sense. However, we find that R∇ = {(1, 4), (2, 3)} is not
closed from Kc to L. Indeed, {1, 2} is an intent of Kc but R∇({1, 2}) = {3, 4} is not
an intent of L, since {3, 4}JJ = {3, 4, 5}.

Other easy counterexamples for this claim can be obtained by exploiting the
fact that for any relation the image and preimage of the empty set is necessarily
empty. By adding appropriate attributes, one can always assure that the empty set
is not an intent in order to find cases where no relation can be intentionally con-
tinuous, even if numerous extensionally closed and continuous dual bonds exist.

Another false assumption that one might have is that the conditions given in
Theorem 4.2.2 for being an extent of the direct product are not just sufficient but
also necessary. However, neither closure nor continuity is needed for a dual bond
to be represented in the direct product.

Counterexample 4.2.4 Consider the context K = ({a, b, c}, {1, 2, 3}, I) depicted
in Figure 4.1 (right). Define R = {(a, a), (b, b)}. We find that R∇ = {(1, 2), (2, 1)}.
Thus R = R∇∇ and R is a dual bond which is an extent of the direct product
K×K. However, R is not even attribute-continuous from K to Kc, since R−1(3Ir) =
R−1({a, b, c}) = {a, b} is not closed in K. On the other hand, using that R = R−1, we
find that R is not attribute-closed from Kc to K either.

Although this shows that continuity is not a characteristic feature of all dual
bonds in the direct product, we still find that there are many situations where there
is a wealth of continuous dual bonds. This is the content of the following theorem.

Theorem 4.2.5 Consider the contexts K = (G, M, I) and L = (H,N, J). If

∅ is an extent of K or ∅ is not an extent of Lc

then the set of all dual bonds which are continuous from K to Lc is
⋂

-dense in
Bo(K × L) and thus forms a basis for the closure system of all dual bonds in the
direct product.

If the assumptions also hold with K and L exchanged, then the set of all dual
bonds which are both continuous fromK to Lc and closed fromKc to L is

⋂

-dense
as well.

Proof. From Theorem 4.2.2 we know that the above sets of dual bonds are subsets
of the extents of the direct product. For density, we recall that the set of all attribute
extents (m, n)∇ is

⋂

-dense in the lattice of extents. For every (m, n) ∈ M × N, we
find that (m, n)∇ = mI × H ∪ G × nJ . Therefore, for arbitrary extents O ⊆ H we
calculate

(m, n)∇−1(O) =



















∅ if O = ∅,
G ∪ mI = G if nJ ∩ O , ∅,
mI otherwise.
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In each case (m, n)∇−1(O) is an extent of K, where we use the initial assumption
that ∅ is an extent of K if O = ∅ is an extent of Lc. Thus any (m, n)∇ is continuous
from K to Lc and the attribute extents must form a subset of the set of continuous
dual bonds. This shows the required density property.

Using the additional assumptions for the last part of the theorem, this shows
that the dual bonds (m, n)∇ are also closed from Kc to L. Hence the continuous
and closed dual bonds form a

⋂

-dense set as required. �

Note that the previous theorem could of course also be stated using closure
in place of continuity. Furthermore it is evident that the dual bonds (m, n)∇ are
such that the (pre)image of almost any set is an extent. The only exception is
the empty set, which is why we need to add the given preconditions. We remark
that these conditions are indeed very weak. By removing or adding full rows, any
context can be modified in such a way that the empty set either is an extent or
not. Since the concept lattices of the context and its complement are not affected
by this procedure, one can always enforce the above situation by restricting to
appropriate kinds of contexts.

4.3 Functional bonds and scale measures

In FCA, (extensionally) continuous functions have been studied under the name
scale measures, the importance of which stems from the fact that they can be
regarded as a model for concept scaling and data abstraction. As discussed in
Chapter 3, topology provides additional interpretations for continuous functions
in the context of knowledge representation and reasoning. Furthermore we shall
see that continuity between topological spaces coincides with continuity between
appropriate contexts (Theorem 5.3.1).

The definition of continuity for functions constitutes a special case of continu-
ity in the relational case as defined above.

Definition 4.3.1 Consider contexts K = (G, M, I) and L = (H,N, J). A function
f : G → H is extensionally continuous whenever its graph {(x, f (x)) | x ∈ G} is
an extensionally continuous relation, i.e. if f −1(O) is an extent of K for any extent
O of L.

Extensional attribute- and object-continuity, as well as the according inten-
sional properties and closures are defined similarly based on the graph of the
function.

This definition agrees with [GW99, Definition 89], where extensionally
continuous maps have also been called scale measures. Extensional attribute-
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continuity (and thus intensional object-continuity) is of course redundant, as the
following lemma shows.

Lemma 4.3.2 Given contexts K = (G, M, I) and L = (H,N, J), a function f :
G → H is extensionally continuous iff it is extensionally attribute-continuous.

Proof. The forward implication is trivial, so assume that f is attribute-continuous.
Consider an extent BJ of L. According to Theorem 2.3.4 one has that BJ =
⋂

n∈B nJ. We find that f −1 (
⋂

n∈B nJ) =
⋂

n∈B f −1(nJ). By attribute-continuity, the
latter is an intersection of concepts of K, and thus a concept. �

This statement relies on the fact that attribute extents are
⋂

-dense in the ob-
ject concept lattice and that preimages of functions commute with intersections.
On the one hand, this is not true for images of functions, such that extensional
attribute-closure does not yield full closure. On the other hand, though object
extents are supremum-dense, the respective suprema are not the set-theoretical
unions. Hence extensional object-continuity and -closure are reasonable notions
as well.

The link from functions to our earlier studies of dual bonds is established
through a specific class of dual bonds which can be represented by functions.

Definition 4.3.3 Consider a dual bond R between contexts (G, M, I) and (H,N, J).
Then R is functional whenever, for any g ∈ G, the extent R(g) is generated by a
unique object fR(g) ∈ H:

R(g) = fR(g)JJ .

In this case R is said to induce the corresponding function fR : G → H.

It is obvious that functional dual bonds are uniquely determined by the func-
tion they induce. In fact, it is easy to see that R is the least dual bond that contains
the graph of the function fR. However, not for every function will this construction
yield a dual bond that is functional. The next result characterizes the functions that
are of the form fR for some functional dual bond R.

Proposition 4.3.4 Consider a context K = (G, M, I) and a context L = (H,N, J)
for which the map h 7→ hJ is injective. There is a bijective correspondence be-
tween

• the set of all functional dual bonds from K to L and

• the set of all extensionally object-continuous functions from K to Lc.

The required bijections consist of the functions

• R 7→ fR mapping each functional dual bond to the induced function and
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• f 7→ R f mapping each object-continuous function to the least dual bond
which contains its graph {(g, f (g)) | g ∈ G}.

Proof. Consider a functional dual bond R from K to L and the induced mapping
f = fR. For some object h ∈ H, we find that R−1(h) = f −1(hJrJr) follows from the
defining property of f and Lemma 2.3.5. Since R is a dual bond, R−1(h) must be
an extent and hence f is extensionally object-continuous in the required sense.

Conversely, if f : G → H is an object-continuous function from K to Lc, then
a relation R ⊆ G × H is defined by setting R(g) = f (g)JJ for any g ∈ G. Clearly R
maps objects of K to extents of L. For the converse, consider h ∈ H. As before we
find that R−1(h) = f −1(hJrJr) which is an extent of K by object-continuity. Thus R is
a dual bond. Moreover, it is easy to see that R is the least dual bond that contains
the graph of f . Due to the assumptions on L, we have that R is functional inducing
the function f and we obtain the required bijection. �

Object-continuity of the functions fR is not too much of a surprise in the light
of Lemma 4.1.3. The fact that this property suffices for the above result demon-
strates how specific functional dual bonds really are. In contrast, the properties
established in Lemma 4.1.3 are generally not sufficient for a relation to be a dual
bond.

Also note that the additional requirements for L, which guarantee that no two
functions induce the same dual bond, are again rather weak. Indeed, they are im-
plied by the common assumption that the contexts under consideration are clari-
fied.

We can now go further and characterize the antitone Galois connections that
are obtained from functional dual bonds.

Proposition 4.3.5 Consider a context K = (G, M, I) and a context L = (H,N, J)
for which the map h 7→ hJ is injective. The bijection between dual bonds and
antitone Galois connections given in Theorem 4.1.2 restricts to a bijective corre-
spondence between

• the set of all functional dual bonds from K to L and

• the set of all antitone Galois connections from Bo(K) to Bo(L) which map
object extents of K to object extents of L.

Proof. Consider a functional dual bond R from K to L and the antitone Galois
connection (~φR, ~φR) as constructed in Theorem 4.1.2. We claim that ~φR maps object
extents to object extents. Thus consider ~φR(gII) for some g ∈ G and let fR be the
function induced by R. The set R−1( fR(g)) contains g and is an extent since R is
a dual bond. Consequently gII ⊆ R−1( fR(g)). But this shows that fR(g) ∈ ~φR(gII)
since the latter is equal to

⋂

{R(x) | x ∈ gII}. Therefore we have fR(g)JJ ⊆ ~φR(gII).
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The opposite inclusion follows, since ~φR(gII) is an intersection of a collection of
sets which includes fR(g)JJ = R(g). Thus ~φR(gII) = fR(g)JJ , which is an object
extent of L as required.

Now let (~φ, ~φ) be a Galois connection such that ~φ maps object extents to ob-
ject extents. There is a unique function f : G → H for which ~φ(gII) = f (g)JJ

hold for arbitrary g ∈ G. Let R = R(~φ, ~φ) be the dual bond induced by (~φ, ~φ) as in
Theorem 4.1.2. But then R(g) = ~φ(gII) = f (g)JJ , for arbitrary g ∈ G, such that R
is indeed functional. �

In the light of the previous proposition we give a definition for the correspond-
ing property of Galois connections.

Definition 4.3.6 Consider contexts K = (G, M, I) and L = (H,N, J) and a (mono-
tone or antitone) Galois connection φ = (~φ, ~φ) between Bo(K) and Bo(L).

Then φ is functional (from K to L) if ~φ maps object extents to object extents
and, for any g ∈ G there is a unique object f~φ(g) such that

~φ(gII) = f~φ(g)JJ .

In this case, φ is said to induce the function f~φ : G → H.

Proposition 4.3.5 shows rather natural classes of dual bonds and Galois con-
nections, respectively. However, functional dual bonds do not generally arise as
extents of the direct product. Moreover, the corresponding class of extension-
ally object-continuous functions as described in Proposition 4.3.4 appears to be
unidentified. As Theorem 4.3.8 below shows, the more common class of exten-
sionally continuous functions still allows for a nice characterization in terms of
dual bonds. It will be helpful to first state the following lemma.

Lemma 4.3.7 Consider contexts K = (G, M, I) and L = (H,N, J). If R is a func-
tional dual bond from K to L then we find that for any extent O of Lc

R−1(O) = f −1
R (O).

Proof. Let O be an arbitrary extent of Lc. The inclusion R−1(O) ⊇ f −1
R (O) is obvi-

ous, since R contains the graph of fR.
For the converse note that R−1(O) is just the union of the sets R−1(h) for all

h ∈ O. As noted in the proof of Proposition 4.3.4, we have R−1(h) = f −1
R (hJrJr) for

arbitrary h ∈ H. But since O is an extent of Lc, f −1
R (hJrJr) ⊆ f −1

R (O) for all h ∈ O.
Hence we obtain R−1(O) ⊆ f −1

R (O) as required. �
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Theorem 4.3.8 Consider a context K = (G, M, I) and a context L = (H,N, J)
for which the map h 7→ hJ is injective. The bijection given in Proposition 4.3.4
restricts to a bijective correspondence between

• the set of all extensionally continuous functions from K to Lc and

• the set of all functional dual bonds from K to L that are continuous from K
to Lc.

Especially, every dual bond R f that is induced by a continuous function from K to
Lc is an extent of the direct product K × L.

Proof. Given a function f which is continuous from K to Lc, we must show that
the dual bond R f as specified in Proposition 4.3.4 is also continuous. From the
same proposition we know that f = fR f and so we can apply Lemma 4.3.7 to
show that R−1

f (O) = f −1(O) for any extent O of Lc. Continuity of R f then follows
from continuity of f .

Conversely, consider the function fR for any functional dual bond R that is
continuous in the above sense. Using Lemma 4.3.7 again, we find that R−1(O) =
f −1
R (O) for every extent O of Lc and hence obtain continuity of fR.

Finally, to show that R f is an extent of the direct product, one can apply The-
orem 4.2.2 and continuity of R f . �

Thus we find that the extensionally continuous functions, or scale measures,
are a rather specific kind of dual bond. Again we must be careful: It is certainly
not the case that all functional dual bonds which are extents in the direct product
are continuous. Just consider the context K = ({g}, {m}, {(g,m)}). The relation R =
{(g, g)} is an extent of the direct product K × K and it is functional with fR being
the identity. However, the preimage of the empty set (which is closed in Kc) is not
an extent of K.

As a dual bond, every continuous function naturally induces an antitone Galois
connection – Propositions 4.3.4 and 4.3.5 discussed the according constructions
for object-continuous functions. Due to their special structure, continuous func-
tions can additionally be used to derive another monotone Galois connection and
it should not come as a surprise that these entities determine each other uniquely
under some mild assumptions.

Theorem 4.3.9 Consider contextsK = (G, M, I) and L = (H,N, J), and a function
f : G → H which is continuous from K to Lc.

(i) An antitone Galois connection φ f : Bo(K)→ Bo(L) is given by the mappings

~φ f : Bo(K)→ Bo(L) : X 7→
⋂

{ f (x)JJ | x ∈ X} and

~φ f : Bo(L)→ Bo(K) : Y 7→
⋂

{ f −1(yJrJr) | y ∈ Y}.
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(ii) A monotone Galois connection ψ f : Bo(K) → Bo(Lc) is given by the map-
pings

~ψ f : Bo(K) → Bo(Lc) : X 7→ f (X)JrJr and

~ψ f : Bo(Lc)→ Bo(K) : Y 7→ f −1(Y).

Moreover, if L is such that h 7→ hJ is injective, the above mappings provide
bijective correspondences between

• the set of all extensionally continuous functions from K to Lc,

• the set of all antitone Galois connections Bo(K) to Bo(L) that are functional
(from K to L) and for which the induced function is continuous from K to
Lc,

• the set of all monotone Galois connections Bo(K) to Bo(Lc) that are func-
tional (from K to Lc).

Proof. We observe that ~φ f (X) = XR f and ~φ f (Y) = YR f such that (i) is an immedi-
ate consequence of Theorem 4.1.2 and Proposition 4.3.4. The according bijection
follows from Propositions 4.3.4 and 4.3.5.

For part (ii), we repeat the proof given in [GW99, Propositions 118 and 119].
Due to continuity ~ψ f = f −1 is a function between the specified object- concept
lattices. Like the preimage of any function, it preserves all intersections,which
are exactly the infima in the given lattices. Thus ~ψ f is the upper adjoint of some
monotone Galois connection. The lower adjoint of ~ψ f then is defined to be the
function

X 7→
⋂
{

Y JrJr | X ⊆ f −1(Y JrJr)
}

=
⋂
{

Y JrJr | f (X) ⊆ Y JrJr
}

= f (X)JrJr = ~ψ f (X).

Consequently ~ψ f is adjoint to ~ψ f as required.
To show that ~ψ f maps object extents of K to object extents of Lc consider

some arbitrary g ∈ G. f −1( f (g)JrJr) is an extent of K which contains g and hence
gII. Thus f (gII) ⊆ f (g)JrJr and therefore ~ψ f (gII) ⊆ f (g)JrJr. But since f (g) ∈ f (gII)
this shows ~ψ f (gII) = f (g)JrJr as required. Now it is easy to see that if h 7→ hJ is
injective, then so are h 7→ hJJ , h 7→ hJr, and h 7→ hJrJr. Injectivity of h 7→ hJrJr

entails that (~ψ f , ~ψ f ) is functional.
For the converse of the claimed bijection, consider any monotone Galois con-

nection (~ψ, ~ψ) : Bo(K) → Bo(Lc) which is functional in the above sense, and let f
be the induced function. Given some extent X of K we calculate

~ψ(X) = ~ψ
(

∨

{xII | x ∈ X}
)

=
∨

{~ψ(xII) | x ∈ X}

=
∨

{ f (x)JrJr | x ∈ X} =
(

⋃

{ f (x)JrJr | x ∈ X}
)JrJr
= f (X)JrJr,
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where we used that ~ψ preserves suprema and that f represents the value of ~ψ on
object extents. But this shows that ~ψ is indeed the mapping ~ψ f induced by f as
above.

As an extension to the proof from [GW99], we also show explicitly that the
function f is continuous fromK to Lc, which does not seem to be entirely obvious.
Thus consider some extent Y of Lc and observe that

~ψ
(

f −1(Y)II
)

= ~ψ
(

∨

{gII | g ∈ f −1(Y)}
)

=
∨

{~ψ(gII) | g ∈ f −1(Y)} =
∨

{ f (g)JrJr | g ∈ f −1(Y)},

which is clearly a subset of the extent Y . Now for every g′ ∈ f −1(Y)II , we find
f (g′) ∈ ~ψ( f −1(Y)II) and hence f (g′) ∈ Y as required. �

Part (ii) of the previous theorem and the according bijections are known (see
[GW99, Propositions 118 and 119]). Note that the two Galois connections from
the above result are not obtained from each other by some simple dualizing. This
is also evident when comparing the different side conditions in both cases: func-
tional monotone Galois connections always relate to continuous functions, while
continuity has to be required explicitly for functional antitone Galois connections.
To further explain the situation, we can dualize L to obtain the following result:

Corollary 4.3.10 Given contexts K = (G, M, I) and L = (H,N, J), there is a
bijection between

• the set of antitone Galois connections Bo(K) → Bo(L) which map object
extents to attribute extents and

• the set of functions f : G → N which are extensionally continuous from Kd

to L.

4.4 Infomorphisms
Infomorphisms are a special kind of morphism between formal contexts that have
been considered quite independently in rather different research disciplines. The
name “infomorphism” which we shall use in the following has been coined in
the context of information flow theory [BS97]. Literature on Chu spaces means
the same when speaking about “Chu mappings” and institution theory [GB92]
refers to the according definition as the “Satisfaction condition” without naming
the emerging morphisms at all. In FCA, the antitone version of these morphisms
was studied under the name (context-)Galois connection [Xia93, Gan04].

Probably the most decisive feature of informorphisms is self-duality, which
is an immediate consequence of their symmetric definition. Some of the relation-
ships of infomorphisms to Galois connections are known, but our results from the
above sections will allow to reveal a more complete picture.
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Definition 4.4.1 Given contexts K = (G, M, I) and L = (H,N, J), an infomor-
phism from K to L is a pair of mappings ~f : G → H and ~f : N → M such
that

g I ~f (n) if and only if ~f (g) J n

holds for arbitrary g ∈ G, n ∈ N.

We first establish the following basic facts.

Lemma 4.4.2 Consider contexts K = (G, M, I) and L = (H,N, J). The infomor-
phisms from K to L are exactly the infomorphisms from Kc to Lc.

Given such an infomorphism ( ~f , ~f ) and sets O ⊆ G, A ⊆ N, we find that

~f −1(AJ) = ~f (A)I , ~f −1(AJr) = ~f (A)Ir, ~f −1(OI) = ~f (O)J and ~f −1(OIr) = ~f (O)Jr.

Especially, ~f is extensionally continuous from K(c) to L(c) and ~f is intensionally
continuous from L(c) to K(c).

Proof. The first statement is immediate from the definition of infomorphisms.
Now for some n ∈ N we find that g ∈ ~f −1(nJ) iff ~f (g) J n iff g I ~f (n) iff g ∈ ~f (n)I .
This shows that ~f −1(nJ) = ~f (n)I. Now for arbitrary sets A ⊆ N, AJ =

⋂

n∈A nJ and
we can calculate

~f −1(AJ) = ~f −1
(

⋂

n∈A nJ
)

=
⋂

n∈A
~f −1(nJ)

=
⋂

n∈A
~f (n)I =

(

⋃

n∈A
~f (n)
)I
= ~f (A)I

The other cases follow by dualization and/or complementation of this reasoning.
�

Using these continuity properties, we can already specify a number of possible
Galois connections that could be constructed from an infomorphism. We remark
that continuity between two contexts is in general not equivalent to continuity
between the respective complements, so that infomorphisms really induce some
Galois connections that are not available in the case of continuous functions.

From Theorem 4.3.8, we know that we can obtain continuous dual bonds from
both ~f and ~f . Since these relations are extents and intents, respectively, in the
direct product, one may ask whether they belong to the same concepts or not. The
following proposition shows the expected result.

Proposition 4.4.3 Consider contexts K = (G, M, I) and L = (H,N, J). Let ( ~f , ~f )
be an infomorphism from K to L and define relations R ⊆ G × H and S ⊆ M × N
by setting

R(g) = ~f (g)JJ and S −1(n) = ~f (n)IrIr.
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Then R is a dual bond from Kc to L which is an extent of Kc × L and we have
R∇ = S .

Furthermore, R is extensionally continuous from Kc to Lc and S −1 is inten-
sionally continuous from Lc to K.

Proof. Since ~f is continuous from Kc to Lc (Lemma 4.4.2), the fact that R is an
extent ofKc×L and continuous in the required sense follows from Theorem 4.3.8.
S −1 is obtained accordingly from ~f and thus is a dual bond from Ld to Kcd which
is continuous as required.

As already observed in the proof of Proposition 4.3.4, the definition of S −1

yields that S (m) = ~f −1(mII) for arbitrary m ∈ M. Thus S (m) =
⋃

g∈mI ~f −1(gI)
which is equal to

⋃

g∈mI ~f (g)J by Lemma 4.4.2. Due to S −1 being a dual bond from

Ld toKcd, S (m) is an intent of L. Hence the above union is equal to
(

⋃

g∈mI ~f (g)JJ
)J

which is just R(mI)J . By Lemma 4.1.7, R(mI)J = R∇(m) such that we find S (m) =
R∇(m) and thus S = R∇. �

Observe that the above construction of R (and S ) relies only on the continuity
of ~f from Kc to Lc (and the according continuity of ~f ). One can also construct
a dual bond based on the continuity properties of these functions between the
non-complemented contexts. However, Proposition 4.4.3 does not imply any rela-
tionship between these two dual bonds beyond the obvious fact that they induce
the same infomorphism.

We already know that the dual bonds that are induced by (one part of) an
infomorphism have rather specific properties. The next result shows that these
features are sufficient for characterizing the respective dual bonds.

Proposition 4.4.4 Consider contexts K = (G, M, I) and L = (H,N, J) and let R
be a dual bond from Kc to L such that both R and R∇−1 are functional. If R is
extensionally continuous then the functions induced by R and R∇−1 constitute an
infomorphism from K to L.

Proof. Denote the functions induced by R and R∇−1 by ~f and ~f , respectively, and
consider some n ∈ N. We calculate

~f (n)Ir = R∇−1(n)Ir = R−1(nJr)IrIr = R−1(nJr),

where the first and second equalities are consequences of Proposition 4.4.3 and
Lemma 4.1.7, respectively, and the last equality uses continuity of R. Clearly
~f −1(nJr) ⊆ R−1(nJr). For the other direction, assume that g ∈ R−1(nJr). Then there is
some h Jr n with g R h, i.e. h ∈ ~f (g)JJ . But then hJ ⊇ ~f (g)J and therefore ~f (g) Jr n.
This shows g ∈ ~f −1(nJr) such that the latter is equal to R−1(nJr). In summary, we
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thus obtain ~f (n)Ir = ~f −1(nJr) which is equivalent to the statement

g Ir ~f (n) iff ~f (g) Jr n,

which states that ( ~f , ~f ) is an infomorphism as claimed. �

Note that, according to Lemma 4.3.2, extensional continuity of a functional
dual bond R is equivalent to extensional attribute-continuity. This in turn implies
intensional object-closure of R∇ (Theorem 4.2.2) which, since R∇−1 is also func-
tional, implies closure of R∇. Thus our assumptions are perfectly symmetrical.
Furthermore, Propositions 4.4.3 and 4.4.4 induce a bijection between infomor-
phism and the described class of dual bonds.

Now that we understand how infomorphisms are characterized in terms of dual
bonds, we can specify their relationship to Galois connections.

Theorem 4.4.5 Consider contexts K = (G, M, I) and L = (H,N, J), and an info-
morphism f = ( ~f , ~f ) from K to L.

• An antitone Galois connection φf : Bo(K) → Bo(Lc) is given by the map-
pings

~φf : Bo(K)→ Bo(Lc) : X 7→
⋂

{ ~f (x)JrJr | x ∈ X} =
⋂

{ ~f −1(xIr)Jr | x ∈ X} and

~φf : Bo(Lc)→ Bo(K) : Y 7→
⋂

{ ~f −1(yJJ ) | y ∈ Y} =
⋂

{ ~f (yJ)I | y ∈ Y}.

Moreover, further three antitone Galois connections φc
f : Bo(Kc) → Bo(L),

φd
f : Bo(Kd) → Bo(Lcd) and φcd

f : Bo(Kcd) → Bo(Ld) are defined similarly,

using the complemented incidence relations ( c) and exchanging ~f and ~f
( d), respectively.

• A monotone Galois connection ψf : Bo(K) → Bo(L) is given by the map-
pings

~ψf : Bo(K)→ Bo(L) : X 7→ ~f (X)JJ = ~f −1(XI)J and

~ψf : Bo(L)→ Bo(K) : Y 7→ ~f −1(Y) = ~f (Y J)I.

Another monotone Galois connection ψc
f : Bo(Kc) → Bo(Lc) is defined

similarly, but with all incidence relations complemented.

Proof. The fact that the above mappings consitute Galois connections between
the given concept lattices is an immediate consequence from Theorem 4.3.9 to-
gether with the continuity properties of infomorphisms as established in Proposi-
tion 4.4.3.

We have to show that the claimed equalities hold. For φf the equalities are
obtained by applying Lemma 4.4.2 to the sets of objects {x} (x ∈ X) and yJ (y ∈ Y),
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respectively. Likewise, the equalities within the definition of ψf follow by using
Lemma 4.4.2 on X and Y J. �

We remark that Proposition 4.4.3 shows that the antitone Galois connections
φd

f and φcd
f can be constructed as in Corollary 4.1.9 from the two dual bonds in-

duced by the function ~f . Especially, Corollary 4.1.9 does not yield any further
Galois connections.

4.5 A concept lattice of morphisms
The above considerations show that scale measures and infomorphisms can be
identified with special types of dual bonds, and thus that part of this work can also
be regarded as a study of various attributes of dual bonds and of the implications
between them. The resulting concept lattice of context-morphisms is represented
by the nested line diagram2 in Figure 4.2.

To see that the information represented in this concept lattice is indeed correct,
one can compute the induced set of implications between its attributes to obtain
the following collection of inference rules:

attr.-continuous K→ Lc ⇒ extent of K × L Theorem 4.1.8

continuous K→ Lc ⇒ attr.-continuous K→ Lc Definition 4.2.1

infomorphism K→ Lc ⇒ continuous K→ Lc, functional K→ L Proposition 4.4.4

functional K→ L, attr.-cont. K→ Lc ⇒ continuous K→ Lc Lemma 4.3.2

attr.-closed Kc → L ⇒ extent of K × L Theorem 4.1.8

closed Kc → L ⇒ attr.-closed Kc → L Definition 4.2.1

infomorphism L→ Kc ⇒ closed Kc → L, functional L→ K Proposition 4.4.4

functional L→ K, attr.-closed Kc → L ⇒ closed Kc → L Lemma 4.3.2

As usual, collections of attributes on either side of the implications are compre-
hended as conjunctions. As the last column documents, each of these implications
has indeed already been established within this document.

Conversely, we claim that no further implications between conjunctions of
attributes hold for the considered properties. To substantiate this claim, we con-
ducted an attribute exploration (see [GW99, pp. 85]) for the attributes used in
Figure 4.2 – a task that was greatly simplified through the use of the free software

2The concept lattice represented by a nested line diagram consists of the boldfaced nodes,
where connections between boxes represent parallel connections between boldfaced nodes at cor-
responding positions wrt. the background structure. See [GW99, pp. 75].
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dual bond K→ Lextent of K × L
attr. closed Kc → L

closed Kc → L

attr. continuous K→ Lc

continuous K→ Lc

functional L→ Kscale
measure
L→ Kc

infomorphism
L→ Kc

functional K→ L scale
measure
K→ Lc

infomorphism
K→ Lc

R3
R4

R5 R2

R3−1
R4−1

R5−1R2−1

R1

Figure 4.2: The concept lattice of the discussed properties of dual bonds, displayed
as a nested line diagram. The included attributes are defined in Definition 4.1.1
(dual bond), 4.1.4 (K × L), 4.2.1 (continuity and closure), and 4.3.3 (functional-
ity). The attributes “scale measure” and “infomorphism” refer to the dual bonds
described in Theorem 4.3.8 and Proposition 4.4.4, respectively, and thus imply
functionality. The labels R1 to R5 and R2−1 to R5−1 denote the objects of the for-
mal context in Figure 4.3.

ConExp.3 After reducing the resulting collection of objects, we obtained the dual
bonds and formal context displayed in Figure 4.3. To check that each of the given
objects indeed has the specified attributes, first note that the attributes of R2−1 to
R5−1 are determined by the properties of their inverted variants. Thus it remains to
verify the attributes for R1 to R5. Considering the fact that the above implications
have already been shown, this task reduces to a small number of straightforward
computations, which we will not include here.

Finally, we want to remark that the conjunctive implications considered in
FCA cannot describe all possible relationships between the attributes of a context.
In particular, it could still occur that some properties are just disjunctions of others,
i.e. that some suprema in the concept lattice are computed as simple set-unions.
Counterexample 4.2.4 demonstrates the reasoning that is necessary to exclude
such cases explicitly. We refrain from giving similar counterexamples for each of
the 40 concepts in Figure 4.2, since it is rather evident that all of them are indeed

3Concept Explorer: http://sourceforge.net/projects/conexp
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R1 × ×

R2 × × × × × ×

R3 × × × × × × × ×

R4 × × × × × ×

R5 × × × × × × ×

R2−1 × × × × × ×

R3−1 × × × × × × × ×

R4−1 × × × × × ×

R5−1 × × × × × × ×

K1 1 2
a ×

b ×

c

K2 1 2 3 4
a × ×

b × ×

c × ×

K3 1 2 3 4 5
a × ×

b × ×

c × × ×

K4 1 2
a ×

b ×

K5 1 2 3 4
a × ×

b × ×

R1 : R from Counterexample 4.1.6
R2 : K4 → K1 R2 = {(a, a), (b, b)}
R3 : K5 → K4 R3 = {(a, a), (b, b)}
R4 : K3 → K2 R4 = {(a, a), (b, b), (c, c)}
R5 : K5 → K4 R5 = {(a, a), (b, a)}

Figure 4.3: A formal context for the concept lattice from Figure 4.2 and the defi-
nition of the dual bonds that consitute its set of objects.

object-concepts of appropriate dual bonds.

4.6 Conclusion and future work
In spite of the rather complete picture of the mutual relationships between dual
bonds, scale measures and infomorphisms obtained in our considerations, there
are many other aspects of the theory of morphisms in FCA which have not been
considered within this chapter, and which indicate possible directions for future
research. As mentioned in the introduction, the use of morphisms to model knowl-
edge transfer and information sharing may employ methods from category theory
[KHES04]. But not all of the above morphisms immediately yield categories of
contexts, especially since antitone Galois connections cannot be composed in an
obvious way. As a solution, one can dualize one context and consider bonds which
yield monotone Galois connections that can be composed easily [GW99]. But one
can also restrict to special classes of dual bonds: scale measures, infomorphisms,
and dual bonds that are both closed and continuous all allow for rather obvious
associative composition operations. In the following Chapter 5, we will further
investigate these morphisms in conjunction with formal contexts that represent
deductive systems of a logic.

Besides these (onto-)logical and categorical investigations, there are also fur-
ther questions related to lattice theory. We already gave characterizations for the
Galois connections that are induced by certain types of dual bonds, especially
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in the functional case (Proposition 4.3.5, Theorem 4.3.9, and Theorem 4.4.5). For
many other types of dual bonds corresponding descriptions are missing. Likewise,
although dual bonds are closed under intersections, no (non-canonical) context
that has all dual bonds as extents is known to us.

In FCA, the concept lattice of the direct product K × L is known as the tensor
product of the lattices Bo(K) and Bo(L). Theorem 4.2.5 showed that the study
of dual bonds can also yield additional results on the tensor product, but further
relationships between both subjects have not been investigated yet. As shown in
[Xia93, Satz 15], infomorphisms can be represented by a concept lattice as well,
but the role of this structure in the light of our present investigations still needs to
be explored.

Finally, there are many other results in [Xia93, GW99, Gan04] which we did
not discuss here. It would be a useful endeavor to compile the available knowledge
from these publications in a systematic way and to investigate what additional
insights are obtained in the sum.
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Chapter 5

Categories of Logics

In this chapter, we bring together the ideas of Chapter 3 and Chapter 4, start-
ing from the standard FCA based representation of deductive systems and using
Stone duality to connect it with topological spaces. This enables us to compare
morphisms from FCA, topology and algebra, and the resulting unified perspective
on morphisms allows us to state the central Theorems 5.3.1 and 5.4.2.

Our exposition builds on the algebraic view on logics that was articulated in
Chapter 3, especially in Section 3.5.1. In particular, we adhere to a purely semantic
perspective, which is based on the Lindenbaum algebras of a logic rather than on
syntactic descriptions of formulae. Not only will this strategy save the effort of in-
troducing syntax and proof theory of various logics, but it will also emphasize that
our investigations are exclusively on a semantic level. Due to this circumstance,
we can consider elements of a Lindenbaum algebra (i.e. formulae up to semantic
equivalence) instead of some syntactically defined set of logical formulae.

The logics that we consider are those of Section 3.5.1, i.e. conjunctive, pos-
itive, intuitionistic and classical logic, and their respective Lindenbaum algebras
(meet-semilattices with greatest element, bounded distributive lattices, Heyting
algebras and Boolean algebras). For our present purposes these logics often be-
have similarly, and we will use the terms “deductive system” and “Lindenbaum
algebra” without further qualification whenever a statement can be made for all of
these four logics.

The structure of this chapter is as follows. In Section 5.1, we introduce a repre-
sentation of deductive systems via FCA and apply methods from Stone duality to
relate it to topological spaces. Afterwards in Section 5.2, we study a new notion of
logical consequence relation that is used to define categories of logical contexts.
The central results of this chapter are given in Section 5.3 and Section 5.4, where
we connect consequence relations to continuous functions/scale measures and co-
herent maps/infomorphisms, respectively. Section 5.5 briefly discusses possible
future work.
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5.1 Logic and FCA
Though the representation of conjunctive propositional logic in Section 3.3 is new,
other means of presenting logics in FCA are well-known. Our goal in this section
is to identify an appropriate way of using FCA in the representation of Linden-
baum algebras. The approach discussed in Section 3.3 does not suit this task,
since it is based on rather specific relationships between semilattices and closures
(Corollary 3.1.5) that cannot readily be transfered to lattices. In addition, the non-
standard interpretation of formal contexts used in Chapter 3 would not allow us to
make use of results from Chapter 4.

Hence our method of representing logics with FCA must be different, but
nonetheless will turn out to be rather simple. Recall that the (deductive systems
of) propositional logics considered in Section 3.5.1 induce a bounded distributive
lattice as (the free extension of) their Lindenbaum algebra, and that a model is
a prime filter in this lattice. A model of an element of a lattice is a prime filter
containing this element.

The only case where Lindenbaum algebras are not lattices is CP logic, where
we obtain meet-semilattices with greatest element. The free bounded distributive
lattice L obtained from such a semilattice S is just the collection of all finite (pos-
sibly empty) unions of lower sets of the form ↓s, s ∈ S . This has some easy
consequences:

• There is a bijection between lower sets of S and ideals of L.

• There is a bijection between filters of S and prime filters of L.

• All filters of L are prime.

This leads us to the following notational convention:

Notation 5.1.1 Consider a meet-semilattice S with greatest element. An ideal of
S is a lower set of S . Flt(S ) denotes the set of all filters and Idl(S ) denotes the set
of all ideals (lower sets) of S . A model of (an element of) S is just a filter of S
(that contains the element). A prime filter of S is a filter of S .

This notation allows us to simplify the following presentation and to give a more
compact treatment of the different logics.

The next result defines a representation of deductive systems via formal con-
texts and details its relationship to the concepts of Stone duality.

Proposition 5.1.2 Let M be the Lindenbaum algebra of some deductive system
and let G be the set of its models. A formal context K = (G, M, I), defined by
setting g I m if and only if g is a model of m.
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(i) ω = Idl(M) is a spectral locale and the sub-poset of its points pt(ω) is iso-
morphic to G, ordered by inclusion.

(ii) Let Ω be the topological space on G that is generated by the basic open sets

Pa = {p ∈ G | a ∈ p} a ∈ M.

Then Ω is homeomorphic to the topological space on pt(ω) that is generated
by the basic open sets

Pa = {p ∈ pt(ω) | a < p} a ∈ M.

(iii) ω is isomorphic to the open set lattice of Ω.

(iv) The attribute concept lattice Ba(K) is isomorphic to Flt(M), the set of all
filters of M ordered by inclusion.

(v) The object concept lattice Bo(Kc) is isomorphic to the lattice of closed sub-
sets of Ω.

(vi) The attribute concept lattice Ba(Kc) is isomorphic to Idl(M), the set of all
ideals of M ordered by inclusion.

Proof. For the case of CP logic, (i) follows from Proposition 3.4.10 and
Lemma 3.4.14. For logics with disjunction, first note that Idl(M) is a spectral lo-
cale for any distributive lattice M as an immediate consequence of Theorem 3.1.3
and Definition 3.4.12. Furthermore, as a prime filter of M, any model determines
a unique prime ideal of L as its complement. The prime ideals are the prime ele-
ments of the ideal completion of L and thus generate lower sets which are principal
prime ideals. Since these relationships are bijections, we can indeed identify the
points of ω with the models of M.

for CP logic, (ii) has been shown in Corollary 3.4.15. Analogously, the re-
quired homeomorphism in the disjunctive case is established by observing that
the bijection of (i) restricts to a bijection of basic open sets. Indeed, an element
a ∈ M is not contained in a point p iff it is not contained in the principal of p
(which is a prime ideal of M) iff it is contained in the complement of this princi-
pal, which in turn is just the model that corresponds to p.

Item (iii) uses the fact that the open set lattice of the space of points from (ii)
is isomorphic to the original locale. This is a basic result of Stone duality, so we
will not give further details (see [Joh82] or [WP, Article “Stone duality”]).

For (iv), one again considers two cases: If M is a Lindenbaum algebra of CP
logic, one needs to establish a bijection between the intents of K and the filters of
the meet-semilattice M. This is immediate: any filter of M is itself a model with the
filter as its object intent, and the collection of filters is closed under intersections.

87



C  L

For the case of logics with disjunction, one only has to show that the filters
of M are exactly the intersections of prime filters of M, since the latter obviously
constitute the object intents of K. Clearly, any such intersection is indeed a filter.
The converse follows from the fact that, given a filter F of M and an element
a ∈ M \ F, there is a prime filter P of M with F ⊆ P and a < P. This is a direct
consequence of Axiom 2.1.9 applied on F and the ideal ↓a.

According to (ii), attribute concepts ofKc correspond to closed sets ofΩ, from
which (v) follows immediately.

Finally, by (v) and Theorem 2.3.4, Ba(Kc) is isomorphic to the open set lattice
of Ω. By (iii) this is isomorphic to ω, which in turn is isomorphic to the ideal
completion Idl(M) of M. This establishes (vi). �

Filters as in (iv) are also called theories of the logic, since they are deductively
closed sets of formulae.

Proposition 5.1.2 demonstrates that appropriate formal contexts can represent
deductive systems of propositional logics quite faithfully. This approach to regard
the semantical consequence relation between models (objects) and formulae (at-
tributes) as a formal context has also been considered in Institution Theory. There,
however, one introduces additional categorical machinery which goes beyond sin-
gular deductive systems. Our present interest also is in possible categories of de-
ductive systems, but nonetheless does not justify to introduce institution theory
in greater depth. In order to still be able to differentiate between the considered
logics, we introduce the following notation.

Definition 5.1.3 A conjunctive logical context is a context that represents a de-
ductive system of conjunctive logic as in Proposition 5.1.2. The class of all con-
junctive logical contexts is denoted C.

Similarly, the classes of positive, intuitionistic, and classical logical contexts
are denoted D, I, and N, respectively.

Observe that the above classes of logical contexts derive their name from the
characteristic logical connectives conjunction, disjunction, implication, and nega-
tion. In order to unify our treatment of these different logics, we introduce the
following important notational convention.

Notation 5.1.4 In the following, L denotes the class of all logical contexts for an
arbitrary but fixed logic, i.e. L is one of C, D, I, and N.

Given a logical context K ∈ L, LA(K) denotes the Lindenbaum algebra in-
duced by the deductive system, i.e. the set of attributes of K, ordered by subset
inclusion of the associated attribute extents. Furthermore, Ω(K) denotes the ac-
cording topological space Ω as defined in Proposition 5.1.2.
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Thus L is used whenever a statement can be made for arbitrary but fixed class
of logical contexts.

5.2 Consequence relations
In the light of Chapter 4, the representation of deductive systems via contexts
yields a broad range of possible morphisms between them. However, for our cur-
rent discussion we are particularly interested in those relationships between de-
ductive systems that have a clear logical interpretation. The present section will
thus turn to consequence relations as they typically arise in proof theory.

Definition 5.2.1 Given contexts K and L, a consequence relation from K to L is
a dual bond from Kcd to Ld.

A consequence relation is continuous (closed) whenever the associated dual
bond is extensionally continuous from Kcd to Lcd (extensionally closed from Kd

to Ld).

This definition deserves some explanation. The purpose of consequence re-
lations in the above sense is to provide a meaningful generalization of the syn-
tactical entailments that are typically considered in proof theory. Hence we are
dealing with dualized contexts to obtain relations between formulae instead of
models. Definition 3.4.1 gave a particularly simple case of such a relation in the
case of CP logic, which we introduced in terms of deduction rules as is common
in proof theory. Such rules usually describe deductions on both the left and the
right hand side of the turnstile `, but in many cases both sides are not mixed. In
the given example, rules (R) and (Cut) are the only cases where a formula appears
on both sides. However, since we are interested in relationships between different
deductive systems (with different underlying languages), reflexivity (R) of conse-
quence relations is not a meaningful property in our case. Likewise, it is known
from proof theory that it is often possible to find sound and complete rule systems
without (Cut).

The other rules can often be grouped into left and right rules, according to the
side on which they introduce additional conclusions. In the example of CP logic,
all rules other than (R) and (Cut) are right rules, which already suffices for the
primitive conjunctive structure of this logic. Now one finds that the purpose of
the left and right rules is to compute certain kinds of deductive closures on either
side of a formula. For an example we consider positive logic. From F ` G one
would certainly want to conclude F ` (G ∨ H). If, additionally, F ` H was given,
one could infer F ` (G ∧ H) as well. The closure just sketched can generally be
described as follows: If all models of the set of consequences ` (F) of a formula F
are also models of a formula H, then H is a consequence of F as well. Recognizing
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this as the deductive closure of a logical context, we derive the forward condition
of the aforementioned dual bond. In fact, we just gave a logical explanation why
theories are filters in the Lindenbaum algebra.

The reasoning for the other side is dual. If G ` F then we can also infer
(G∧H) ` F, whereas (G∨H) ` F only follows when H ` F is given as well. The
general relationship is as follows: If a formula G is false in all models that falsify
each of the premises `−1 (F) of F, then G ` F also holds true. This introduces the
complement of the satisfaction relation and yields the backwards condition of the
dual bonds in Definition 5.2.1.

In [JKM99], a similar setting is considered for the case of positive logic. There,
however, deductive systems are represented by means of syntactical consequence
relations instead of contexts, and relations between these systems are described in
a classical rule-based style. This formulation allows to drop reflexivity from de-
ductive systems, which in turn requires to restrict the morphisms between objects
to those for which such non-reflexive entailments act as an identity.1

Our notion of consequence relation requires closure only for the set of conse-
quences of a single formula. Expressions of the form “F1, F2 ` G1,G2” that are
typically found in proof theory at first sight do not seem to be covered by this
definition. However, it is readily seen that this is not a real restriction. Indeed,
one could use (possibly infinite) sequences of formulae as attributes of a context
and extend the model theory accordingly. Sequences on the left and on the right
of a consequence relation are typically interpreted as conjunctions and disjunc-
tions, respectively, and thus represent a form of syntactical extension of the logic
that we can easily take into account when constructing extended logical contexts.
Anyway, it is well-known that these modifications are merely of proof theoretical
convenience and do not affect the expressivity of the logic.

We are now interested in continuity and closure of consequence relations. Note
that these notions are defined with respect to different contexts (either comple-
mented or not). This choice of terminology will be justified in Section 5.3. The
following technical lemma gives a simple criterion for showing closure.

Lemma 5.2.2 Consider a consequence relation S between contextsK = (G, M, I)
and L = (H,N, J), and an intent A ∈ Ba(K) of K. The following are equivalent:

(i) S (A) is an intent of L.

(ii) For every b ∈ S (A)JJ , there is a set X ⊆ A such that b ∈ S (X)JJ and there is
a ∈ A with X ⊆ aII .

Proof. Clearly, if S (A) is an extent, then for every b ∈ S (A)JJ , there is an element
a ∈ A such that b ∈ S (a). Since a ∈ aII , this shows that (i) implies (ii).

1In general, this process amounts to splitting of idempotents of a category with the common
reflexive calculi as objects.
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For the converse, let a be as in (ii). By Lemma 2.3.5, a ∈ xIrIr for all x ∈ X.
Given x ∈ X, S −1(y) is an intent ofKc for all y ∈ S (x), such that we find a ∈ S −1(y)
for all y ∈ S (x), i.e. S (x) ⊆ S (a). This yields S (X) ⊆ S (a) which implies b ∈ S (a)
since the latter is an intent of L. �

Intuitively, the previous lemma states that closure of the image of a set A can be
reduced to the closures of the images of single elements a, which are guaranteed
by the definition of a consequence relation. The next theorem shows how to put
this insight into practice.

Theorem 5.2.3 Consider logical contexts K = (G, M, I), L = (H,N, J) ∈ L. Then
all consequence relations from K to L are closed and continuous.

Especially, the consequence relations between K and L are exactly the intents
of the direct product Kc × L.

Proof. Let S be a consequence relation from K to L. To show closure, consider an
intent A of K. In Proposition 5.1.2, we noticed that intents of the logical context
L correspond to filters of the associated Lindenbaum algebra LA(L). We conclude
that the closure ·JJ maps each subset of N to the least filter in which it is contained,
which corresponds to the upper closure of the closure under finite meets. Conse-
quently, given an element b ∈ S (A)JJ , there must be a finite set Y ⊆ S (A) such that
b ∈ Y JJ . Moreover, there is a finite set X ⊆ A with Y ⊆ S (X) and thus b ∈ S (X)JJ .
Each of the considered logics has finite conjunctions (meets in the Lindenbaum al-
gebra), such that there is a formula

∧

X which is in the extent-closure of X, hence
in A, and which has the property X = (

∧

X)II . Applying Lemma 5.2.2 finishes the
first part of the proof.

For continuity, note that S is continuous if and only if S −1 is a closed con-
sequence relation from Lc to Kc, which again allows for the application of
Lemma 5.2.2. Consider an intent B of Lc. Proposition 5.1.2 states that B is an
ideal of LA(L). As before, we consider some element a ∈ S −1(B)IrIr.

For the case that the considered logics have disjunction, there is again a finite
set Y ⊆ B such that a ∈ S −1(Y)IrIr. Thus the element

∨

Y allows for an application
of Lemma 5.2.2, establishing closure of S for logical contexts from D, I, and N.

For the case of conjunctive logics, S −1(B)IrIr is just the lower closure of S −1(B).
Thus there is some element x ∈ S −1(B) such that x ∈ ↑a. But now one can take the
singleton {x} in place of the above set X to apply Lemma 5.2.2.

Finally, by (the dual of) Theorem 4.2.2, one immediately finds that conse-
quence relations are intents of the given direct product. The converse follows by
Proposition 4.1.5. �

Note that most cases of the previous theorem were proven similarly for all
propositional logics we considered. Thus one could even extend the statement to
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arbitrary combinations of logical contexts for positive, intuitionistic or classical
logic. In contrast, continuity for conjunctive logic was shown in a different way,
and indeed consequence relations from some more expressive logic to conjunctive
logic are not continuous in general.

The collection of all consequence relations between two logical contexts is a
closure system that is described more precisely as the concept lattice of the direct
product of Theorem 5.2.3. Another computationally feasible description of the
associated closure operator is given in the form of rule-based calculi as known in
proof theory. Since we are tempted to view morphisms between deductive systems
as logical relationships between two specifications, this is a particularly pleas-
ing situation, since it allows for “programming of morphisms.” Indeed, whatever
amount of information about the interrelations between two deductive systems is
available, it always yields a canonical consequence relation which can be used for
deduction. This situation is not entirely unlike that of definite logic programming,
where users provide collections of valid inference rules, which are then used to au-
tomatically approximate a Scott continuous closure operator on a (uncountable)
algebraic lattice (see Chapter 3).

Another useful property – also from the practical perspective of specification
of and computation with morphisms – is the possibility of composing consequence
relations. Of course, our primary interest lies in the fact that this provides us with
categories for further investigations.

Corollary 5.2.4 The collection of all conjunctive logical contexts C together
with consequence relations constitutes a category CCxt. In a similar fashion, the
classes D, I, and N of all positive, intuitionistic, and classical logical contexts,
respectively, yield categories DCxt, ICxt, and NCxt.

Proof. Composition of morphisms is given by relational composition, which is
clearly associative. The fact the composition of consequence relations again yields
consequences follows from the continuity and closure properties established in
Theorem 5.2.3.

It is not too hard to see that identity morphisms are given as the least conse-
quence relations containing the identity relation on the set of formulae. These can
for example be obtained by applying the intent-closure of the direct product to the
relational identities. �

Observe that the previous result is certainly not valid for consequence relations
or dual bonds between arbitrary contexts.

To further enhance our understanding of the above categories, we want to de-
scribe their respective morphisms in order-theoretical terms. Since consequence
relations are dual bonds, one can immediately view them in terms of antitone
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Galois connections. However, given logical contexts K and L that induce Linden-
baum algebras LA(K) and LA(L), a consequence relation between the correspond-
ing logical contexts yields an antitone Galois connection from the lattice of ideals
of LA(K) to the lattice of filters of LA(L) (Proposition 5.1.2). But this is not a very
enlightening description of the above categories, since the composition of such
Galois connections is not at all obvious.

On the other hand, the composition of consequence relations via relational
product is compatible with mappings of the form X 7→ S (X) rather than with
the Galois connections X 7→ XS . Using Theorem 5.2.3, we obtain the following
alternative interpretation of consequence relations.

Proposition 5.2.5 Consider logical contexts K = (G, M, I), L = (H,N, J) ∈ L.
There is a bijection between

(i) the consequence relations from K to L, and

(ii) the pairs of maps φ : Flt(LA(K)) → Flt(LA(L)) and ψ : Idl(LA(L)) →
Idl(LA(K)) for which

Y ∩ ψ(X) = ∅ iff φ(Y) ∩ X = ∅.

Furthermore, the mapping ψ of (ii) preserves finite infima.

Proof. Given a consequence relation S from K to L, Theorem 5.2.3 yields map-
pings S : Flt(LA(K)) → Flt(LA(L)) and S −1 : Idl(LA(L)) → Idl(LA(K)), where
we use the bijections between concept lattices and sets of filters/ideals established
in Proposition 5.1.2. Now for arbitrary sets X ⊆ M, Y ⊆ N, one clearly finds
that X ∩ S −1(Y) = ∅ iff S (X) ∩ Y = ∅. Indeed, if there is x ∈ X ∩ S −1(Y) then
S (x) ∩ Y , ∅, and the other direction is symmetrical.

For the converse, consider mappings φ and ψ as in (ii). A relation S ⊆ M × N
is defined as S (a) B φ(↑a). Clearly, S (a) is a filter of LA(L) and thus, according
to Proposition 5.1.2, an intent of L. Conversely, given an element b ∈ N, one
calculates S −1(b) = {a ∈ M | φ(↑a)∩↓b , ∅} = {a ∈ M | ↑a∩ψ(↓b) , ∅} = ψ(↓b),
where the second equality uses the precondition on the relationship of φ and ψ.
Again, it is immediate that this is an ideal, and thus, again by Proposition 5.1.2, an
intent of Kc. Now it is easy to see that the given constructions yield the claimed
bijection.

Finally, for preservation of finite infima, note that infima of ideals are com-
puted as intersections, and consider a finite collection I of ideals. Clearly we
have S −1 (

⋂

I) ⊆
⋂

{S −1(X) | X ∈ I}. Thus suppose there is some element
a ∈

⋂

{S −1(X) | X ∈ I} with a < S −1 (
⋂

I). Then the filter S (a) contains an
element out of every ideal in I. But then the finite meet of these elements is in
S (a) and in

⋂

I and thus a ∈ S −1 (
⋂

I), showing the required contradiction. �
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We immediately recognize the above relationship of φ and ψ as a typical ad-
junction condition, similar to those encountered for Galois connections or info-
morphisms. Indeed, considering disjointness of filters and ideals as incidence rela-
tions of formal contexts, the pairs of maps (φ, ψ) are precisely the infomorphisms.
Many further characterizations can be obtained along the lines of Theorem 4.4.5,
but we will not go into the details.

5.3 Continuous functions
Choosing our terminology with care, continuity of consequence relations of
course is closely related to continuity between the induced Stone spaces. How-
ever, topological continuity applies to functions only, such that we need to restrict
to more specific consequence relations. Recall that in 5.1.4 we introduced Ω(K)
as the topological space associated with a logical context K.

Theorem 5.3.1 Consider logical contexts K = (G, M, I), L = (H,N, J) ∈ L. The
following collections of morphisms correspond bijectively:

(i) the topologically continuous functions from Ω(K) to Ω(L),

(ii) the extensionally continuous functions from Kc to Lc,

(iii) the functional dual bonds from Kc to L that are extensionally continuous
from Kc to Lc,

(iv) the consequence relations S from K to L, for which S (gI) has a least model
for any g ∈ G,

(v) the consequence relations S from K to L, for which S (gI) is a prime filter of
LA(L) for any g ∈ G,

(vi) the frame homomorphisms from Idl(LA(L)) to Idl(LA(K)).

Proof. For the bijection of (i) and (ii), note that the preimage of a function pre-
serves open sets iff it preserves closed sets, since preimages commute with com-
plementations of sets. Since the closed sets of the associated topologies are exactly
the extents of the complemented contexts (Proposition 5.1.2), this coincides with
extensional continuity and the required bijection is just the identity map.

The bijection between (ii) and (iii) has been shown in Theorem 4.3.8.
For the correspondence with (iv), recall that by Theorem 4.2.2 any dual bond

R as in (iii) is an extent of the direct product Kc × L. We claim that the required
bijection is a restriction of the bijection of extents and intents in the direct product.
Indeed, for a dual bond R as in (iii), R(g) = R∇(gI)J by Theorem 4.1.8, and, since
R is functional, there is a unique h ∈ H such that R(g) = hJJ . But then h clearly is
the least model of R∇(gI).
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For the converse, consider any consequence relation S as in (iv). By a similar
reasoning as before, if S (gI) has a least model h, then hJJ = S (gI)J = S ∇(g). Since
h must be unique, this shows that S ∇ is functional. Extensional attribute-continuity
of S ∇ follows by applying Theorem 4.2.2 on the dual bond S −1 from Ld to Kcd,
where the required extensional attribute-continuity of S −1 follows from Theo-
rem 5.2.3. Finally, using Lemma 4.3.7, we conclude that extensional attribute-
continuity of S ∇ is equivalent to extensional attribute-continuity of the induced
function f . Thus, as detailed in Lemma 4.3.2, f is extensionally continuous from
Kc to Lc, and by Theorem 4.3.8, S ∇ must be continuous in the same sense.

The bijection of (iv) and (v) is again the identity mapping. For CP logic this
is trivial: every filter is prime and every filter is an object intent (the least model
of which is the filter itself). Additionally, for the case of logics with disjunction,
if S (gI) is a prime filter, then this prime filter is clearly the least model of S (gI).
Conversely, recall that, in the proof of Proposition 5.1.2, we already found that –
using Axiom 2.1.9 – every filter is an intersection of prime filters. But if the filter
S (gI) has a least model h, then the intersection of all models of S (gI) is h, i.e.
S (gI) = h is prime.

Finally, let S be a consequence relation as in (v). We claim that the mapping
S −1 : Idl(LA(L))→ Idl(LA(K)) from Proposition 5.2.5 is a frame homomorphism.
In this proposition we already showed that S −1 preserves finite infima.

For preservation of suprema, consider an arbitrary collection I of ideals. The
case of CP logic again is trivial, since suprema of lower sets are just unions,
which are certainly preserved by S −1. Thus assume that the given logics support
disjunction. Certainly,

∨

{S −1(X) | X ∈ I} ⊆ S −1 (
∨

I). For the converse, suppose
there is some element a ∈ S −1 (

∨

I) such that a <
∨

{S −1(X) | X ∈ I}. Using
Axiom 2.1.9, one finds a prime filter g such that ↑a ∈ g and

∨

{S −1(X) | X ∈
I} ∩ g = ∅. By our preconditions on S , S (g) is a prime filter that contains S (a);
thus there is b ∈ S (g) with b ∈

∨

I, a S b, and b <
⋃

I. It is easy to see that
∨

I

is the collection of all finite joins of elements from
⋃

I, such that b =
∨

B for
some finite set B ⊆

⋃

I. But then, since S (g) is prime, B ∩ S (g) , ∅ and thus g
and
∨

{S −1(X) | X ∈ I} cannot be disjoint, which yields the required contradiction
and shows that S −1 is indeed a frame homomorphism.

For the other direction, consider some frame homomorphismψ : Idl(LA(L))→
Idl(LA(K)). A consequence relation S from K to L is defined as in Proposi-
tion 5.2.5 by setting S −1(b) = ψ(↓b). Once more we can restrict attention to
logics with disjunction, since all consequence relations of CP logics have the
required property. Now for any g ∈ G, S (gI) is a filter of LA(L). To show that
it is prime, assume that there is some join (b ∨ b′) ∈ S (gI). Then (b ∨ b′) is
the principal of the supremum of ↓b and ↓b′, and, since ψ preserves suprema,
S −1(b ∨ b′) = ψ(↓(b ∨ b′)) = ψ(↓b) ∨ ψ(↓b′) = S −1(b) ∨ S −1(b′). Thus there is a
finite join of elements from S −1(b) and S −1(b′) which is contained in gI, since gI
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meets S −1(b ∨ b′). But then, due to gI being a prime filter, some element of this
finite join is in gI as well, and thus either b or b′ is in S (gI). This finishes the proof.
�

We remark that, frame homomorphisms being lower adjoints of monotone Ga-
lois connections, the morphism of (vi) can also be related directly to continuous
functions by applying Theorem 4.3.8. An advantage of the above proof is that it
shows preservation of suprema in a self-contained way that emphasizes the spe-
cific logical setting. Yet it is interesting to note that Theorem 4.3.8 actually is a
generalization of constructions that are at the basis of Stone duality. The spirit
of these observations relates to [Ern04], although the details of this relationship
remain to be investigated.

The previous proof also once more exposed the extreme simplicity of CP
logic. Especially, part of the above conditions on consequence relations are triv-
ially satisfied for these logics. As an easy corollary, we derive the expected equiva-
lence of CCxt, and the categories Alg, Cxt, and especially ΣAlg, which we studied
in Chapter 3.

Corollary 5.3.2 The category CCxt of conjunctive logical contexts and conse-
quence relations is equivalent to the category ΣAlg of Scott topologies on algebraic
lattices and continuous functions.

Proof. We sketch the proof by specifying the required correspondences on ob-
jects and morphisms. Mappings between objects have been provided in Propo-
sition 5.1.2 and Corollary 3.4.15. Explicitly, every context K ∈ C is mapped to
the topological space Ω(K), which, by Corollary 3.4.15 is a Scott topology on an
algebraic lattice. Conversely, any such Scott topology is assigned to the logical
context which is obtained by considering the lattice of its ∪-prime compact opens
as a Lindenbaum algebra.

Theorem 5.3.1 provides the required bijections continuous functions and con-
sequence relations. Indeed, every consequence relation between conjunctive log-
ical contexts is easily seen to have the property of (iv), since every theory of CP
logic has a least model. �

Using Theorem 3.3.9, one infers that the category CCxt is cartesian closed.
However, the proof of the previous proposition relies on very specific properties
of conjunctive logic, namely on the fact that every theory admits a least model.
For more expressive logics, one can readily find examples for consequence rela-
tions that do not meet the requirements of Theorem 5.3.1. In consequence, the
categories DCxt, ICxt, and NCxt are indeed different from their well-known cat-
egories of topological spaces and continuous functions.
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Using Theorem 5.2.3, one also recognizes the direct product construction as a
way to construct function spaces for CCxt which is different from our efforts in
Section 3.3. On the other hand, the representations of algebraic lattices through
the categories CCxt and Cxt differ in a fundamental way, so we do not obtain an
alternative for the function space construction of Cxt (Proposition 3.3.6).

5.4 Infomorphisms and coherent maps
In Institution Theory, infomorphisms are commonly considered as morphisms be-
tween logical contexts. In Chapter 4, these were already characterized as a spe-
cial case of extensionally continuous map. In the light of the previous section,
one should thus ask how infomorphism are described in terms of consequence
relations and topologically continuous functions. On the topological side, we en-
counter the following type of functions.

Definition 5.4.1 A function f : X → Y between topological spaces X and Y is
coherent whenever f is continuous and f −1 preserves compact open sets.

Since preimages of functions commute with set complements, it is clear the
coherent maps can as well be characterized as the maps that preserve co-compact
(compact in the dual order) closed sets.

Now we can state the main result of this section.

Theorem 5.4.2 Consider logical contexts K = (G, M, I), L = (H,N, J) ∈ L. The
following collections of morphisms correspond bijectively:

(i) the infomorphisms from K to L,

(ii) the consequence relations S from K to L, for which S (gI) has a least model
for any g ∈ G, and for which S −1(b) is a principal ideal for any b ∈ N,

(iii) frame homomorphisms Idl(LA(L)) → Idl(LA(K)) that map principal ideals
to principal ideals,

(iv) the functions f : LA(L)→ LA(K) which are

(a) homomorphisms of meet-semilattices with greatest element if L = C,

(b) homomorphisms of bounded distributive lattices if L = D or L = D,

(c) homomorphisms of Boolean algebras if L = N.

Furthermore, if L , C, then there is a bijection between the above classes of
morphisms and

(v) the coherent maps from Ω(K) to Ω(L).

97



C  L

Proof. Given an infomorphism ( ~f , ~f ) from K to L, it was shown in Proposi-
tion 4.4.3 that the relation S ⊆ M × N, defined by setting S −1(n) = ~f (n)IrIr, is
an intent of the direct product Kc × L, and thus a consequence relation from K to
L (Theorem 5.2.3). Proposition 4.4.3 also states that S ∇ is a functional dual bond
from Kc to L which is extensionally continuous from Kc to Lc. By Theorem 5.3.1
this yields the required least models for S . To show that S −1(b) is a principal
ideal, just note that this is equal to S −1 being functional, which is immediate from
its definition and the fact that no two attributes in a logical context generate the
same intent.

For the converse, consider a consequence relation S as in (ii). By Theo-
rem 5.3.1, S ∇ is functional from Kc to L and extensionally continuous from Kc

to Lc. Likewise, the requirement for preservation of principal ideal yields func-
tionality of S −1. By Proposition 4.4.4, the induced functions thus constitute an
infomorphism from K to L, which establishes the bijection between (i) and (ii).

For the bijection of (ii) and (iii), observe that the frame homomorphism S −1

constructed in Theorem 5.3.1, inherits the property of preserving principal ide-
als from S −1. Similar remarks hold for the inverse construction of consequence
relations from frame homomorphisms given in Theorem 5.3.1.

The bijection with (iv) requires a case distinction, since the structure of the
Lindenbaum algebras depends on the chosen logics. Nonetheless, the construc-
tions are similar in all cases: given a frame homomorphism ψ as in (iii), a function
f as in (iv) is obtained as the restriction of ψ to principal ideals. Since binary
meets in LA(L) correspond to binary meets of the according principal ideals, f
preserves binary meets. Since preservation of the greatest element is also obvious,
this shows (a). If LA(L) is a lattice, analogous reasoning shows preservation of
binary joins and the least element, thus establishing (b). For (c) one just has to
note the morphisms of bounded lattices between Boolean algebras are exactly the
Boolean morphisms, i.e. must preserve negation as well. Indeed, given b ∈ LA(L),
f (a)∧ f (¬a) = f (a∧¬a) = f (⊥) = ⊥ and f (a)∨ f (¬a) = f (a∨¬a) = f (>) = >,
which uniquely identifies f (¬a) as ¬ f (a).

Now for the converse, consider a homomorphism f : LA(L) → LA(K). Since
all elements of Idl(LA(L)) are unions of (principal ideals of) elements of LA(L),
and since frame homomorphisms preserve unions, f uniquely determines a frame
homomorphism, where preservation of meets follows from the properties of f . It
is obvious that this frame homomorphism meets the requirements of (iii).

Finally, if the considered logics have disjunctions, then the principal ideals (or
attribute intents of the complemented contexts) are exactly the compact ideals.
Consider a consequence S as above, the continuous function f induced by S ∇

as in Theorem 5.3.1, and a closed set C. Results from Stone duality assure that
f −1(C) = S −1(CJr)Ir. Now co-compactness of closed sets C is equivalent to the
compactness of the associated ideal C Jr, and so it is clear that compact-preserving
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frame homomorphisms as in (iii) correspond to coherent maps as in (v), and vice
versa. �

While this result gives a unified view on the morphisms of topology, institu-
tion theory, FCA, and universal algebra, various places expose slight mismatches.
First of all, coherent maps do not agree with infomorphisms and homomorphisms
of the Lindenbaum algebra in all cases. This is largely due to the fact that info-
morphisms are based on the chosen set of attributes, which can be any meet-dense
set of the represented locale, while coherent maps refer to the compact elements.
In this light, the above results appear to be rather coincidental, since one can gen-
erally choose meet-dense subsets quite arbitrarily. In fact, there are algebraic lat-
tices, with meet-dense subsets that are entirely disjoint from their set of compact
elements. From the logical perspective, choosing the compact elements or a dense
subset thereof is certainly to be preferred, such that the (partial) coincidence of
coherent maps and infomorphisms seems to be rather typical.

A second mismatch relates to the algebraic side. While infomorphisms gener-
ally present homomorphisms of the Lindenbaum algebra, the result for I in case
(b) is not completely satisfactory: homomorphisms of Heyting algebras are as-
sumed to preserve implication, but homomorphisms of bounded lattices may fail
to have this property.

5.5 Future work
This chapter explained the relationships between various kinds of morphisms
that suggest themselves for modelling interrelations between logics. The most
general proof theoretic view using consequence relations was specialized to
scale measures/topological continuous functions and infomorphisms/coherent
maps/Lindenbaum algebra homomorphisms. Together with the considered classes
of logics, this gives rise to a stock of categories, most of which can be motivated
and explained from a logical perspective.

Nonetheless, it is not known which of the newly introduced categories feature
additional desirable properties, such as completeness, co-completeness, or carte-
sian closedness. Since these properties are vital for applications that utilize such
categorical constructions, their investigation is a reasonable goal for future work.

In this respect, the categories studied herein rather are to be considered as
examples for possible categories of logics. Concrete applications are more likely
to begin with particular requirements, especially with a clear restriction on the
semantic structures that provide the objects for a category. Likewise, the require-
ment of specific categorical properties may lead to restrictions on morphisms that
have not been considered here. For example, the least Boolean algebra 2 = {>,⊥}
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does not qualify as a terminal object in a category of consequence relations. In-
stead, one may want to disallow those relations that relate satisfiable formulae
with ⊥, thus assuring the uniqueness of any morphism to 2. We think that the
achieved representations provide a high degree of flexibility for similar restric-
tions. Furthermore, one can readily specialize the bijections of Theorem 5.3.1 and
Theorem 5.4.2 to obtain a more comprehensive understanding of the semantics of
such modifications.
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List of Symbols

Given references consist of a section and page number for the corresponding defi-
nitions. Categories are typeset in bold face, (object parts of) functors in sans-serif
font.

Symbol Meaning See
⊥, > least, greatest element of a given poset 2.1, 14
↓X, ↑X Lower, upper closure of X 2.1, 15
∧

X,
∨

X Meet, join of set X 2.1, 14
2X Power set lattice of X 2.1, 15
Alg Algebraic lattices and Scott continuous functions 3, 35
Alg(K) Algebraic lattice of approximable concepts of K 3.3, 43
Bo(K), Ba(K) Object and attribute concept-lattice of a context K 2.3, 23
Cop Opposite of category C 2.5, 31
CCxt Conjunctive logical contexts and consequence relations 5.2, 92
Cxt Formal contexts and approximable mappings 3.3, 43
CP Deductive systems of CP logic and approximable map-

pings
3.4.1, 51

DCxt Positive logical contexts and consequence relations 5.2, 92
F ` G Proof theoretic consequence between formulae 3.4.1, 49
F ≈ G Proof theoretic equivalence of F and G 3.4.1, 49
Fin(X) Poset of finite subsets of X, Fin(X) = K(2X) 2.1, 15
Flt(P) Set of filters of P 3.4.3, 57
Ir, Jr Complements of the relations I, J 2.3, 24
ICxt Intuitionistic logical contexts and consequence rela-

tions
5.2, 92

idA Identity morphism of identity functor on A 2.5, 30
Idl(P) Ideal completion (set of ideals) of P 3.1, 36
Kc Complementary context to K 2.3, 24
Kd Dual context to K 2.3, 24
[K{ L] Function space in Cxt 3.3, 47
K + L Direct sum of the contexts K and L, product in Cxt 3.3, 45
K Z L Alternative product of K and L in Cxt 3.3, 45
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K × L Direct product of contexts K and L 4.1, 66
K(P) Compact elements of a dcpo P 2.4.1, 25
LA(K) Lindenbaum algebra of the logical context K 5.1, 88
LA(S (A), `) Lindenbaum algebra of a deductive system of CP logic 3.4.1, 50
NCxt Classical logical contexts and consequence relations 5.2, 92
Ω(K) Associated topological space of the logical context K 5.1, 88
ω(X) Open set lattice of topological space X 2.4.2, 27
Pop Dual order of P 2.1, 14
pt(ω) Points of the locale ω 3.4.3, 57
R∇ Intent/extent of R wrt. some direct product of contexts 4.1, 66
R(−1)(X) (Pre)image of X under R 2.3, 22
Sem∧ Meet-semilattices with greatest element and approx-

imable mappings
3.4.1, 51

Sem∨ Join-semilattices with least element and approximable
mappings

3.2, 40

Sem(K) Join-semilattice of finitely generated intents of K 3.3, 42
ΣAlg Scott topologies on algebraic lattices and continuous

functions
3.4.2, 55

Σ(P) Topological space of the Scott topology on P 2.4.2, 28
σAlg Locales isomorphic to σ(A) for some algebaic lattice A

and frame homomorphisms
3.4.2, 58

σ(P) Lattice of Scott open sets of P 2.4.2, 28
SIS Scott information systems (with trivial consistency

predicate) and approximable mappings
3.4.1, 53

X ] Y disjoint union of X and Y 3.3, 44
XI , XJ Intent or extent of X 2.3, 22
x ∧ y, x ∨ y Meet, join of elements x and y 2.1, 14
x � y Way-below relation: x is way-below y 2.4.1, 25
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Alexandrov topology, 27
algebraic lattice, 26
antitone, 17

— Galois connection, 18
approximable concept, 43
approximable mapping, 39

Boolean algebra, 19

cartesian closed category, 34
categorical product, 33

finite, 34
— in the category Cxt, 44

category, 30
class, 30
closed (FCA), 68

function, 71
relation, 68

closed set, 27
closure operator, 20
closure system, 21
coherent

algebraic cpo, 51
coherent function, 97
coherent space, 29
compact element, 25

compact open set, 29
complete lattice, 14
composition, 30
concept lattice, 23
conjunction, 49
consequence relation, 89

continuous/closed, 89
— of CP logic, 49

context, see formal context
continuity

continuous function (FCA), 71
continuous function (topology), 27
continuous relation (FCA), 68

continuous dcpo, 26
coverage technique, 60
CP logic, 49
cpo, 25

algebraic, 51
coherent algebraic, 51

dcpo, 25
coherent algebraic, 63

deductive system
— of CP logic, 49

definite logic program, 54
direct product of contexts, 66
direct sum of contexts, 45
directed set, 15
dual bond, 64

functional, 72
dual category, 31
dual order, 14
dually isomorphic, 21

equivalence of categories, 32
exponential, 34
extent, 23

attribute extent, 23
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object extent, 23

filter, 16
completely prime, 16
prime, 16

— of a meet-semilattice, 86
principal, 16

filtered set, 16
formal context, 23

complementary context, 24
dual context, 24
logical —, 88

frame, 57
frame homomorphisms, 58
function space, 34

— in the category Cxt, 47
functor, 31

forgetful functor, 32
identity functor, 32

Galois connection, 18
functional, 74

Heyting algebra, 19
complete, 57

homeomorphism, 27
homomorphism

— of bounded lattices, 18
— of frames (locales), 58

homset, 30

ideal, 15
completely prime, 16
— of a meet-semilattice, 86
prime, 16
principal, 15

ideal completion, 36
incidence relation, 23
inconsistency, 62
infimum, 14
infimum-dense, 15
infomorphism, 78

information domain, 62
integrity constraint, 62
intent, 23

attribute intent, 23
object intent, 23

isomorphism, 31
isomorphism of categories, 32

join, 14
join-dense, 15
join-irreducible, 16
join-prime, 16
join-semilattice, 14

kernel operator, 20

L-domain, 63
lattice, 14

bounded, 14
complete, 14
distributive, 14
free bounded distributive, 61

Lindenbaum algebra, 50
locale, 57

points of a locale, 57
spacial, 57
spectral, 57

logic
classical —, 62
conjunctive propositional —, 49
intuitionistic —, 62
logic RZ, 52
positive —, 62

logical context, 88
lower adjoint, 18
lower closure, 15
lower set, 15

meet, 14
meet-dense, 15
meet-irreducible, 16
meet-prime, 16
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meet-semilattice, 14
model, 60

— of a Lindenbaum algebra, 86
— of a meet-semilattice, 86
— of CP logic, 54

monotone, 17
— Galois connection, 18

morphism, 30
multilingual sequent calculus, 53

natural transformation, 32
neighborhood system, 60
nested line diagram, 81

open set, 27
opposite category, 31
order consistent, 29
order of approximation, 25
order-preserving, see monotone
order-reflecting, 17
order-reversing, see antitone

partial order, 14
— as a category, 31
complete, 25
directed complete, 25

point of a locale, 57
pointwise order, 17
poset, see partial order
powerset lattice, 15
preservation

— of order, 17
— of suprema/infima, 17

Prime Ideal Theorem, 16
product category, 31
product in a category, see categorical

product
product order, 14
projection, 33

Replacement Theorem, 50

scale measure, 71

Scott continuous function, 17
Scott information system, 52

element, 54
— with consistency predicate, 62

Scott open set, 28
Scott topology, 28
semilattice, 14
SFP-domain, 63
Sierpiński space, 27
Smyth powerdomain, 52
spacial, 57
specialization order, 29
spectral, 57
step function, 46
strict order, 25
supremum, 14
supremum-dense, 15

tensor product, 84
terminal object, 33

— in the category Cxt, 44
theory (logic), 88
topological space, 27
topology, 27

universe, 30
upper adjoint, 18
upper closure, 15
upper set, 15

way-below-relation, 25
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