TECHNISCHE
@ UNIVERSITAT
DRESDEN

DATABASE THEORY

Lecture 14: Datalog Implementation

David Carral

Knowledge-Based Systems

TU Dresden, May 26, 2020

https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2019)
https://iccl.inf.tu-dresden.de/web/David_Carral/en

Review: Datalog

A rule-based recursive query language

father(alice, bob)
mother(alice, carla)
Parent(x, y) « father(x, y)
Parent(x, y) « mother(x, y)
SameGeneration(x, x)
SameGeneration(x, y) « Parent(x, v) A Parent(y, w) A SameGeneration(v, w)

Datalog is more complex than FO query answering

Datalog is more expressive than FO query answering

Semipositive Datalog with a successor ordering captures P

Datalog containment is undecidable

Remaining question: How can Datalog query answering be implemented?

Markus Krétzsch, May 26, 2020 Database Theory slide 2 of 13

Implementing Datalog

FO queries (and thus also CQs and UCQs) are supported by almost all DBMS
~ many specific implementation and optimisation techniques

How can Datalog queries be answered in practice?
~» techniques for dealing with recursion in DBMS query answering

There are two major paradigms for answering recursive queries:
e Bottom-up: derive conclusions by applying rules to given facts
e Top-down: search for proofs to infer results given query

Markus Krétzsch, May 26, 2020 Database Theory

slide 3 of 13

Computing Datalog Query Answers Bottom-Up

We already saw a way to compute Datalog answers bottom-up:
the step-wise computation of the consequence operator Tp

Bottom-up computation is known under many names:

e Forward-chaining since rules are “chained” from premise to conclusion
(common in logic programming)

e Materialisation since inferred facts are stored (“materialised”)
(common in databases)

e Saturation since the input database is “saturated” with inferences
(common in theorem proving)

e Deductive closure since we “close” the input under entailments
(common in formal logic)

Markus Krétzsch, May 26, 2020 Database Theory

slide 4 of 13

Naive Evaluation of Datalog Queries

A direct approach for computing 77

01
02
03
04
05
06
07
08
09
10

T5:=0
i:=0
repeat :
T =0
forH— B/ A...AB;€P:

for0e By A...AB«(T}):

i :=Ti' U (H6)
it=i+l
until 7' = 7}

return 7,

Markus Krétzsch, May 26, 2020

Notation for line 06/07:

® 3 substitution 0 is a
mapping from variables to
database elements

e for a formula F, we write FO
for the formula obtained by
replacing each free variable
xin F by 6(x)

e fora CQ Q and database 7,
we write 6 € Q(1) if 7 E Q6

Database Theory

slide 5 of 13

What's Wrong with Naive Evaluation?

An example Datalog program:

e(l,2) e(2,3) e@B3,4 e)5)
RD T(x,y) < elx,y)
(R2) T(x,2) « T,) AT(y,2)

How many body matches do we need to iterate over?
Th =0 initialisation
T}, ={T(,2),T(2,3),T(3,4),T4,5)} 4 matches for (R1)
Tf, = T},U{T(1,3),T(2,4),T(3,5)} 4 x(R1) +3 x(R2)
T3 =T:U{T(1,4),T(2,5),T(1,5) 4% (R1) + 8 X (R2)
TH=T=T% 4% (R1) + 10 X (R2)
In total, we considered 37 matches to derive 11 facts

Markus Krétzsch, May 26, 2020 Database Theory slide 6 of 13

Less Naive Evaluation Strategies

Does it really matter how often we consider a rule match?
After all, each fact is added only once ...

In practice, finding applicable rules takes significant time, even if the conclusion does not
need to be added — iteration takes time!
~> huge potential for optimisation

Observation:
we derive the same conclusions over and over again in each step

Idea: apply rules only to newly derived facts
~> semi-naive evaluation

Markus Krétzsch, May 26, 2020 Database Theory slide 7 of 13

Semi-Naive Evaluation

The computation yields sets Tp C T, C T C ... C Ty
e For an IDB predicate R, let R be the “predicate” that contains exactly the R-facts in T;;
e Fori<1,let AL be the collection of facts R" \ R

We can restrict rules to use only some computations.

Some options for the computation in step i + 1:

T(x,2) « T,y AT (,2) same as original rule
T(x,2) « Ab(x,y) A ALY, 2) restrict to new facts
T(x,2) « AiT(x, V) AT(y,2) partially restrict to new facts
T(x,2) « T(x, ») A A, 2) partially restrict to new facts

What to choose?

Markus Krétzsch, May 26, 2020 Database Theory slide 8 of 13

Semi-Naive Evaluation (2)
Inferences that involve new and old facts are necessary:

e(l,2) e(2,3) eB3,4) e,)5)
R T(x,y) < elx,y)
(R2) T(x,2) « TCx,) AT(y,2)

79 =0
={T(1,2),T(2,3),T(3,4),T(3,4), 74,5} T, =A;
={T(1,3),T(2,4), T3, 5)} T2 T, U A2
={T(1,4),T(2,5), T(1,5)} Ty =ThUA}

A# =0 T4 T3 TS

To derive T(1,4) in A3, we need to combine
T(1,3) € A2 with T(3,4) € A} or T(1,2) € A} with T(2,4) € A2
~ rule T(x,z) « Al oLy A A +(v,2) is not enough

Markus Krétzsch, May 26, 2020 Database Theory slide 9 of 13

Semi-Naive Evaluation (3)

Correct approach: consider only rule application that use at least one newly derived
IDB atom

For example program:

e(1,2) e(2,3) e(3,4) e4,5)
(R1) T(x,y) < e(x,y)
(R2.1) T(x,2) « Ar(x,) AT (3, 2)
(R22) T(62) & T'06y) A AT0,2)
There is still redundancy here: the matches for T(x, z) « Al(x,y) A A%(y, z) are covered
by both (R2.1) and (R2.2)
~> replace (R2.2) by the following rule:

(R22)) T(x,2) « T (x,y) A AL(y, 2)

EDB atoms do not change, so their A would be 0

~» ignore such rules after the first iteration
Markus Krétzsch, May 26, 2020 Database Theory slide 10 of 13

Semi-Naive Evaluation: Example

e(1,2) e2,3) e(3,4) e4,5)
(R1) T(x,y) < e(x,y)

(R2.1) T(x,2) « Ab(x,») ATy, 2)

(R2.2)) T(x,2) « T (x,y) A ALy, 2)

How many body matches do we need to iterate over?
h =0 initialisation
T}, ={T(,2),T(2,3),T(3,4),T4,5} 4x(R1)
T12> = T}) U{T(1,3),T(2,4),T@3,5)} 3% (R2.1)
T3 =T2U{T(1,4),T(2,5),T(1,5) 3% (R2.1),2 X (R2.2)
Th=T=T% 1% (R2.1),1 x (R2.2)
In total, we considered 14 matches to derive 11 facts

Markus Krétzsch, May 26, 2020 Database Theory slide 11 of 13

Semi-Naive Evaluation: Full Definition
In general, a rule of the form

HX) —eGDA...AeG)ALE) AL@) Ao Alu(Zn)
is transformed into m rules

H®) —ei(F) A ... AeG) A AL GDALE) AL A LG
H®) — et A ... AeaG) AT @D AAL@) A .. AL G

H®) —eiGDA .. A) AT @D AT @) AL AA] G

Advantages and disadvantages:
e Huge improvement over naive evaluation
e Some redundant computations remain (see example)

e Some overhead for implementation (store level of entailments)

Markus Krétzsch, May 26, 2020 Database Theory

slide 12 of 13

Summary and Outlook

Datalog queries can be evaluated bottom-up or top-down

Simplest practical bottom-up technique: semi-naive evaluation

Next question:
e Can we improve Datalog evaluation further?
e What about practical implementations?

Markus Krétzsch, May 26, 2020 Database Theory

slide 13 of 13

