
Multi-Context Stream Reasoning

KI 2020

Stefan Ellmauthaler Konstantin Schekotihin

ellmauthaler@informatik.uni-leipzig.de, konstantin.schekotihin@aau.at

Bamberg, Germany, September 21, 2020

Austrian Research Promotion Agency (FFG), 861263

German Research Foundation (DFG), BR - 1817/7 - 1/2, FOR 1513
German Research Foundation

Funded by



Multi-Context Stream Reasoning

Acknowledgement

We like to kindly thank the following colleagues for fruitful discussions and
contributions.

Harald Beck

Gerhard Brewka

Minh Dao-Tran

Carmine Dodaro

Thomas Eiter

Ricardo Gonçalves

Matthias Knorr

João Leite

Paul Ogris

Jörg Pührer

Patrik Schneider

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 1/125



Multi-Context Stream Reasoning

Agenda I

1. Multi-Context Systems
1.1 Introduction and Motivation
1.2 Represent Knowledge - An Abstract Logic
1.3 Integrate Knowledge and Synchronise Reasoning - Multi-Context Systems
1.4 Revising Knowledge - Managing Contexts
1.5 Inconsistency
1.6 Complexity and Expressiveness

2. Stream Reasoning
2.1 Introduction and Motivation
2.2 Background
2.3 Stream Processing
2.4 Databases
2.5 Complex Event Processing
2.6 Temporal Reasoning
2.7 Prolog
2.8 Datalog for Stream Reasoning
2.9 ASP-based Formalisms

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 2/125



Multi-Context Stream Reasoning

Agenda II

3. Multi-Context Stream Systems
3.1 reactive Multi-Context Systems
3.2 asynchronous Multi-Context Systems
3.3 Distributed MCS with LARS
3.4 streaming Multi-Context Systems

4. Conclusions
4.1 Summary
4.2 Open Issues

5. Further Resources

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 3/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.1 Introduction and Motivation

Outline

1. Multi-Context Systems
1.1 Introduction and Motivation
1.2 Represent Knowledge - An Abstract Logic
1.3 Integrate Knowledge and Synchronise Reasoning - Multi-Context Systems
1.4 Revising Knowledge - Managing Contexts
1.5 Inconsistency
1.6 Complexity and Expressiveness

2. Stream Reasoning

3. Multi-Context Stream Systems

4. Conclusions

5. Further Resources

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 4/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.1 Introduction and Motivation

Introduction

Connected digitised world
• Mobile devices (phones, notebooks, . . . )
• Electronic devices (fridges, stoves, TVs, doors, . . . )
• Tools (CCTVs, warehouse parts, . . . )
• “Things” (wares, items, bits, . . . )

The World Wide Web Consortium (W3C) works on a standardisation

Web of Things (WOT)

Industry 4.0 & WOT depends heavily on the idea of
Internet of Things (IOT)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 5/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.1 Introduction and Motivation

Introduction

Connected digitised world
• Mobile devices (phones, notebooks, . . . )
• Electronic devices (fridges, stoves, TVs, doors, . . . )
• Tools (CCTVs, warehouse parts, . . . )
• “Things” (wares, items, bits, . . . )

The World Wide Web Consortium (W3C) works on a standardisation

Web of Things (WOT)

Industry 4.0 & WOT depends heavily on the idea of
Internet of Things (IOT)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 5/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.1 Introduction and Motivation

Introduction

Connected digitised world
• Mobile devices (phones, notebooks, . . . )
• Electronic devices (fridges, stoves, TVs, doors, . . . )
• Tools (CCTVs, warehouse parts, . . . )
• “Things” (wares, items, bits, . . . )

The World Wide Web Consortium (W3C) works on a standardisation

Web of Things (WOT)

Industry 4.0 & WOT depends heavily on the idea of
Internet of Things (IOT)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 5/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.1 Introduction and Motivation

Introduction

Connected digitised world
• Mobile devices (phones, notebooks, . . . )
• Electronic devices (fridges, stoves, TVs, doors, . . . )
• Tools (CCTVs, warehouse parts, . . . )
• “Things” (wares, items, bits, . . . )

The World Wide Web Consortium (W3C) works on a standardisation

Web of Things (WOT)

Industry 4.0 & WOT depends heavily on the idea of
Internet of Things (IOT)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 5/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.1 Introduction and Motivation

Introduction

Connected digitised world
• Mobile devices (phones, notebooks, . . . )
• Electronic devices (fridges, stoves, TVs, doors, . . . )
• Tools (CCTVs, warehouse parts, . . . )
• “Things” (wares, items, bits, . . . )

The World Wide Web Consortium (W3C) works on a standardisation

Web of Things (WOT)

Industry 4.0 & WOT depends heavily on the idea of
Internet of Things (IOT)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 5/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.1 Introduction and Motivation

Contextual Reasoning
Ghidini & Giunchiglias magic box Ghidini and Giunchiglia (2001)

Mr.1
Mr. 2

model information

integrate knowledge bases and context-based information

synchronise knowledge, reasoning, and conclusions

handle non-determinism and non-mononotonic behaviour

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 6/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.1 Introduction and Motivation

Contextual Reasoning
Ghidini & Giunchiglias magic box Ghidini and Giunchiglia (2001)

Mr.1
Mr. 2

model information

integrate knowledge bases and context-based information

synchronise knowledge, reasoning, and conclusions

handle non-determinism and non-mononotonic behaviour

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 6/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.1 Introduction and Motivation

Contextual Reasoning
Ghidini & Giunchiglias magic box Ghidini and Giunchiglia (2001)

Mr.1
Mr. 2

model information

integrate knowledge bases and context-based information

synchronise knowledge, reasoning, and conclusions

handle non-determinism and non-mononotonic behaviour

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 6/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.1 Introduction and Motivation

Contextual Reasoning
Ghidini & Giunchiglias magic box Ghidini and Giunchiglia (2001)

Mr.1
Mr. 2

model information

integrate knowledge bases and context-based information

synchronise knowledge, reasoning, and conclusions

handle non-determinism and non-mononotonic behaviour

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 6/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.1 Introduction and Motivation

Contextual Reasoning
Ghidini & Giunchiglias magic box Ghidini and Giunchiglia (2001)

Mr.1
Mr. 2

model information

integrate knowledge bases and context-based information

synchronise knowledge, reasoning, and conclusions

handle non-determinism and non-mononotonic behaviour

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 6/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.1 Introduction and Motivation

Contextual Reasoning
Ghidini & Giunchiglias magic box Ghidini and Giunchiglia (2001)

Mr.1
Mr. 2

model information

integrate knowledge bases and context-based information

synchronise knowledge, reasoning, and conclusions

handle non-determinism and non-mononotonic behaviour

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 6/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.1 Introduction and Motivation

Contextual Reasoning
Ghidini & Giunchiglias magic box Ghidini and Giunchiglia (2001)

Mr.1
Mr. 2

model information

integrate knowledge bases and context-based information

synchronise knowledge, reasoning, and conclusions

handle non-determinism and non-mononotonic behaviour

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 6/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.1 Introduction and Motivation

Contextual Reasoning
Ghidini & Giunchiglias magic box Ghidini and Giunchiglia (2001)

model information

integrate knowledge bases and context-based information

synchronise knowledge, reasoning, and conclusions

handle non-determinism and non-mononotonic behaviour

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 6/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.1 Introduction and Motivation

Contextual Reasoning
Ghidini & Giunchiglias magic box Ghidini and Giunchiglia (2001)

model information

integrate knowledge bases and context-based information

synchronise knowledge, reasoning, and conclusions

handle non-determinism and non-mononotonic behaviour

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 6/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.1 Introduction and Motivation

Contextual Reasoning
Ghidini & Giunchiglias magic box Ghidini and Giunchiglia (2001)

model information

integrate knowledge bases and context-based information

synchronise knowledge, reasoning, and conclusions

handle non-determinism and non-mononotonic behaviour

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 6/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.1 Introduction and Motivation

Contextual Reasoning
Ghidini & Giunchiglias magic box Ghidini and Giunchiglia (2001)

model information

integrate knowledge bases and context-based information

synchronise knowledge, reasoning, and conclusions

handle non-determinism and non-mononotonic behaviour

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 6/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.1 Introduction and Motivation

Contextual Reasoning
Ghidini & Giunchiglias magic box Ghidini and Giunchiglia (2001)

model information

integrate knowledge bases and context-based information

synchronise knowledge, reasoning, and conclusions

handle non-determinism and non-mononotonic behaviour

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 6/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.1 Introduction and Motivation

Contextual Reasoning
Ghidini & Giunchiglias magic box Ghidini and Giunchiglia (2001)

model information

integrate knowledge bases and context-based information

synchronise knowledge, reasoning, and conclusions

handle non-determinism and non-mononotonic behaviour

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 6/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.2 Represent Knowledge - An Abstract Logic

Outline

1. Multi-Context Systems
1.1 Introduction and Motivation
1.2 Represent Knowledge - An Abstract Logic
1.3 Integrate Knowledge and Synchronise Reasoning - Multi-Context Systems
1.4 Revising Knowledge - Managing Contexts
1.5 Inconsistency
1.6 Complexity and Expressiveness

2. Stream Reasoning

3. Multi-Context Stream Systems

4. Conclusions

5. Further Resources

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 7/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.2 Represent Knowledge - An Abstract Logic

Knowledge of Contexts
Represented by logics with various properties

represent formalism of contexts

monotone and non-monotone
logic
diverse truth-values
• boolean
• many valued
• fuzzy values

many different semantics


one formal structure

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 8/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.2 Represent Knowledge - An Abstract Logic

Knowledge of Contexts
Represented by logics with various properties

represent formalism of contexts

monotone and non-monotone
logic
diverse truth-values
• boolean
• many valued
• fuzzy values

many different semantics


one formal structure

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 8/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.2 Represent Knowledge - An Abstract Logic

Logic
an Abstract Representation

An abstract way to define a Logic

Capable of realising monotone and non-monotone logics

Representing different number of values
(e.g. binary, many valued, fuzzy values, . . . )

Definition (Logic Brewka and Eiter (2007))

A logic is a triple L = 〈KB,BS, acc〉, where

KB is a set of knowledge bases,

BS is a set of belief sets, and

acc : KB 7→ 2BS, the acceptance function is a function which assigns to each
knowledge base a set of belief sets.

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 9/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.2 Represent Knowledge - An Abstract Logic

Logic
to Represent KRR-Formalisms

Simple Storage Mechanism

Stores information as set of strings and replicates them without reasoning

Description Logic

Decidable FO logic fragment

• Concepts & Roles
• T Box & ABox

Monotone

Many different versions
(AL, ALC, SHIF , SROIC,. . . )

Complexity around EXPTime

Answer Set Programming

Rule-Based KR formalism

• Predicates, Default negation
• Set of Rules

Non-monotone

Normal, disjunctive, negated
ASP (w/ optimisation)

Complexity ranging from NP to
ΣP

3

SAT-Problem in propositional logic

Classical propositional Logic Modelling of one specific problem

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 10/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.2 Represent Knowledge - An Abstract Logic

Logic
to Represent KRR-Formalisms

Simple Storage Mechanism

Stores information as set of strings and replicates them without reasoning

Description Logic

Decidable FO logic fragment
• Concepts & Roles
• T Box & ABox

Monotone

Many different versions
(AL, ALC, SHIF , SROIC,. . . )

Complexity around EXPTime

Answer Set Programming

Rule-Based KR formalism

• Predicates, Default negation
• Set of Rules

Non-monotone

Normal, disjunctive, negated
ASP (w/ optimisation)

Complexity ranging from NP to
ΣP

3

SAT-Problem in propositional logic

Classical propositional Logic Modelling of one specific problem

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 10/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.2 Represent Knowledge - An Abstract Logic

Logic
to Represent KRR-Formalisms

Simple Storage Mechanism

Stores information as set of strings and replicates them without reasoning

Description Logic

Decidable FO logic fragment
• Concepts & Roles
• T Box & ABox

Monotone

Many different versions
(AL, ALC, SHIF , SROIC,. . . )

Complexity around EXPTime

Answer Set Programming

Rule-Based KR formalism
• Predicates, Default negation
• Set of Rules

Non-monotone

Normal, disjunctive, negated
ASP (w/ optimisation)

Complexity ranging from NP to
ΣP

3

SAT-Problem in propositional logic

Classical propositional Logic Modelling of one specific problem

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 10/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.2 Represent Knowledge - An Abstract Logic

Logic
to Represent KRR-Formalisms

Simple Storage Mechanism

Stores information as set of strings and replicates them without reasoning

Description Logic

Decidable FO logic fragment
• Concepts & Roles
• T Box & ABox

Monotone

Many different versions
(AL, ALC, SHIF , SROIC,. . . )

Complexity around EXPTime

Answer Set Programming

Rule-Based KR formalism
• Predicates, Default negation
• Set of Rules

Non-monotone

Normal, disjunctive, negated
ASP (w/ optimisation)

Complexity ranging from NP to
ΣP

3

SAT-Problem in propositional logic

Classical propositional Logic Modelling of one specific problem

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 10/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.2 Represent Knowledge - An Abstract Logic

Logic
to Represent KRR-Formalisms

Simple Storage Mechanism

Stores information as set of strings and replicates them without reasoning

Description Logic

Decidable FO logic fragment
• Concepts & Roles
• T Box & ABox

Monotone

Many different versions
(AL, ALC, SHIF , SROIC,. . . )

Complexity around EXPTime

Answer Set Programming

Rule-Based KR formalism
• Predicates, Default negation
• Set of Rules

Non-monotone

Normal, disjunctive, negated
ASP (w/ optimisation)

Complexity ranging from NP to
ΣP

3

SAT-Problem in propositional logic

Classical propositional Logic Modelling of one specific problem

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 10/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.2 Represent Knowledge - An Abstract Logic

Represent Storage Mechanism

Simple Storage Logic

Ls = 〈KBs,BSs, accs〉
Given a set E of entries

KBs = BSs = 2E

accs maps every set E′ ⊆ 2E to {E′}.

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 11/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.2 Represent Knowledge - An Abstract Logic

Represent KRR Formalisms

Description Logic AL
Ld = 〈KBd,BSd, accd〉

KBd are all ontologies

BSd is the set of deductively closed subsets in AL
accd is a mapping of kb ∈ KBd to M ⊆ 2BSd , s.t.
∀m∈Mkb |= m holds.

Answer Set Programming

Lasp = 〈KBasp,BSasp, accasp〉
Let A be the set of all possible ground atoms

KBasp is the set of all answer set programs over A.

BSasp = 2A

accasp maps each ASP program to its answer sets

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 12/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.2 Represent Knowledge - An Abstract Logic

Represent KRR Formalisms

Description Logic AL
Ld = 〈KBd,BSd, accd〉

KBd are all ontologies

BSd is the set of deductively closed subsets in AL
accd is a mapping of kb ∈ KBd to M ⊆ 2BSd , s.t.
∀m∈Mkb |= m holds.

Answer Set Programming

Lasp = 〈KBasp,BSasp, accasp〉
Let A be the set of all possible ground atoms

KBasp is the set of all answer set programs over A.

BSasp = 2A

accasp maps each ASP program to its answer sets

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 12/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.2 Represent Knowledge - An Abstract Logic

Represent one KRR Problem

SAT in propositional logic

Lp = 〈KBp,BSp, accp〉
KBp is the set of all well-formed formulae F with respect to the signature Σ in
CNF.

BSp = {{>}, {⊥}} is the set of all possible answers “True” and “False”

accp maps each formula σ ∈ KBd to > (resp. ⊥), if σ is (un-)satisfiable...

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 13/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Outline

1. Multi-Context Systems
1.1 Introduction and Motivation
1.2 Represent Knowledge - An Abstract Logic
1.3 Integrate Knowledge and Synchronise Reasoning - Multi-Context Systems
1.4 Revising Knowledge - Managing Contexts
1.5 Inconsistency
1.6 Complexity and Expressiveness

2. Stream Reasoning

3. Multi-Context Stream Systems

4. Conclusions

5. Further Resources

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 14/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Integrate Knowledge
Bridge Rules

Bridge Rule idea:

integrate knowledge from other contexts

only transfer acceptable information w.r.t. the origin context

utilise integrated knowledge for reasoning

Definition (Bridge Rule)

Let L = {L1, . . . , Ln} be a set of logics.
An Lk-bridge rule over L, 1 ≤ k ≤ n, is of the form

s← (c1 : p1), . . . , (cj : pj), not (cj+1 : pj+1), . . . , not (cm : pm)
where

∀kb∈KBk : s ∪ kb ∈ KBk and

for each 1 ≤ l ≤ m exists a logic Ll ∈ (L1, . . . , Ln)
such that pl ∈ B ∈ BSl holds.

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 15/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Integrate Knowledge
Bridge Rules

Bridge Rule idea:

integrate knowledge from other contexts

only transfer acceptable information w.r.t. the origin context

utilise integrated knowledge for reasoning

Definition (Bridge Rule)

Let L = {L1, . . . , Ln} be a set of logics.
An Lk-bridge rule over L, 1 ≤ k ≤ n, is of the form

s← (c1 : p1), . . . , (cj : pj), not (cj+1 : pj+1), . . . , not (cm : pm)
where

∀kb∈KBk : s ∪ kb ∈ KBk and

for each 1 ≤ l ≤ m exists a logic Ll ∈ (L1, . . . , Ln)
such that pl ∈ B ∈ BSl holds.

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 15/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Multi-Context System (MCS) Brewka and Eiter (2007)

Definition
A Multi-Context System M = (C1, . . . ,Cn) is a collection of contexts
Ci = (Li, kbi,BRi), where

Li = (KBi,BSi, acci) is an abstract logic,

kbi ∈ KBi is a knowledge base, and

BRi = {br1, . . . , brm} is a set of bridge rules over {L1, . . . , Lm}1.

1note that Li implies that it is defined in Ci

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 16/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Example

Planner
Logic: Lasp

Knowledge base:
a ← not b.
b ← not a.
a ← exception.
Bridge rules:
exception ← c3 : issue

Consistency-Checker

Logic: Lp

Knowledge base:
a ∧ ¬b

Bridge rules:
a ← c1 : a
b ← c1 : b

Logger

Logic: Ls

Knowledge base:
∅

Bridge rules:
issue ← c2 : ⊥

How to compute the result of such an MCS?

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 17/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Example

Planner
Logic: Lasp

Knowledge base:
a ← not b.
b ← not a.
a ← exception.

Bridge rules:
exception ← c3 : issue

Consistency-Checker

Logic: Lp

Knowledge base:
a ∧ ¬b

Bridge rules:
a ← c1 : a
b ← c1 : b

Logger

Logic: Ls

Knowledge base:
∅

Bridge rules:
issue ← c2 : ⊥

How to compute the result of such an MCS?

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 17/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Example

Planner
Logic: Lasp

Knowledge base:
a ← not b.
b ← not a.
a ← exception.
Bridge rules:
exception ← c3 : issue

Consistency-Checker

Logic: Lp

Knowledge base:
a ∧ ¬b

Bridge rules:
a ← c1 : a
b ← c1 : b

Logger

Logic: Ls

Knowledge base:
∅

Bridge rules:
issue ← c2 : ⊥

How to compute the result of such an MCS?

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 17/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Example

Planner
Logic: Lasp

Knowledge base:
a ← not b.
b ← not a.
a ← exception.
Bridge rules:
exception ← c3 : issue

Consistency-Checker

Logic: Lp

Knowledge base:
a ∧ ¬b

Bridge rules:
a ← c1 : a
b ← c1 : b

Logger

Logic: Ls

Knowledge base:
∅

Bridge rules:
issue ← c2 : ⊥

How to compute the result of such an MCS?

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 17/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Semantics
How to compute the result of an MCS

Uniform representation of results

Definition (Belief State)

Let M = 〈C1, . . . ,Cn〉 be an MCS. A belief state B = 〈B1, . . . ,Bn〉 is a sequence such
that for each 1 ≤ i ≤ n, Bi ∈ BSi holds.

Identify acceptable information due to the belief state

Definition (Acceptable Rule)
Let M = (C1, . . . ,Cn) be an MCS and B = 〈B1, . . . ,Bn〉 be a belief state for M. A
bridge rule is acceptable w.r.t. B if
• for all (ci : p) ∈ body+(br) : p ∈ Bi and
• for all (ci : p) ∈ body−(br) : p 6∈ Bi holds.

We will use app(R,B) to represent all consequences of acceptable rules of R w.r.t. B.

Add acceptable rule consequences to associated context

, and

⇒ cope with cycle (KB update, belief state update, acceptable rule update)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 18/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Semantics
How to compute the result of an MCS

Uniform representation of results

Definition (Belief State)

Let M = 〈C1, . . . ,Cn〉 be an MCS. A belief state B = 〈B1, . . . ,Bn〉 is a sequence such
that for each 1 ≤ i ≤ n, Bi ∈ BSi holds.

Identify acceptable information due to the belief state

Definition (Acceptable Rule)
Let M = (C1, . . . ,Cn) be an MCS and B = 〈B1, . . . ,Bn〉 be a belief state for M. A
bridge rule is acceptable w.r.t. B if
• for all (ci : p) ∈ body+(br) : p ∈ Bi and
• for all (ci : p) ∈ body−(br) : p 6∈ Bi holds.

We will use app(R,B) to represent all consequences of acceptable rules of R w.r.t. B.

Add acceptable rule consequences to associated context

, and

⇒ cope with cycle (KB update, belief state update, acceptable rule update)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 18/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Semantics
How to compute the result of an MCS

Uniform representation of results

Definition (Belief State)

Let M = 〈C1, . . . ,Cn〉 be an MCS. A belief state B = 〈B1, . . . ,Bn〉 is a sequence such
that for each 1 ≤ i ≤ n, Bi ∈ BSi holds.

Identify acceptable information due to the belief state

Definition (Acceptable Rule)
Let M = (C1, . . . ,Cn) be an MCS and B = 〈B1, . . . ,Bn〉 be a belief state for M. A
bridge rule is acceptable w.r.t. B if
• for all (ci : p) ∈ body+(br) : p ∈ Bi and
• for all (ci : p) ∈ body−(br) : p 6∈ Bi holds.

We will use app(R,B) to represent all consequences of acceptable rules of R w.r.t. B.

Add acceptable rule consequences to associated context

, and

⇒ cope with cycle (KB update, belief state update, acceptable rule update)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 18/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Semantics
How to compute the result of an MCS

Uniform representation of results

Definition (Belief State)

Let M = 〈C1, . . . ,Cn〉 be an MCS. A belief state B = 〈B1, . . . ,Bn〉 is a sequence such
that for each 1 ≤ i ≤ n, Bi ∈ BSi holds.

Identify acceptable information due to the belief state

Definition (Acceptable Rule)
Let M = (C1, . . . ,Cn) be an MCS and B = 〈B1, . . . ,Bn〉 be a belief state for M. A
bridge rule is acceptable w.r.t. B if
• for all (ci : p) ∈ body+(br) : p ∈ Bi and
• for all (ci : p) ∈ body−(br) : p 6∈ Bi holds.

We will use app(R,B) to represent all consequences of acceptable rules of R w.r.t. B.

Add acceptable rule consequences to associated context

, and

⇒ cope with cycle (KB update, belief state update, acceptable rule update)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 18/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Semantics
How to compute the result of an MCS

Uniform representation of results

Definition (Belief State)

Let M = 〈C1, . . . ,Cn〉 be an MCS. A belief state B = 〈B1, . . . ,Bn〉 is a sequence such
that for each 1 ≤ i ≤ n, Bi ∈ BSi holds.

Identify acceptable information due to the belief state

Definition (Acceptable Rule)
Let M = (C1, . . . ,Cn) be an MCS and B = 〈B1, . . . ,Bn〉 be a belief state for M. A
bridge rule is acceptable w.r.t. B if
• for all (ci : p) ∈ body+(br) : p ∈ Bi and
• for all (ci : p) ∈ body−(br) : p 6∈ Bi holds.

We will use app(R,B) to represent all consequences of acceptable rules of R w.r.t. B.

Add acceptable rule consequences to associated context

, and

⇒ cope with cycle (KB update, belief state update, acceptable rule update)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 18/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Semantics
How to compute the result of an MCS

Uniform representation of results

Definition (Belief State)

Let M = 〈C1, . . . ,Cn〉 be an MCS. A belief state B = 〈B1, . . . ,Bn〉 is a sequence such
that for each 1 ≤ i ≤ n, Bi ∈ BSi holds.

Identify acceptable information due to the belief state

Definition (Acceptable Rule)
Let M = (C1, . . . ,Cn) be an MCS and B = 〈B1, . . . ,Bn〉 be a belief state for M. A
bridge rule is acceptable w.r.t. B if
• for all (ci : p) ∈ body+(br) : p ∈ Bi and
• for all (ci : p) ∈ body−(br) : p 6∈ Bi holds.

We will use app(R,B) to represent all consequences of acceptable rules of R w.r.t. B.

Add acceptable rule consequences to associated context , and

⇒ cope with cycle (KB update, belief state update, acceptable rule update)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 18/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Example

Planner - c1

Logic: Lasp

Knowledge base:
a ← not b.
b ← not a.
a ← exception.
Bride rules:
exception ← c3 : issue

Result 1
{a}

Result 2
{b}

Consistency - c2

Logic: Lp

Knowledge base:
a ∧ ¬b

Bridge rules:
a ← c1 : a
b ← c1 : b

Result 1
>

⇒ Fixpoint semantics

Logger - c3

Logic: Ls

Knowledge base:
∅

Bridge rules:
issue ← c2 : ⊥

Result 1
∅

⇒ “Equilibria”
semantics

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 19/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Example

Planner - c1

Logic: Lasp

Knowledge base:
a ← not b.
b ← not a.
a ← exception.
Bride rules:
exception ← c3 : issue

Result 1
{a}

Result 2
{b}

Consistency - c2

Logic: Lp

Knowledge base:
a ∧ ¬b

Bridge rules:
a ← c1 : a
b ← c1 : b

Result 1
>

⇒ Fixpoint semantics

Logger - c3

Logic: Ls

Knowledge base:
∅

Bridge rules:
issue ← c2 : ⊥

Result 1
∅

⇒ “Equilibria”
semantics

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 19/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Example

Planner - c1

Logic: Lasp

Knowledge base:
a ← not b.
b ← not a.
a ← exception.
Bride rules:
exception ← c3 : issue

Result 1
{a}

Result 2
{b}

Consistency - c2

Logic: Lp

Knowledge base:
a ∧ ¬b

Bridge rules:
a ← c1 : a
b ← c1 : b

Result 1
>

⇒ Fixpoint semantics

Logger - c3

Logic: Ls

Knowledge base:
∅

Bridge rules:
issue ← c2 : ⊥

Result 1
∅

⇒ “Equilibria”
semantics

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 19/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Example

Planner - c1

Logic: Lasp

Knowledge base:
a ← not b.
b ← not a.
a ← exception.
Bride rules:
exception ← c3 : issue

Result 1
{a}

Result 2
{b}

Consistency - c2

Logic: Lp

Knowledge base:
a ∧ ¬b

Bridge rules:
a ← c1 : a
b ← c1 : b

Result 1
>

⇒ Fixpoint semantics

Logger - c3

Logic: Ls

Knowledge base:
∅

Bridge rules:
issue ← c2 : ⊥

Result 1
∅

⇒ “Equilibria”
semantics

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 19/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Example

Planner - c1

Logic: Lasp

Knowledge base:
a ← not b.
b ← not a.
a ← exception.
Bride rules:
exception ← c3 : issue

Result 1
{a}

Result 2
{b}

Consistency - c2

Logic: Lp

Knowledge base:
a ∧ ¬b

Bridge rules:
a ← c1 : a
b ← c1 : b

Result 1
>

⇒ Fixpoint semantics

Logger - c3

Logic: Ls

Knowledge base:
∅

Bridge rules:
issue ← c2 : ⊥

Result 1
∅

⇒ “Equilibria”
semantics

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 19/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Example

Planner - c1

Logic: Lasp

Knowledge base:
a ← not b.
b ← not a.
a ← exception.
Bride rules:
exception ← c3 : issue

Result 1
{a}

Result 2
{b}

Consistency - c2

Logic: Lp

Knowledge base:
a ∧ ¬b

Bridge rules:
a ← c1 : a
b ← c1 : b

Result 1
>

⇒ Fixpoint semantics

Logger - c3

Logic: Ls

Knowledge base:
∅

Bridge rules:
issue ← c2 : ⊥

Result 1
∅

⇒ “Equilibria”
semantics

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 19/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Example

Planner - c1

Logic: Lasp

Knowledge base:
a ← not b.
b ← not a.
a ← exception.
Bride rules:
exception ← c3 : issue

Result 1
{a}

Result 2
{b}

Consistency - c2

Logic: Lp

Knowledge base:
a ∧ ¬b

Bridge rules:
a ← c1 : a
b ← c1 : b

Result 1
>

⇒ Fixpoint semantics

Logger - c3

Logic: Ls

Knowledge base:
∅

Bridge rules:
issue ← c2 : ⊥

Result 1
∅

⇒ “Equilibria”
semantics

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 19/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Example

Planner - c1

Logic: Lasp

Knowledge base:
a ← not b.
b ← not a.
a ← exception.
Bride rules:
exception ← c3 : issue

Result 1
{a}

Result 2
{b}

Consistency - c2

Logic: Lp

Knowledge base:
a ∧ ¬b

Bridge rules:
a ← c1 : a
b ← c1 : b

Result 1
>

⇒ Fixpoint semantics

Logger - c3

Logic: Ls

Knowledge base:
∅

Bridge rules:
issue ← c2 : ⊥

Result 1
∅

⇒ “Equilibria”
semantics

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 19/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Example

Planner - c1

Logic: Lasp

Knowledge base:
a ← not b.
b ← not a.
a ← exception.
Bride rules:
exception ← c3 : issue

Result 1
{a}

Result 2
{b}

Consistency - c2

Logic: Lp

Knowledge base:
a ∧ ¬b

Bridge rules:
a ← c1 : a
b ← c1 : b

Revised result
⊥

⇒ Fixpoint semantics

Logger - c3

Logic: Ls

Knowledge base:
∅

Bridge rules:
issue ← c2 : ⊥

Result 1
∅

⇒ “Equilibria”
semantics

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 19/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Example

Planner - c1

Logic: Lasp

Knowledge base:
a ← not b.
b ← not a.
a ← exception.
Bride rules:
exception ← c3 : issue

Result 1
{a}

Result 2
{b}

Consistency - c2

Logic: Lp

Knowledge base:
a ∧ ¬b

Bridge rules:
a ← c1 : a
b ← c1 : b

Revised result
⊥

⇒ Fixpoint semantics

Logger - c3

Logic: Ls

Knowledge base:
∅

Bridge rules:
issue ← c2 : ⊥

Revised result
{′issue′}

⇒ “Equilibria”
semantics

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 19/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Example

Planner - c1

Logic: Lasp

Knowledge base:
a ← not b.
b ← not a.
a ← exception.
Bride rules:
exception ← c3 : issue

Result 1
{a}

Result 2
{b}

Consistency - c2

Logic: Lp

Knowledge base:
a ∧ ¬b

Bridge rules:
a ← c1 : a
b ← c1 : b

Revised result
⊥

⇒ Fixpoint semantics

Logger - c3

Logic: Ls

Knowledge base:
∅

Bridge rules:
issue ← c2 : ⊥

Revised result
{′issue′}

⇒ “Equilibria”
semantics

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 19/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Example

Planner - c1

Logic: Lasp

Knowledge base:
a ← not b.
b ← not a.
a ← exception.
Bride rules:
exception ← c3 : issue

Result 1
{a}

Result 2
{b}

Consistency - c2

Logic: Lp

Knowledge base:
a ∧ ¬b

Bridge rules:
a ← c1 : a
b ← c1 : b

Revised result
⊥

⇒ Fixpoint semantics

Logger - c3

Logic: Ls

Knowledge base:
∅

Bridge rules:
issue ← c2 : ⊥

Revised result
{′issue′}

⇒ “Equilibria”
semantics

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 19/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Example

Planner - c1

Logic: Lasp

Knowledge base:
a ← not b.
b ← not a.
a ← exception.
Bride rules:
exception ← c3 : issue

Result 1
{a}

Result 2
{b}

Consistency - c2

Logic: Lp

Knowledge base:
a ∧ ¬b

Bridge rules:
a ← c1 : a
b ← c1 : b

Revised result
⊥

⇒ Fixpoint semantics

Logger - c3

Logic: Ls

Knowledge base:
∅

Bridge rules:
issue ← c2 : ⊥

Revised result
{′issue′}

⇒ “Equilibria”
semantics

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 19/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Equilibria

Definition (Equilibrium)

Let M = (C1, . . . ,Cn) be an MCS and B = 〈B1, . . . ,Bn〉 be a belief state for M. A
belief state B for M is an equilibrium, if for each Bi in 1 ≤ i ≤ n

Bi ∈ acci(kbi ∪ app(BRi,B))
holds.

Example (Solution)

Equilibrium: 〈{a}, {>}, ∅〉

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 20/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

Equilibria

Definition (Equilibrium)

Let M = (C1, . . . ,Cn) be an MCS and B = 〈B1, . . . ,Bn〉 be a belief state for M. A
belief state B for M is an equilibrium, if for each Bi in 1 ≤ i ≤ n

Bi ∈ acci(kbi ∪ app(BRi,B))
holds.

Example (Solution)

Equilibrium: 〈{a}, {>}, ∅〉

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 20/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.3 Integrate Knowledge and Synchronise Reasoning

MCS Overview

Advantages
• abstract logic to represent various formalisms
• simple structure of bridge rules to integrate knowledge
• strongly coupled semantics due to the concept of equilibria

Shortcomings
• knowledge base has monotone growth
• knowledge cannot be revised

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 21/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.4 Revising Knowledge - Managing Contexts

Outline

1. Multi-Context Systems
1.1 Introduction and Motivation
1.2 Represent Knowledge - An Abstract Logic
1.3 Integrate Knowledge and Synchronise Reasoning - Multi-Context Systems
1.4 Revising Knowledge - Managing Contexts
1.5 Inconsistency
1.6 Complexity and Expressiveness

2. Stream Reasoning

3. Multi-Context Stream Systems

4. Conclusions

5. Further Resources

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 22/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.4 Revising Knowledge - Managing Contexts

Extending MCS
Conceptional Idea of managed Multi-Context Systems (mMCS) Brewka et al. (2011b)2

To tackle monotone growth and the inability to revise knowledge ...

allow each Context to manage itself, to

management function

add knowledge (as before),

revise knowledge, and

“management base”

allow to use different semantics per context

logic suite

2further detailed in Weinzierl (2014)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 23/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.4 Revising Knowledge - Managing Contexts

Extending MCS
Conceptional Idea of managed Multi-Context Systems (mMCS) Brewka et al. (2011b)2

To tackle monotone growth and the inability to revise knowledge ...

allow each Context to manage itself, to management function
add knowledge (as before),

revise knowledge, and “management base”
allow to use different semantics per context logic suite

2further detailed in Weinzierl (2014)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 23/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.4 Revising Knowledge - Managing Contexts

managed Multi-Context System
Basics

Definition (Logic Suite)

A logic suite LS = (KBLS,BSLS,ACCLS) consists of the set BSLS of possible belief sets,
the set KBLS of well-formed knowledge-bases, and a nonempty set ACCLS of possible
semantics of LS, i.e. accLS ∈ ACCLS implies accLS : KBLS → 2BSLS .

Definition (Management Base)

A set of names for operators is called a management base.

Definition (Management Function)

A management function over a logic suite LS and a management base OP is a
function mng : 2FOP

LS × KBLS → 2KBLS×ACCLS \ {∅}.

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 24/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.4 Revising Knowledge - Managing Contexts

managed Multi-Context System

Definition (Managed Multi-Context System)

A managed Multi-Context System M is a collection (C1, . . . ,Cn) of managed contexts
where, for 1 ≤ i ≤ n, each managed context Ci is a quintuple
Ci = (LSi, kbi, bri,OPi,mngi) such that

LSi = (BSLSi ,KBLSi ,ACCLSi ) is a logic suite,

kbi ∈ KBLSi is a knowledge base,

OPi is a management base,

bri is a set of bridge rules for Ci, with the form
opi ← (c1 : p1), . . . , (cj : pj), not(cj+1 : pj+1), . . . , not(cm : pm).

such that opi ∈ FOPi
LSi

and for all 1 ≤ k ≤ m there exists a context ck ∈ (C1, . . . ,Cn)
such that pk ∈ B ∈ BSLSck

, and

mngi is a management function over LSi and OPi.

Definition (Equilibria for managed Multi-Context Systems)

Let M = (C1, . . . ,Cn) be a managed multi-context system. A belief state
B = (B1, . . . ,Bn) is an equilibrium of M iff for every 1 ≤ i ≤ n there exists some
(kb′i , accLSi ) ∈ mngi(appi(bri,B), kbi) such that Bi ∈ accLSi (kb′i ).

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 25/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.4 Revising Knowledge - Managing Contexts

Example

Planner - c1

Logic: Lasp

Knowledge base:
a ← not b.
b ← not a.

Bridge rules:
add(tok) ← not c2:tok
add(a) ← c3:⊥, not c1:tok

Implications - c2

Logic: Lasp

Knowledge base:
c ← >.

Bridge rules:
add(tok) ← not c1:tok
add(b) ← c1:b
del(c ← >) ← c1:b
add(c) ← c1:tok

Consistency - c3

Logic: Lp

Knowledge base:
a ∧ ¬b

Bridge rules:
add(a) ← c1:a
add(b) ← c1:b

Results
{a}
{a, tok}
{b, tok}
{b, tok}

{tok, c}
{c}
{b}
{b,c}

{>}
{>}
{⊥}
{⊥}

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 26/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.4 Revising Knowledge - Managing Contexts

Example

Planner - c1

Logic: Lasp

Knowledge base:
a ← not b.
b ← not a.

Bridge rules:
add(tok) ← not c2:tok
add(a) ← c3:⊥, not c1:tok

Implications - c2

Logic: Lasp

Knowledge base:
c ← >.

Bridge rules:
add(tok) ← not c1:tok
add(b) ← c1:b
del(c ← >) ← c1:b
add(c) ← c1:tok

Consistency - c3

Logic: Lp

Knowledge base:
a ∧ ¬b

Bridge rules:
add(a) ← c1:a
add(b) ← c1:b

Results
{a}
{a, tok}
{b, tok}
{b, tok}

{tok, c}
{c}
{b}
{b,c}

{>}
{>}
{⊥}
{⊥}

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 26/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.5 Inconsistency

Outline

1. Multi-Context Systems
1.1 Introduction and Motivation
1.2 Represent Knowledge - An Abstract Logic
1.3 Integrate Knowledge and Synchronise Reasoning - Multi-Context Systems
1.4 Revising Knowledge - Managing Contexts
1.5 Inconsistency
1.6 Complexity and Expressiveness

2. Stream Reasoning

3. Multi-Context Stream Systems

4. Conclusions

5. Further Resources

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 27/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.5 Inconsistency

Inconsistency

An mMCS is inconsistent if there exists no equilibrium

Reasons for inconsistencies may be:

Local inconsistency - acceptance function of the logic returns an empty set
Operator inconsistency - operators are contradicting each other
(e.g.revise knowledgebase s.t. revise(a) and revise(¬a) is requested)

Global inconsitency - bridge rules are causing inconsistencies

Inconsistencies can be countered by

offering properties, which ensure that inconsistencies cannot occur,

explain what is causing an inconsistency, and

provide a diagnosis on how to achieve a consistent version of the mMCS

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 28/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.5 Inconsistency

Local Consistency

Local consistency by utilising adequate management functions

Definition (local consistency preserving)

A management function mng is local consistency (lc-) preserving if, for each set of
operational statements O and each knowledgebase kb, in every pair
(kb′, acc) ∈ mng(O, kb) the knowledgebase kb′ is consistent (i.e. acc(kb′) 6= ∅).

Definition (locally consistent mMCS)

An mMCS is locally consistent if in each equilibrium B = (b1, . . . , bn), all bi are
consistent belief sets.

Proposition

Let M be an mMCS s.t. all management functions are lc-preserving. Then M is
locally consistent.

Note
This ensures Operator consistency too

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 29/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.5 Inconsistency

Local Consistency

Local consistency by utilising adequate management functions

Definition (local consistency preserving)

A management function mng is local consistency (lc-) preserving if, for each set of
operational statements O and each knowledgebase kb, in every pair
(kb′, acc) ∈ mng(O, kb) the knowledgebase kb′ is consistent (i.e. acc(kb′) 6= ∅).

Definition (locally consistent mMCS)

An mMCS is locally consistent if in each equilibrium B = (b1, . . . , bn), all bi are
consistent belief sets.

Proposition

Let M be an mMCS s.t. all management functions are lc-preserving. Then M is
locally consistent.

Note
This ensures Operator consistency too

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 29/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.5 Inconsistency

Global Consistency
Diagnoses and Explanations

A Diagnosis of an mMCS M is a pair (D1,D2) of sets of bridge rules of M, s.t.
• removing all bridge rules D1 from M and
• adding the heads of all bridge rules of D2 as fact-rules of M

ensures that the M has an equilibrium.
We will denote the set of all Diagnoses for M with D+

−(M).

An Explanation of an mMCS M is a pair (E1,E2) of sets of bridge rules, s.t.
each set of bridge rules which
• contain E1 and
• has no rules to apply the heads of E2

will lead M to be inconsistent.

minimal Diagnoses and Explanations are a dual problem Schüller (2012)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 30/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.5 Inconsistency

Global Consistency
When does a diagnosis exist?

Conservative approach

If every context of an inconsistent mMCS is lc-preserving, then there exists a
diagnosis.

Can we use semantics with inconsistent conclusions, but avoid this situation?

Definition
A context Ci with knowledge base kbi in an mMCS M is totally coherent, if for every
belief state B of M some (kb′i , accLSi ) ∈ mngi(appi(B), kbi) exists, such that
accLSi (kb′i ) 6= ∅. It is totally incoherent if no belief state B fulfils that condition.

Proposition

Let M be an inconsistent mMCS. Then there exists a diagnosis if no context of M is
totally incoherent.

The absence of total incoherence is sufficient, but not necessary.
Is there a Notion which characterises the existence of a diagnosis?

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 31/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.5 Inconsistency

Global Consistency
When does a diagnosis exist?

Conservative approach

If every context of an inconsistent mMCS is lc-preserving, then there exists a
diagnosis.

Can we use semantics with inconsistent conclusions, but avoid this situation?

Definition
A context Ci with knowledge base kbi in an mMCS M is totally coherent, if for every
belief state B of M some (kb′i , accLSi ) ∈ mngi(appi(B), kbi) exists, such that
accLSi (kb′i ) 6= ∅. It is totally incoherent if no belief state B fulfils that condition.

Proposition

Let M be an inconsistent mMCS. Then there exists a diagnosis if no context of M is
totally incoherent.

The absence of total incoherence is sufficient, but not necessary.
Is there a Notion which characterises the existence of a diagnosis?

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 31/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.5 Inconsistency

Global Consistency
Diagnosis existence

Definition
A context Ci with knowledge base kbi in an mMCS M is omni-coherent, if for every
set H of operational statements, occurring in the heads of the bridge rules bri some
(kb′i , accLSi ) ∈ mngi(appi(H), kbi) exists, such that accLSi (kb′i ) 6= ∅. It is
omni-incoherent if no such H fulfils that condition.

Proposition

Let M be an inconsistent mMCS. Then there exists a diagnosis if and only if no
context of M is omni-incoherent.

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 32/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.5 Inconsistency

Global Consistency
Ensure inconsistent mMCS cannot occur

Any acyclic mMCS with omni-coherent contexts has an equilibrium.

Any acyclic mMCS with totally coherent contexts has an equilibrium.

Any acyclic mMCS with lc-preserving contexts has an equilibrium.

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 33/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.6 Complexity and Expressiveness

Outline

1. Multi-Context Systems
1.1 Introduction and Motivation
1.2 Represent Knowledge - An Abstract Logic
1.3 Integrate Knowledge and Synchronise Reasoning - Multi-Context Systems
1.4 Revising Knowledge - Managing Contexts
1.5 Inconsistency
1.6 Complexity and Expressiveness

2. Stream Reasoning

3. Multi-Context Stream Systems

4. Conclusions

5. Further Resources

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 34/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.6 Complexity and Expressiveness

Translating MCS to mMCS

An MCS M = (C1, . . . ,Cn) can be translated into a mMCS M′ = (C′1 . . . ,C
′
n)

by translating every context:

Logic L = 〈KB,BS, acc〉 into logic suite LS = 〈KB,BS, {acc}〉
Introduction of OPi = {addi}
Managementfunction mng : addi(O, kbi) = {(kbi ∪ {a | add(s) ∈ O}, acci)}

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 35/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.6 Complexity and Expressiveness

Translating mMCS to MCS

A mMCS M = (C1, . . . ,Cn) can be translated into an MCS M′ = (C′1 . . . ,C
′
n)

by translating every context:

Knowledgebase translation
KB′ = {kb ∪ {opnewsym(o) | o ∈ O} | kb ∈ KB,O ⊆ FOP

LS }
Belief sets stay the same

Managementfunction gets implemented in acceptance-function
acc(kb) = {B | B ∈ acc′(kb′),

(kb′, acc′) ∈ mng({o | opnewsym(o) ∈ kb}, kb \ opnewsym(FOP
LS ))}

Bridgerule heads are substituted by opnewsym

Therefore MCS and mMCS are equally expressive

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 36/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.6 Complexity and Expressiveness

Translating mMCS to MCS

A mMCS M = (C1, . . . ,Cn) can be translated into an MCS M′ = (C′1 . . . ,C
′
n)

by translating every context:

Knowledgebase translation
KB′ = {kb ∪ {opnewsym(o) | o ∈ O} | kb ∈ KB,O ⊆ FOP

LS }
Belief sets stay the same

Managementfunction gets implemented in acceptance-function
acc(kb) = {B | B ∈ acc′(kb′),

(kb′, acc′) ∈ mng({o | opnewsym(o) ∈ kb}, kb \ opnewsym(FOP
LS ))}

Bridgerule heads are substituted by opnewsym

Therefore MCS and mMCS are equally expressive

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 36/125



Multi-Context Stream Reasoning 1. Multi-Context Systems 1.6 Complexity and Expressiveness

Computation Complexity
Existence of an equilibrium

CC(M) P ΣP
i ∆P

i+1 PSPACE EXPTime
CONS(M) NP ΣP

i ΣP
i+1 PSPACE EXPTime

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 37/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.1 Introduction and Motivation

Outline

1. Multi-Context Systems

2. Stream Reasoning
2.1 Introduction and Motivation
2.2 Background
2.3 Stream Processing
2.4 Databases
2.5 Complex Event Processing
2.6 Temporal Reasoning
2.7 Prolog
2.8 Datalog for Stream Reasoning
2.9 ASP-based Formalisms

3. Multi-Context Stream Systems

4. Conclusions

5. Further Resources

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 38/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.1 Introduction and Motivation

From Static Instances to Dynamic Streams

Modern networks are growing fast as various
new devices go online from tiny sensors to
fridges or self-driving cars

Dynamic streams of data, potentially infinite,
with different frequency of changes:
• low: smart buildings, railroad monitoring, business processes
• high: stock trading, self-driving cars, network monitoring

In IoT or Industry 4.0 scenarios data is pushed rather than pulled

Stream reasoning is applicable in multiple use cases (e.g., Della Valle et al.
[2008,2009]):
• Montoring & Control: Applications for drones/robots (Amazon) or smart

infrastructures (Dell EMC, Siemens)
• Prediction: Maintenance of production lines/analysis labs (Infineon)
• Diagnosis/Configuration: Detection, identification of causes, and reaction on various

disruptions

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 39/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.1 Introduction and Motivation

From Static Instances to Dynamic Streams

Modern networks are growing fast as various
new devices go online from tiny sensors to
fridges or self-driving cars

Dynamic streams of data, potentially infinite,
with different frequency of changes:
• low: smart buildings, railroad monitoring, business processes
• high: stock trading, self-driving cars, network monitoring

In IoT or Industry 4.0 scenarios data is pushed rather than pulled
Stream reasoning is applicable in multiple use cases (e.g., Della Valle et al.
[2008,2009]):
• Montoring & Control: Applications for drones/robots (Amazon) or smart

infrastructures (Dell EMC, Siemens)
• Prediction: Maintenance of production lines/analysis labs (Infineon)
• Diagnosis/Configuration: Detection, identification of causes, and reaction on various

disruptions

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 39/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.1 Introduction and Motivation

Use Case: Dynamic (Re)configuration of Cyber-Physical Systems

Observation: Stream Reasoning
is suited to model dynamic
(re)configuration scenarios

Structuring into interlinked reasoning components, evolving over time

Logical separation of concerns (SoC) / tasks
• Producers: components/systems that provide data to the Stream Reasoning

system. E.g. sensors can be viewed as such
• Monitors: stream reasoners that observe and aggregate data streams from

producers, and report (feed information) to configurators
• Configurators: reasoners calculating the setup thru re-configuring the CPS; may

involve complex decision component, richer high level stream reasoning
• Actuators: components/systems that change the setup in the CPS environment

according to the output of the configurators

SoC may be weakened (integrate actuators into producers)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 40/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.1 Introduction and Motivation

Scenario: Network Administration

Scalability problems:
• Popular content producers get

overloaded
• Network connections become

congested
• Content distribution over the Internet

needs workarounds

New Internet architectures are
proposed to solve these problems
• Scalable content distribution as a

main feature

Content-Centric Networking
• Address content in the network by

“name” – physical location irrelevant
• Content-Centric Routers (CCRs)

can route interest packages, cache
and adapt media chunks in highly
dynamic conditions

• Cache sizes are limited – need
efficient caching strategies that can
react on changes of users’ interests
over time

Consumer

Consumer

Consumer Consumer

Producer

0
         

3
         

2
         

1
4

         
Producer

Producers: Content requests/chunks
sent over the network and statistics
aggregated by routers
Monitors: stream reasoners detect
changes in interests and activity of users
by analyzing network statistics
Configurators: selection of a caching
strategy allowing for the best possible
load reduction on the network
Actuators: network interfaces and
controllers of routers

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 41/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.1 Introduction and Motivation

Scenario: Network Administration

Scalability problems:
• Popular content producers get

overloaded
• Network connections become

congested
• Content distribution over the Internet

needs workarounds

New Internet architectures are
proposed to solve these problems
• Scalable content distribution as a

main feature

Content-Centric Networking
• Address content in the network by

“name” – physical location irrelevant
• Content-Centric Routers (CCRs)

can route interest packages, cache
and adapt media chunks in highly
dynamic conditions

• Cache sizes are limited – need
efficient caching strategies that can
react on changes of users’ interests
over time

Consumer

Consumer

Consumer Consumer

Producer

0
         

3
         

2
         

1
4

         
Producer

Producers: Content requests/chunks
sent over the network and statistics
aggregated by routers
Monitors: stream reasoners detect
changes in interests and activity of users
by analyzing network statistics
Configurators: selection of a caching
strategy allowing for the best possible
load reduction on the network
Actuators: network interfaces and
controllers of routers

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 41/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.1 Introduction and Motivation

Scenario: Network Administration

Scalability problems:
• Popular content producers get

overloaded
• Network connections become

congested
• Content distribution over the Internet

needs workarounds

New Internet architectures are
proposed to solve these problems
• Scalable content distribution as a

main feature

Content-Centric Networking
• Address content in the network by

“name” – physical location irrelevant
• Content-Centric Routers (CCRs)

can route interest packages, cache
and adapt media chunks in highly
dynamic conditions

• Cache sizes are limited – need
efficient caching strategies that can
react on changes of users’ interests
over time

Consumer

Consumer

Consumer Consumer

Producer

0
         

3
         

2
         

1
4

         
Producer

Producers: Content requests/chunks
sent over the network and statistics
aggregated by routers
Monitors: stream reasoners detect
changes in interests and activity of users
by analyzing network statistics
Configurators: selection of a caching
strategy allowing for the best possible
load reduction on the network
Actuators: network interfaces and
controllers of routers

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 41/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.1 Introduction and Motivation

Scenario: Stream Reasoning for Energy Grids

Monitoring and control of energy grids is essential for reliable energy supply

Grid operators use specific networks to transmit real-time data from distant
energy distribution nodes

Example: Kelag AG networks in Austrian Alps (shown in color) use radio
modems for data transmission
• Due to weather conditions, human activity, etc., radio links between modems might

become unstable
• Stream reasoning system should reconfigure modems and antennas to enable

alternative possibly stable routes

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 42/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.1 Introduction and Motivation

Scenario: Stream Reasoning for Energy Grids, cont’d

Producers: Modems and the Master Node that communicate and collect
information about radio signal quality and transmitted packages

Monitors: stream reasoners detect instability of radio signals and deviations in
connection speed

Configurators: select network topology allowing for the best possible data
transfer rates between nodes of the network

Actuators: radio modems and antenna orientation controllers
Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 43/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.1 Introduction and Motivation

Scenario: Cooperative Intelligent Transporation Systems (C-ITS)

Cooperative-ITS (Vision):
• Health & Safety by monitoring
• Efficient urban mobility by optimizations
• Enabling technology for autonomous cars!

Vehicle-to-X communication (V2X)
• Traffic participants exchange information as

V2X messages (ETSI, 2013)
• Real time, simultaneously, and location based

Wide variety of reasoning tasks available:
• Quick monitoring of problems
→ Event detection

• Finding more complex, long-term problems
→ Model-based Diagnosis

• Adapt traffic lights to current traffic
→ Configuration

V2X Technology Overview

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 44/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.1 Introduction and Motivation

Scenario: Cooperative Intelligent Transporation Systems (C-ITS)

Cooperative-ITS (Vision):
• Health & Safety by monitoring
• Efficient urban mobility by optimizations
• Enabling technology for autonomous cars!

Vehicle-to-X communication (V2X)
• Traffic participants exchange information as

V2X messages (ETSI, 2013)
• Real time, simultaneously, and location based

Wide variety of reasoning tasks available:
• Quick monitoring of problems
→ Event detection

• Finding more complex, long-term problems
→ Model-based Diagnosis

• Adapt traffic lights to current traffic
→ Configuration

V2X Technology Overview

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 44/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.1 Introduction and Motivation

Scenario: Cooperative Intelligent Transporation Systems (C-ITS)

Cooperative-ITS (Vision):
• Health & Safety by monitoring
• Efficient urban mobility by optimizations
• Enabling technology for autonomous cars!

Vehicle-to-X communication (V2X)
• Traffic participants exchange information as

V2X messages (ETSI, 2013)
• Real time, simultaneously, and location based

Wide variety of reasoning tasks available:
• Quick monitoring of problems
→ Event detection

• Finding more complex, long-term problems
→ Model-based Diagnosis

• Adapt traffic lights to current traffic
→ Configuration

V2X Technology Overview

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 44/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.1 Introduction and Motivation

Scenario: C-ITS, cont’d

C-ITS infrastructure as a CPS:
• Dotted boxes are (cyber-)physical units
• Each intersection has one roadside unit

(RSU) that communicats via V2X (dotted)
• Central traffic control center (TCS) is

connected to all RSUs

Producers:
• Traffic participants like vehicles are

mobile sensors
• Vehicles send status and traffic lights

signal phases via V2X
Monitors:
• Stream aggregation/event detection on

RSUs
• High volume, velocity streams from

sensors
• Local view of traffic

Configurators:
• Main configurator is in the TCS
• Optimize traffic flow via dynamic

configurating of the traffic lights
• Global view of traffic

Model of intersection in Luxemburg

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 45/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.1 Introduction and Motivation

Scenario: C-ITS, cont’d

C-ITS infrastructure as a CPS:
• Dotted boxes are (cyber-)physical units
• Each intersection has one roadside unit

(RSU) that communicats via V2X (dotted)
• Central traffic control center (TCS) is

connected to all RSUs
Producers:
• Traffic participants like vehicles are

mobile sensors
• Vehicles send status and traffic lights

signal phases via V2X

Monitors:
• Stream aggregation/event detection on

RSUs
• High volume, velocity streams from

sensors
• Local view of traffic

Configurators:
• Main configurator is in the TCS
• Optimize traffic flow via dynamic

configurating of the traffic lights
• Global view of traffic

Model of intersection in Luxemburg

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 45/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.1 Introduction and Motivation

Scenario: C-ITS, cont’d

C-ITS infrastructure as a CPS:
• Dotted boxes are (cyber-)physical units
• Each intersection has one roadside unit

(RSU) that communicats via V2X (dotted)
• Central traffic control center (TCS) is

connected to all RSUs
Producers:
• Traffic participants like vehicles are

mobile sensors
• Vehicles send status and traffic lights

signal phases via V2X
Monitors:
• Stream aggregation/event detection on

RSUs
• High volume, velocity streams from

sensors
• Local view of traffic

Configurators:
• Main configurator is in the TCS
• Optimize traffic flow via dynamic

configurating of the traffic lights
• Global view of traffic

Model of intersection in Luxemburg

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 45/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.1 Introduction and Motivation

Scenario: C-ITS, cont’d

C-ITS infrastructure as a CPS:
• Dotted boxes are (cyber-)physical units
• Each intersection has one roadside unit

(RSU) that communicats via V2X (dotted)
• Central traffic control center (TCS) is

connected to all RSUs
Producers:
• Traffic participants like vehicles are

mobile sensors
• Vehicles send status and traffic lights

signal phases via V2X
Monitors:
• Stream aggregation/event detection on

RSUs
• High volume, velocity streams from

sensors
• Local view of traffic

Configurators:
• Main configurator is in the TCS
• Optimize traffic flow via dynamic

configurating of the traffic lights
• Global view of traffic

Model of intersection in Luxemburg

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 45/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.1 Introduction and Motivation

Scenario: Quality Assurance Lab

Quality Assurance Lab as a CPS:
• Lab engineers have to accomplish series

of QA tests for each job
• Resources of a lab are limited and must

be utilized in the best possible way to
avoid delays

• Classic scheduling approaches are not
applicable since durations and sequences
of actions are not deterministic

Producers:
• Engineers performing QA tasks
• Tools that can be occupied,

malfunctioning, maintained, etc.
• Production environment delivering

products for QA
Monitors:
• Data stream describing events in the Lab

(personnel, tools, incoming queues, etc.)
• Low volume/velocity streams from

sensors
• Automatic detection of disruptions (rules

or ML models)

Semiconductor QA Lab (c) Wikipedia

Configurators:
• Simulation of Lab future events

using scheduling/planing
techniques

• Optimize the thoughput of the
Lab by recommending tasks to
engineers

• Predict/detect possible delays
for team leads

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 46/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.1 Introduction and Motivation

Scenario: Quality Assurance Lab

Quality Assurance Lab as a CPS:
• Lab engineers have to accomplish series

of QA tests for each job
• Resources of a lab are limited and must

be utilized in the best possible way to
avoid delays

• Classic scheduling approaches are not
applicable since durations and sequences
of actions are not deterministic

Producers:
• Engineers performing QA tasks
• Tools that can be occupied,

malfunctioning, maintained, etc.
• Production environment delivering

products for QA

Monitors:
• Data stream describing events in the Lab

(personnel, tools, incoming queues, etc.)
• Low volume/velocity streams from

sensors
• Automatic detection of disruptions (rules

or ML models)

Semiconductor QA Lab (c) Wikipedia

Configurators:
• Simulation of Lab future events

using scheduling/planing
techniques

• Optimize the thoughput of the
Lab by recommending tasks to
engineers

• Predict/detect possible delays
for team leads

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 46/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.1 Introduction and Motivation

Scenario: Quality Assurance Lab

Quality Assurance Lab as a CPS:
• Lab engineers have to accomplish series

of QA tests for each job
• Resources of a lab are limited and must

be utilized in the best possible way to
avoid delays

• Classic scheduling approaches are not
applicable since durations and sequences
of actions are not deterministic

Producers:
• Engineers performing QA tasks
• Tools that can be occupied,

malfunctioning, maintained, etc.
• Production environment delivering

products for QA
Monitors:
• Data stream describing events in the Lab

(personnel, tools, incoming queues, etc.)
• Low volume/velocity streams from

sensors
• Automatic detection of disruptions (rules

or ML models)

Semiconductor QA Lab (c) Wikipedia

Configurators:
• Simulation of Lab future events

using scheduling/planing
techniques

• Optimize the thoughput of the
Lab by recommending tasks to
engineers

• Predict/detect possible delays
for team leads

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 46/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.1 Introduction and Motivation

Scenario: Quality Assurance Lab

Quality Assurance Lab as a CPS:
• Lab engineers have to accomplish series

of QA tests for each job
• Resources of a lab are limited and must

be utilized in the best possible way to
avoid delays

• Classic scheduling approaches are not
applicable since durations and sequences
of actions are not deterministic

Producers:
• Engineers performing QA tasks
• Tools that can be occupied,

malfunctioning, maintained, etc.
• Production environment delivering

products for QA
Monitors:
• Data stream describing events in the Lab

(personnel, tools, incoming queues, etc.)
• Low volume/velocity streams from

sensors
• Automatic detection of disruptions (rules

or ML models)

Semiconductor QA Lab (c) Wikipedia

Configurators:
• Simulation of Lab future events

using scheduling/planing
techniques

• Optimize the thoughput of the
Lab by recommending tasks to
engineers

• Predict/detect possible delays
for team leads

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 46/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Outline

1. Multi-Context Systems

2. Stream Reasoning
2.1 Introduction and Motivation
2.2 Background
2.3 Stream Processing
2.4 Databases
2.5 Complex Event Processing
2.6 Temporal Reasoning
2.7 Prolog
2.8 Datalog for Stream Reasoning
2.9 ASP-based Formalisms

3. Multi-Context Stream Systems

4. Conclusions

5. Further Resources

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 47/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Example: Network Administration

Network administrators would like the routers to select the best possible caching
strategy depending on the statistics of user requests

Data stream

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917 30 31

v  (video) m (online meeting)Package  

{. . . , 19 : {package(v, r1), package(m, r1)}, 20 : {package(v, r1)}, 21 : {package(m, r1)}, . . . }

Factor: Current daytime – has high correlation with number of active users and
their behavioral patterns

Some sample scenarios are:
• Morning: the number of active users is low and they are interested in different media
• Evening: in the evening a lot of users are watching a small amount of popular series

Possible caching strategies for the scenarios above:
• Random: replaces a random chunk in the cache with the current chunk received by

the networking unit
• LFU: the received chunk replaces the Least Frequently Used chunk in the cache

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 48/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Example: Network Administration

Network administrators would like the routers to select the best possible caching
strategy depending on the statistics of user requests

Data stream

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917 30 31

v  (video) m (online meeting)Package  

{. . . , 19 : {package(v, r1), package(m, r1)}, 20 : {package(v, r1)}, 21 : {package(m, r1)}, . . . }

Factor: Current daytime – has high correlation with number of active users and
their behavioral patterns
Some sample scenarios are:
• Morning: the number of active users is low and they are interested in different media
• Evening: in the evening a lot of users are watching a small amount of popular series

Possible caching strategies for the scenarios above:
• Random: replaces a random chunk in the cache with the current chunk received by

the networking unit
• LFU: the received chunk replaces the Least Frequently Used chunk in the cache

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 48/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Example: Network Administration

Network administrators would like the routers to select the best possible caching
strategy depending on the statistics of user requests

Data stream

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917 30 31

v  (video) m (online meeting)Package  

{. . . , 19 : {package(v, r1), package(m, r1)}, 20 : {package(v, r1)}, 21 : {package(m, r1)}, . . . }

Factor: Current daytime – has high correlation with number of active users and
their behavioral patterns
Some sample scenarios are:
• Morning: the number of active users is low and they are interested in different media
• Evening: in the evening a lot of users are watching a small amount of popular series

Possible caching strategies for the scenarios above:
• Random: replaces a random chunk in the cache with the current chunk received by

the networking unit
• LFU: the received chunk replaces the Least Frequently Used chunk in the cache

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 48/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Stream Reasoning: Basic Notions

Knowledge base (ontology, logic program, etc.) KB

Streams:
• A stream is a pair S = (T, υ) of a timeline T and a mapping υ : T → 2A,

where
• A is a set of facts (atoms)
• T = [l, u] = {l, l+1, . . . , u} ⊆ 2N0 is an interval of integers

Data stream

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917 30 31

v  (video) m (online meeting)Package  

Example: T = [19, 29]
υ = {19 : {package(v, r1), package(m, r1)}, 20 : {package(v, r1), . . . }}

Query Q: formula, to be evaluated against KB over data stream S

Example: package(v, r1); package(X, r1)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 49/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Stream Reasoning: Basic Notions

Knowledge base (ontology, logic program, etc.) KB

Streams:
• A stream is a pair S = (T, υ) of a timeline T and a mapping υ : T → 2A,

where
• A is a set of facts (atoms)
• T = [l, u] = {l, l+1, . . . , u} ⊆ 2N0 is an interval of integers

Data stream

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917 30 31

v  (video) m (online meeting)Package  

Example: T = [19, 29]
υ = {19 : {package(v, r1), package(m, r1)}, 20 : {package(v, r1), . . . }}

Query Q: formula, to be evaluated against KB over data stream S

Example: package(v, r1); package(X, r1)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 49/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Stream Reasoning: Basic Notions

Knowledge base (ontology, logic program, etc.) KB

Streams:
• A stream is a pair S = (T, υ) of a timeline T and a mapping υ : T → 2A,

where
• A is a set of facts (atoms)
• T = [l, u] = {l, l+1, . . . , u} ⊆ 2N0 is an interval of integers

Data stream

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917 30 31

v  (video) m (online meeting)Package  

Example: T = [19, 29]
υ = {19 : {package(v, r1), package(m, r1)}, 20 : {package(v, r1), . . . }}

Query Q: formula, to be evaluated against KB over data stream S

Example: package(v, r1); package(X, r1)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 49/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Stream Reasoning: Basic Notions (cont’d)

Question: How to evaluate Q against KB over S at a query time point t?

Q may refer to the query time, involve prediction / postdiction etc

Example: X package(v, r1) “A video package v must be observed on the
router r1 in the neXt step.”

Temporal Reasoning
• temporal logic over (data) streams
• use linear time logic (LTL) (Pnueli, 1977), branching time logic (CTL, CTL∗)

(Clarke and Emerson, 1981)
• Complex Event Processing: patterns in data (event) streams

(e.g., ETALIS (Anicic et al., 2012), RTEC (Artikis et al., 2014))

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 50/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Stream Reasoning vs. Stream Processing

Streaming Data
• high data volume, volatility of data (speed of data change)

• deliberate information loss (drop data): use data snapshots

• evaluate pull-based (at given time-points) or push-based (when data appears)

• incremental evaluation desired
• time management is important

• system vs. application time
• point-wise vs. interval representation

Stream Processing vs. Stream Reasoning:
• “lower level” processing (selections, joins) vs. “higher level” (reasoning steps)

• “declarative” Stream-X

• controversial views in the Stream Reasoning community

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 51/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Stream Reasoning vs. Stream Processing

Streaming Data
• high data volume, volatility of data (speed of data change)

• deliberate information loss (drop data): use data snapshots

• evaluate pull-based (at given time-points) or push-based (when data appears)

• incremental evaluation desired
• time management is important

• system vs. application time
• point-wise vs. interval representation

Stream Processing vs. Stream Reasoning:
• “lower level” processing (selections, joins) vs. “higher level” (reasoning steps)

• “declarative” Stream-X

• controversial views in the Stream Reasoning community

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 51/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Data Snapshots: Window Functions

Important aspect of stream reasoning: use only window view of data, i.e.,
limited observability at each point in time

Different types of windows in practice:
• time-based windows (within time bounds)
• tuple-based windows (number of tuples, count)
• partition-based windows (split input data, process separately)
• in addition, sliding or tumbling (consider atom repeatedly / once)

Model data snapshots (windows) as substreams of a stream

Formally, windows are functions

w : (S, t) 7→ S′

assigning each stream S = (T, υ) and t ∈ T a substream S′ ⊆ S, which means
S′ = (T ′, υ′) such that T ′ ⊆ T and υ′(t) ⊆ υ(t), for all t ∈ T ′

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 52/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Data Snapshots: Window Functions

Important aspect of stream reasoning: use only window view of data, i.e.,
limited observability at each point in time

Different types of windows in practice:
• time-based windows (within time bounds)
• tuple-based windows (number of tuples, count)
• partition-based windows (split input data, process separately)
• in addition, sliding or tumbling (consider atom repeatedly / once)

Model data snapshots (windows) as substreams of a stream

Formally, windows are functions

w : (S, t) 7→ S′

assigning each stream S = (T, υ) and t ∈ T a substream S′ ⊆ S, which means
S′ = (T ′, υ′) such that T ′ ⊆ T and υ′(t) ⊆ υ(t), for all t ∈ T ′

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 52/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Data Snapshots: Window Functions

Important aspect of stream reasoning: use only window view of data, i.e.,
limited observability at each point in time

Different types of windows in practice:
• time-based windows (within time bounds)
• tuple-based windows (number of tuples, count)
• partition-based windows (split input data, process separately)
• in addition, sliding or tumbling (consider atom repeatedly / once)

Model data snapshots (windows) as substreams of a stream

Formally, windows are functions

w : (S, t) 7→ S′

assigning each stream S = (T, υ) and t ∈ T a substream S′ ⊆ S, which means
S′ = (T ′, υ′) such that T ′ ⊆ T and υ′(t) ⊆ υ(t), for all t ∈ T ′

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 52/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Data Snapshots: Window Functions

Important aspect of stream reasoning: use only window view of data, i.e.,
limited observability at each point in time

Different types of windows in practice:
• time-based windows (within time bounds)
• tuple-based windows (number of tuples, count)
• partition-based windows (split input data, process separately)
• in addition, sliding or tumbling (consider atom repeatedly / once)

Model data snapshots (windows) as substreams of a stream

Formally, windows are functions

w : (S, t) 7→ S′

assigning each stream S = (T, υ) and t ∈ T a substream S′ ⊆ S, which means
S′ = (T ′, υ′) such that T ′ ⊆ T and υ′(t) ⊆ υ(t), for all t ∈ T ′

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 52/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Example: Window Functions

Window operators � (substream generation)

�w ⇐⇒ w(S, t)

Data stream

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917 30 31

v  (video) m (online meeting)Package  v  (video) m (online meeting)Package  

Examples:
•
�4 := �w(4,0,1)

τ last 4 units from the current time point (29) with step
1 – sliding time-based window, shown in blue

•
�8(8) := �w(8,0,8)

τ last 8 units with step 8 – hoping time-based window,
shown in green

•
�#10 = �

w10,0
# last 10 tuples – sliding tuple-based window, shown in

red – non-deterministic!

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 53/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Example: Window Functions

Window operators � (substream generation)

�w ⇐⇒ w(S, t)

Data stream

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917 30 31

v  (video) m (online meeting)Package  v  (video) m (online meeting)Package  

Examples:
•
�4 := �w(4,0,1)

τ last 4 units from the current time point (29) with step
1 – sliding time-based window, shown in blue

•
�8(8) := �w(8,0,8)

τ last 8 units with step 8 – hoping time-based window,
shown in green

•
�#10 = �

w10,0
# last 10 tuples – sliding tuple-based window, shown in

red – non-deterministic!

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 53/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Example: Window Functions

Window operators � (substream generation)

�w ⇐⇒ w(S, t)

Data stream

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917 30 31

v  (video) m (online meeting)Package  v  (video) m (online meeting)Package  

Examples:
•
�4 := �w(4,0,1)

τ last 4 units from the current time point (29) with step
1 – sliding time-based window, shown in blue

•
�8(8) := �w(8,0,8)

τ last 8 units with step 8 – hoping time-based window,
shown in green

•
�#10 = �

w10,0
# last 10 tuples – sliding tuple-based window, shown in

red – non-deterministic!

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 53/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Example: Window Functions

Window operators � (substream generation)

�w ⇐⇒ w(S, t)

Data stream

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917 30 31

v  (video) m (online meeting)Package  v  (video) m (online meeting)Package  

Examples:
•
�4 := �w(4,0,1)

τ last 4 units from the current time point (29) with step
1 – sliding time-based window, shown in blue

•
�8(8) := �w(8,0,8)

τ last 8 units with step 8 – hoping time-based window,
shown in green

•
�#10 = �

w10,0
# last 10 tuples – sliding tuple-based window, shown in

red – non-deterministic!

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 53/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Temporal Operators and Formulas by Example

Languages for stream reasoning often extend logic languages with stream access /
processing features

Atoms from A (atomic formulas a), e.g., A = {package(v, r1), package(m, r1)}
Boolean connectives ∧, ∨,→, ¬

Window operators �

Temporal operators 3, 2, @t

Data stream 

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917

Substream for a time-

based window of size 6 

30 31

v  (video) m (online meeting)Package

Examples:

• �62 package(m, r1), �63 package(v, r1), and @t−3 package(v, r1) hold
• �6@28 package(v, r1) and 2 package(m, r1) do not hold

Note: nesting of windows is possible!

�602 �5 3 package(v, r1) �#20 �53 package(m, r1)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 54/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Temporal Operators and Formulas by Example

Languages for stream reasoning often extend logic languages with stream access /
processing features

Atoms from A (atomic formulas a), e.g., A = {package(v, r1), package(m, r1)}
Boolean connectives ∧, ∨,→, ¬
Window operators �

Temporal operators 3, 2, @t

Data stream 

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917

Substream for a time-

based window of size 6 

30 31

v  (video) m (online meeting)Package

Examples:

• �62 package(m, r1), �63 package(v, r1), and @t−3 package(v, r1) hold
• �6@28 package(v, r1) and 2 package(m, r1) do not hold

Note: nesting of windows is possible!

�602 �5 3 package(v, r1) �#20 �53 package(m, r1)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 54/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Temporal Operators and Formulas by Example

Languages for stream reasoning often extend logic languages with stream access /
processing features

Atoms from A (atomic formulas a), e.g., A = {package(v, r1), package(m, r1)}
Boolean connectives ∧, ∨,→, ¬
Window operators �

Temporal operators 3, 2, @t

Data stream 

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917

Substream for a time-

based window of size 6 

30 31

v  (video) m (online meeting)Package

Examples:
• �62 package(m, r1), �63 package(v, r1), and @t−3 package(v, r1) hold

• �6@28 package(v, r1) and 2 package(m, r1) do not hold

Note: nesting of windows is possible!

�602 �5 3 package(v, r1) �#20 �53 package(m, r1)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 54/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Temporal Operators and Formulas by Example

Languages for stream reasoning often extend logic languages with stream access /
processing features

Atoms from A (atomic formulas a), e.g., A = {package(v, r1), package(m, r1)}
Boolean connectives ∧, ∨,→, ¬
Window operators �

Temporal operators 3, 2, @t

Data stream 

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917

Substream for a time-

based window of size 6 

30 31

v  (video) m (online meeting)Package

Examples:
• �62 package(m, r1), �63 package(v, r1), and @t−3 package(v, r1) hold
• �6@28 package(v, r1) and 2 package(m, r1) do not hold

Note: nesting of windows is possible!

�602 �5 3 package(v, r1) �#20 �53 package(m, r1)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 54/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Temporal Operators and Formulas by Example

Languages for stream reasoning often extend logic languages with stream access /
processing features

Atoms from A (atomic formulas a), e.g., A = {package(v, r1), package(m, r1)}
Boolean connectives ∧, ∨,→, ¬
Window operators �

Temporal operators 3, 2, @t

Data stream 

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917

Substream for a time-

based window of size 6 

30 31

v  (video) m (online meeting)Package

Examples:
• �62 package(m, r1), �63 package(v, r1), and @t−3 package(v, r1) hold
• �6@28 package(v, r1) and 2 package(m, r1) do not hold

Note: nesting of windows is possible!

�602 �5 3 package(v, r1) �#20 �53 package(m, r1)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 54/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Entailment by Example

Entailment M, S?, t  α where M = 〈S?,W,B〉 consists of the initial stream S?,
window functions W and static background B

Data stream 

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917 30 31

v  (video) m (online meeting)Package

M, S?, 29  �63package(v, r1) ?

evaluate window⇒ S

⇑
M, S, 29  3package(v, r1) ?

⇑
M, S, 24  package(v, r1)

X

defines query evaluation if the whole stream S? is data

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 55/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Entailment by Example

Entailment M, S?, t  α where M = 〈S?,W,B〉 consists of the initial stream S?,
window functions W and static background B

Data stream 

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917

Substream for a time-

based window of size 6 

30 31

v  (video) m (online meeting)Package

M, S?, 29  �63package(v, r1) ? evaluate window⇒ S

⇑
M, S, 29  3package(v, r1) ?

⇑
M, S, 24  package(v, r1)

X

defines query evaluation if the whole stream S? is data

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 55/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Entailment by Example

Entailment M, S?, t  α where M = 〈S?,W,B〉 consists of the initial stream S?,
window functions W and static background B

Data stream 

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917

Substream for a time-

based window of size 6 

30 31

v  (video) m (online meeting)Package

M, S?, 29  �63package(v, r1) ? evaluate window⇒ S

⇑
M, S, 29  3package(v, r1) ?

⇑
M, S, 24  package(v, r1)

X

defines query evaluation if the whole stream S? is data

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 55/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Entailment by Example

Entailment M, S?, t  α where M = 〈S?,W,B〉 consists of the initial stream S?,
window functions W and static background B

Data stream 

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917

Substream for a time-

based window of size 6 

30 31

v  (video) m (online meeting)Package

M, S?, 29  �63package(v, r1) ? evaluate window⇒ S

⇑
M, S, 29  3package(v, r1) ?

⇑
M, S, 24  package(v, r1) X

defines query evaluation if the whole stream S? is data

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 55/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Entailment by Example

Entailment M, S?, t  α where M = 〈S?,W,B〉 consists of the initial stream S?,
window functions W and static background B

Data stream 

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917

Substream for a time-

based window of size 6 

30 31

v  (video) m (online meeting)Package

M, S?, 29  �63package(v, r1) ? evaluate window⇒ S

⇑
M, S, 29  3package(v, r1) ?

⇑
M, S, 24  package(v, r1) X

defines query evaluation if the whole stream S? is data

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 55/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Historical Developments

Different communities looked at different aspects

Data Management:
• stream processing approach
• continuous queries
• low-level, high rate input data (cross-joins, pattern matching, etc.)
• windows for partial data snapshots

Knowledge Representation and Reasoning:
• stream reasoning
• higher-level, lower rate (scalability!)
• changing knowledge bases (ontologies, rule bases)

Semantic Web:
• lifting stream data to a semantic level
• linked stream data (coupling tuples with timestamps)
• several extensions of SPARQL (e.g. CSPARQL or CQELS)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 56/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Historical Developments

Different communities looked at different aspects

Data Management:
• stream processing approach
• continuous queries
• low-level, high rate input data (cross-joins, pattern matching, etc.)
• windows for partial data snapshots

Knowledge Representation and Reasoning:
• stream reasoning
• higher-level, lower rate (scalability!)
• changing knowledge bases (ontologies, rule bases)

Semantic Web:
• lifting stream data to a semantic level
• linked stream data (coupling tuples with timestamps)
• several extensions of SPARQL (e.g. CSPARQL or CQELS)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 56/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Historical Developments

Different communities looked at different aspects

Data Management:
• stream processing approach
• continuous queries
• low-level, high rate input data (cross-joins, pattern matching, etc.)
• windows for partial data snapshots

Knowledge Representation and Reasoning:
• stream reasoning
• higher-level, lower rate (scalability!)
• changing knowledge bases (ontologies, rule bases)

Semantic Web:
• lifting stream data to a semantic level
• linked stream data (coupling tuples with timestamps)
• several extensions of SPARQL (e.g. CSPARQL or CQELS)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 56/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Observations

Lack of (unified) formal foundations
stream processing:
• often operational semantics; unpredictable
• systems may give for same query different results

Comparisons / benchmarks unsatisfactory
• semantics outcome not / weakly addressed (tuple counting)
• benchmarks geared towards high-frequency / limits
• no general methods, no reference semantics

Advanced features missing
• nondeterminism
• incomplete information
• negation
• model generation

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 57/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Observations

Lack of (unified) formal foundations
stream processing:
• often operational semantics; unpredictable
• systems may give for same query different results

Comparisons / benchmarks unsatisfactory
• semantics outcome not / weakly addressed (tuple counting)
• benchmarks geared towards high-frequency / limits
• no general methods, no reference semantics

Advanced features missing
• nondeterminism
• incomplete information
• negation
• model generation

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 57/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.2 Background

Observations

Lack of (unified) formal foundations
stream processing:
• often operational semantics; unpredictable
• systems may give for same query different results

Comparisons / benchmarks unsatisfactory
• semantics outcome not / weakly addressed (tuple counting)
• benchmarks geared towards high-frequency / limits
• no general methods, no reference semantics

Advanced features missing
• nondeterminism
• incomplete information
• negation
• model generation

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 57/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.3 Stream Processing

Outline

1. Multi-Context Systems

2. Stream Reasoning
2.1 Introduction and Motivation
2.2 Background
2.3 Stream Processing
2.4 Databases
2.5 Complex Event Processing
2.6 Temporal Reasoning
2.7 Prolog
2.8 Datalog for Stream Reasoning
2.9 ASP-based Formalisms

3. Multi-Context Stream Systems

4. Conclusions

5. Further Resources

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 58/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.3 Stream Processing

Stream Processing Systems

Output 
Streams

Applications

Sensors

Users

Input 
Streams

Other

Stream Processing System

App1

App2

Long-term storage

Applications

Visualizations

Appn

Other

Stream processing systems: designed for low-latency, distributed
computations on high volumes of continuously incoming data, e.g.
• Apache Kafka (Bejeck and Narkhede, 2018)
• Apache Flink (Hueske and Kalavri, 2019)

Different systems can support
• automatic deployment of processing infrastructures into clouds and clusters
• load balancing and management data communication
• storage/caching of computation results (stateless vs. stateful computations)
• time management for computation and communication
• fail recovery mechanisms
• various programming paradigms, e.g., procedural or functional programming
• limited query execution, e.g., SQL-like language in Apache Flink

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 59/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.3 Stream Processing

Stream Processing Systems

Output 
Streams

Applications

Sensors

Users

Input 
Streams

Other

Stream Processing System

App1

App2

Long-term storage

Applications

Visualizations

Appn

Other

Stream processing systems: designed for low-latency, distributed
computations on high volumes of continuously incoming data, e.g.
• Apache Kafka (Bejeck and Narkhede, 2018)
• Apache Flink (Hueske and Kalavri, 2019)

Different systems can support
• automatic deployment of processing infrastructures into clouds and clusters
• load balancing and management data communication
• storage/caching of computation results (stateless vs. stateful computations)
• time management for computation and communication
• fail recovery mechanisms
• various programming paradigms, e.g., procedural or functional programming
• limited query execution, e.g., SQL-like language in Apache Flink

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 59/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.4 Databases

Outline

1. Multi-Context Systems

2. Stream Reasoning
2.1 Introduction and Motivation
2.2 Background
2.3 Stream Processing
2.4 Databases
2.5 Complex Event Processing
2.6 Temporal Reasoning
2.7 Prolog
2.8 Datalog for Stream Reasoning
2.9 ASP-based Formalisms

3. Multi-Context Stream Systems

4. Conclusions

5. Further Resources

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 60/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.4 Databases

Databases and Data Streams

Before 2000
• Novel applications of computers in the 80s, e.g., Supervisory Control and Data

Acquisition (SCADA) systems, led to increased utilization of data streams
• Existing databases using relational, hierarchical, or network models could not handle

continuously incoming data efficiently
• Active databases with event-condition rules (Dayal et al., 1995; Widom and Ceri,

1996)⇒ triggers in modern databases
• Continuous queries over append-only databases (Terry et al., 1992)

2000 –
• Sliding, tumbling (non-overlapping) windows as well as latch windows that can

maintain states of multiple windows in the Aurora system (Abadi et al., 2003)
• Stanford Stream Data Management (STREAM) (Arasu et al., 2003) which employed

Continuous Query Language (CQL) (Arasu et al., 2006)
• Provides an explicit operational semantics
• Three kinds of window operators: partitioned as well as time- and tuple-based windows

• Streaming data on the Web resulted in development of continuous query languages,
e.g., C-SPARQL (Barbieri et al., 2010) or CQELS (Phuoc et al., 2011), for RDF
Stream Processing3

3https://www.w3.org/community/rsp

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 61/125

https://www.w3.org/community/rsp


Multi-Context Stream Reasoning 2. Stream Reasoning 2.4 Databases

Databases and Data Streams

Before 2000
• Novel applications of computers in the 80s, e.g., Supervisory Control and Data

Acquisition (SCADA) systems, led to increased utilization of data streams
• Existing databases using relational, hierarchical, or network models could not handle

continuously incoming data efficiently
• Active databases with event-condition rules (Dayal et al., 1995; Widom and Ceri,

1996)⇒ triggers in modern databases
• Continuous queries over append-only databases (Terry et al., 1992)

2000 –
• Sliding, tumbling (non-overlapping) windows as well as latch windows that can

maintain states of multiple windows in the Aurora system (Abadi et al., 2003)
• Stanford Stream Data Management (STREAM) (Arasu et al., 2003) which employed

Continuous Query Language (CQL) (Arasu et al., 2006)
• Provides an explicit operational semantics
• Three kinds of window operators: partitioned as well as time- and tuple-based windows

• Streaming data on the Web resulted in development of continuous query languages,
e.g., C-SPARQL (Barbieri et al., 2010) or CQELS (Phuoc et al., 2011), for RDF
Stream Processing3

3https://www.w3.org/community/rsp

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 61/125

https://www.w3.org/community/rsp


Multi-Context Stream Reasoning 2. Stream Reasoning 2.4 Databases

Databases and Data Streams (cont’d)

Early databases:
• Stanford Stream Data Management (STREAM) (Arasu et al., 2003) wit CQL
• TelegraphCQ (Madden et al., 2002) with the SQL-based language (StreaQuel)
• Aurora (Carney et al., 2002) as a workflow-oriented system
• COUGAR (Fung et al., 2002) provides object-oriented extension

Current databases:
• Hancock (Cortes et al., 2016) introduces transactional data streams
• PipelineDB 4 is an extension of PostgreSQL
• Esper 5 and Odysseus 6 provide event processing languages

Semantic Web-based systems:
• C-SPARQL (Barbieri et al., 2010)
• CQELS (Phuoc et al., 2011)
• SPARQLstream (Calbimonte et al., 2016)

4https://www.pipelinedb.com/
5http://www.espertech.com/esper/
6http://odysseus.informatik.uni-oldenburg.de/

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 62/125

https://www.pipelinedb.com/
http://www.espertech.com/esper/
http://odysseus.informatik.uni-oldenburg.de/


Multi-Context Stream Reasoning 2. Stream Reasoning 2.5 Complex Event Processing

Outline

1. Multi-Context Systems

2. Stream Reasoning
2.1 Introduction and Motivation
2.2 Background
2.3 Stream Processing
2.4 Databases
2.5 Complex Event Processing
2.6 Temporal Reasoning
2.7 Prolog
2.8 Datalog for Stream Reasoning
2.9 ASP-based Formalisms

3. Multi-Context Stream Systems

4. Conclusions

5. Further Resources

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 63/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.5 Complex Event Processing

Complex Event Processing (CEP) Systems (Luckham, 2005)

Consider streams of event notifications

CEP systems usually employ multiple event consumers that derive composite
(high-level) events out of sequences (patterns) of input (low-level) events

Support declarative languages with complex expressions over temporal
intervals and sequences of events
• Rapide (Luckham, 1996): language to simulate concurrent and distributed systems
• CEDR (Barga et al., 2007): system considering both system and application time to

provide different consistency guarantees for derived events
• Cayuga (Brenna et al., 2007): SQL-like query language without window operators,

uses a specific Cayuga algebra
• Sase (Wu et al., 2006): system designed for large-scale event processing, provides

a CQL-like language that allows for usage of sliding time-based windows
• Tesla (Cugola and Margara, 2010): rule-based language used in the T-Rex system

(Cugola and Margara, 2012)
• formal semantics defined in a Metric Temporal Logic (MTL)
• supports temporal operators, timers, aggregate functions, negation-as-failure

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 64/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.5 Complex Event Processing

ETALIS (Anicic et al., 2012)

Complex event processing language, with rules a← pt, where

• a is an atom
• pt is a complex event pattern on intervals

Relations akin to Allen’s [1983] interval logic (Sequence, During,...)

Interpretation: a 7→ I(a) ⊆ {〈t, t′〉 | t ≤ t′ ∈ R+
0 }

Event stream: a 7→ ε(a) ⊆ R+
0

I is a model of rule base R for event stream ε, if

(i) 〈t, t〉 ∈ I(a) for each atom a appearing at t in ε, and

(ii) 〈t, t′〉 ∈ I(a) for each 〈t, t′〉 matching pt in a rule a← pt

Example:

Event stream ε: ε(x) = {1}, ε(y) = {3, 5}
Rule base R = {a← x SEQ y}
Tuples 〈1, 3〉 and 〈1, 5〉 match x SEQ y and must be assigned to a

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 65/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.5 Complex Event Processing

ETALIS (Anicic et al., 2012)

Complex event processing language, with rules a← pt, where

• a is an atom
• pt is a complex event pattern on intervals

Relations akin to Allen’s [1983] interval logic (Sequence, During,...)

Interpretation: a 7→ I(a) ⊆ {〈t, t′〉 | t ≤ t′ ∈ R+
0 }

Event stream: a 7→ ε(a) ⊆ R+
0

I is a model of rule base R for event stream ε, if

(i) 〈t, t〉 ∈ I(a) for each atom a appearing at t in ε, and

(ii) 〈t, t′〉 ∈ I(a) for each 〈t, t′〉 matching pt in a rule a← pt

Example:

Event stream ε: ε(x) = {1}, ε(y) = {3, 5}
Rule base R = {a← x SEQ y}
Tuples 〈1, 3〉 and 〈1, 5〉 match x SEQ y and must be assigned to a

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 65/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.5 Complex Event Processing

ETALIS (Anicic et al., 2012)

Complex event processing language, with rules a← pt, where

• a is an atom
• pt is a complex event pattern on intervals

Relations akin to Allen’s [1983] interval logic (Sequence, During,...)

Interpretation: a 7→ I(a) ⊆ {〈t, t′〉 | t ≤ t′ ∈ R+
0 }

Event stream: a 7→ ε(a) ⊆ R+
0

I is a model of rule base R for event stream ε, if

(i) 〈t, t〉 ∈ I(a) for each atom a appearing at t in ε, and

(ii) 〈t, t′〉 ∈ I(a) for each 〈t, t′〉 matching pt in a rule a← pt

Example:

Event stream ε: ε(x) = {1}, ε(y) = {3, 5}
Rule base R = {a← x SEQ y}
Tuples 〈1, 3〉 and 〈1, 5〉 match x SEQ y and must be assigned to a

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 65/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.5 Complex Event Processing

ETALIS (Anicic et al., 2012)

Complex event processing language, with rules a← pt, where

• a is an atom
• pt is a complex event pattern on intervals

Relations akin to Allen’s [1983] interval logic (Sequence, During,...)

Interpretation: a 7→ I(a) ⊆ {〈t, t′〉 | t ≤ t′ ∈ R+
0 }

Event stream: a 7→ ε(a) ⊆ R+
0

I is a model of rule base R for event stream ε, if

(i) 〈t, t〉 ∈ I(a) for each atom a appearing at t in ε, and

(ii) 〈t, t′〉 ∈ I(a) for each 〈t, t′〉 matching pt in a rule a← pt

Example:

Event stream ε: ε(x) = {1}, ε(y) = {3, 5}
Rule base R = {a← x SEQ y}
Tuples 〈1, 3〉 and 〈1, 5〉 match x SEQ y and must be assigned to a

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 65/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.6 Temporal Reasoning

Outline

1. Multi-Context Systems

2. Stream Reasoning
2.1 Introduction and Motivation
2.2 Background
2.3 Stream Processing
2.4 Databases
2.5 Complex Event Processing
2.6 Temporal Reasoning
2.7 Prolog
2.8 Datalog for Stream Reasoning
2.9 ASP-based Formalisms

3. Multi-Context Stream Systems

4. Conclusions

5. Further Resources

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 66/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.6 Temporal Reasoning

Temporal Reasoning

Starting with Linear Time Logic (LTL) (Pnueli, 1977), various temporal logics
have been extensively studied and applied in formal verification of hardware
and software
Prototypical problem in Model Checking: given
• a temporal logic formula ϕ, describing some property
• a Kripke structure M = 〈S,R, L〉, describing a system, where

• S is a (finite) set of states,
• R ⊆ S× S is a set of transitions, and
• L : S→ 2A assigns every state s a set L(s) ⊆ A of propositional atoms

decide whether ϕ holds for any path π = s0, s1, . . . in M, i.e., M |= ϕ

Extensions of LTL, such as Metric Temporal Logic (MTL) (Koymans, 1990),
allow for expressions with time bounds

Relation to stream reasoning: sequences of sets of propositional atoms
L(s0), L(s1), . . . – corresponding to paths – can be used to represent streams

Temporal Action Logic (Doherty et al., 2009): builds on MTL, to control drones

DyKnow (Heintz et al., 2010): one of the first systems that implements
continuous reasoning for temporal logics over data streams
• applications in robotics, chronicle recognition, automatic configuration, etc.

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 67/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.6 Temporal Reasoning

Temporal Reasoning

Starting with Linear Time Logic (LTL) (Pnueli, 1977), various temporal logics
have been extensively studied and applied in formal verification of hardware
and software
Prototypical problem in Model Checking: given
• a temporal logic formula ϕ, describing some property
• a Kripke structure M = 〈S,R, L〉, describing a system, where

• S is a (finite) set of states,
• R ⊆ S× S is a set of transitions, and
• L : S→ 2A assigns every state s a set L(s) ⊆ A of propositional atoms

decide whether ϕ holds for any path π = s0, s1, . . . in M, i.e., M |= ϕ

Extensions of LTL, such as Metric Temporal Logic (MTL) (Koymans, 1990),
allow for expressions with time bounds

Relation to stream reasoning: sequences of sets of propositional atoms
L(s0), L(s1), . . . – corresponding to paths – can be used to represent streams

Temporal Action Logic (Doherty et al., 2009): builds on MTL, to control drones

DyKnow (Heintz et al., 2010): one of the first systems that implements
continuous reasoning for temporal logics over data streams
• applications in robotics, chronicle recognition, automatic configuration, etc.

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 67/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.6 Temporal Reasoning

Temporal Reasoning

Starting with Linear Time Logic (LTL) (Pnueli, 1977), various temporal logics
have been extensively studied and applied in formal verification of hardware
and software
Prototypical problem in Model Checking: given
• a temporal logic formula ϕ, describing some property
• a Kripke structure M = 〈S,R, L〉, describing a system, where

• S is a (finite) set of states,
• R ⊆ S× S is a set of transitions, and
• L : S→ 2A assigns every state s a set L(s) ⊆ A of propositional atoms

decide whether ϕ holds for any path π = s0, s1, . . . in M, i.e., M |= ϕ

Extensions of LTL, such as Metric Temporal Logic (MTL) (Koymans, 1990),
allow for expressions with time bounds

Relation to stream reasoning: sequences of sets of propositional atoms
L(s0), L(s1), . . . – corresponding to paths – can be used to represent streams

Temporal Action Logic (Doherty et al., 2009): builds on MTL, to control drones

DyKnow (Heintz et al., 2010): one of the first systems that implements
continuous reasoning for temporal logics over data streams
• applications in robotics, chronicle recognition, automatic configuration, etc.

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 67/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.7 Prolog

Outline

1. Multi-Context Systems

2. Stream Reasoning
2.1 Introduction and Motivation
2.2 Background
2.3 Stream Processing
2.4 Databases
2.5 Complex Event Processing
2.6 Temporal Reasoning
2.7 Prolog
2.8 Datalog for Stream Reasoning
2.9 ASP-based Formalisms

3. Multi-Context Stream Systems

4. Conclusions

5. Further Resources

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 68/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.7 Prolog

Prolog

Procedural semantics of Prolog enables natural handling of streams by adding
a timestamp as an additional term to every atom

previous(T1,X)← msg(T,X),msg(T1,X), T1 < T
• Note: programming becomes more complicated: e.g., infinite evaluations possible
• Nevertheless, Prolog was successfully used to implement real-time reasoning in

ETALIS

Temporal Prolog (Hrycej, 1993): implements reified temporal logic (Reichgelt,
1987), provides language constructs for temporal dependencies between atoms

Novel proposal: Lazy Stream Programming (Tarau et al., 2019)
lazy stream = encapsulation of a stream into a mechanism

that provides its elements on demand
• generic lazy stream generators for stateful computations on finite + infinite

sequences
• answer stream generators: special class supporting AND-streams (forward, by

recursion) and OR-streams (backward, by disjunction)
• can wrap e.g. a socket reader as stream
• details of operations (open, read, close) remain hidden

• lazy lists are materialized on demand, using attributed variables⇒ can handle
(potentially) infinite streams

• beneficial for memory consumption (use garbage collection and tabling)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 69/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.7 Prolog

Prolog

Procedural semantics of Prolog enables natural handling of streams by adding
a timestamp as an additional term to every atom

previous(T1,X)← msg(T,X),msg(T1,X), T1 < T
• Note: programming becomes more complicated: e.g., infinite evaluations possible
• Nevertheless, Prolog was successfully used to implement real-time reasoning in

ETALIS

Temporal Prolog (Hrycej, 1993): implements reified temporal logic (Reichgelt,
1987), provides language constructs for temporal dependencies between atoms

Novel proposal: Lazy Stream Programming (Tarau et al., 2019)
lazy stream = encapsulation of a stream into a mechanism

that provides its elements on demand
• generic lazy stream generators for stateful computations on finite + infinite

sequences
• answer stream generators: special class supporting AND-streams (forward, by

recursion) and OR-streams (backward, by disjunction)
• can wrap e.g. a socket reader as stream
• details of operations (open, read, close) remain hidden

• lazy lists are materialized on demand, using attributed variables⇒ can handle
(potentially) infinite streams

• beneficial for memory consumption (use garbage collection and tabling)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 69/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.7 Prolog

Prolog

Procedural semantics of Prolog enables natural handling of streams by adding
a timestamp as an additional term to every atom

previous(T1,X)← msg(T,X),msg(T1,X), T1 < T
• Note: programming becomes more complicated: e.g., infinite evaluations possible
• Nevertheless, Prolog was successfully used to implement real-time reasoning in

ETALIS

Temporal Prolog (Hrycej, 1993): implements reified temporal logic (Reichgelt,
1987), provides language constructs for temporal dependencies between atoms

Novel proposal: Lazy Stream Programming (Tarau et al., 2019)
lazy stream = encapsulation of a stream into a mechanism

that provides its elements on demand

• generic lazy stream generators for stateful computations on finite + infinite
sequences

• answer stream generators: special class supporting AND-streams (forward, by
recursion) and OR-streams (backward, by disjunction)
• can wrap e.g. a socket reader as stream
• details of operations (open, read, close) remain hidden

• lazy lists are materialized on demand, using attributed variables⇒ can handle
(potentially) infinite streams

• beneficial for memory consumption (use garbage collection and tabling)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 69/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.7 Prolog

Prolog

Procedural semantics of Prolog enables natural handling of streams by adding
a timestamp as an additional term to every atom

previous(T1,X)← msg(T,X),msg(T1,X), T1 < T
• Note: programming becomes more complicated: e.g., infinite evaluations possible
• Nevertheless, Prolog was successfully used to implement real-time reasoning in

ETALIS

Temporal Prolog (Hrycej, 1993): implements reified temporal logic (Reichgelt,
1987), provides language constructs for temporal dependencies between atoms

Novel proposal: Lazy Stream Programming (Tarau et al., 2019)
lazy stream = encapsulation of a stream into a mechanism

that provides its elements on demand
• generic lazy stream generators for stateful computations on finite + infinite

sequences
• answer stream generators: special class supporting AND-streams (forward, by

recursion) and OR-streams (backward, by disjunction)
• can wrap e.g. a socket reader as stream
• details of operations (open, read, close) remain hidden

• lazy lists are materialized on demand, using attributed variables⇒ can handle
(potentially) infinite streams

• beneficial for memory consumption (use garbage collection and tabling)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 69/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.8 Datalog for Stream Reasoning

Outline

1. Multi-Context Systems

2. Stream Reasoning
2.1 Introduction and Motivation
2.2 Background
2.3 Stream Processing
2.4 Databases
2.5 Complex Event Processing
2.6 Temporal Reasoning
2.7 Prolog
2.8 Datalog for Stream Reasoning
2.9 ASP-based Formalisms

3. Multi-Context Stream Systems

4. Conclusions

5. Further Resources

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 70/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.8 Datalog for Stream Reasoning

Datalog for Stream Reasoning

Datalog is a well-known database query language with rules of the form:

a← b1, . . . , bn, 0 ≤ n

where a is an atom and bi are literals (atoms or negated atoms)
Historically, multiple extensions of Datalog considered continuously changing
data
• Datalog LITE (Gottlob et al., 2002): deductive query language that views Kripke

structures as relational databases on which programs can be evaluated
• DEDALUS (Alvaro et al., 2010): extends Datalog with an explicit notion of time by

augmenting all atoms with timestamps and providing corresponding reasoning
algorithms

• Temporal Datalog (Orgun and Wadge, 1992): based on temporal relational algebra
which can be used to model temporal relations among data without explicit reference
to time

Early uses of Datalog are in temporal databases (Baudinet et al., 1993), e.g.,
pattern mining (Padmanabhan and Tuzhilin, 1996), or model checking (Datalog
LITE)

Argument for time (Ronca et al., 2018) or state (Lausen et al., 1998) is
suggestive

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 71/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.8 Datalog for Stream Reasoning

Datalog for Stream Reasoning

Datalog is a well-known database query language with rules of the form:

a← b1, . . . , bn, 0 ≤ n

where a is an atom and bi are literals (atoms or negated atoms)
Historically, multiple extensions of Datalog considered continuously changing
data
• Datalog LITE (Gottlob et al., 2002): deductive query language that views Kripke

structures as relational databases on which programs can be evaluated
• DEDALUS (Alvaro et al., 2010): extends Datalog with an explicit notion of time by

augmenting all atoms with timestamps and providing corresponding reasoning
algorithms

• Temporal Datalog (Orgun and Wadge, 1992): based on temporal relational algebra
which can be used to model temporal relations among data without explicit reference
to time

Early uses of Datalog are in temporal databases (Baudinet et al., 1993), e.g.,
pattern mining (Padmanabhan and Tuzhilin, 1996), or model checking (Datalog
LITE)

Argument for time (Ronca et al., 2018) or state (Lausen et al., 1998) is
suggestive

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 71/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.8 Datalog for Stream Reasoning

Datalog for Stream Reasoning (cont’d)

Modern Datalog extensions such as Metric Time Datalog (Brandt et al., 2017)
or Streamlog (Zaniolo, 2012), have additional features, e.g. aggregate functions
and algorithms for high-performance stream reasoning

StreamLog solves continuous cumulative evaluation of blocking queries (BLQ)
using a Progressive Closing World Assumption (PCWA) on
timestamped-ordered stream and database facts

Example Q1 can be answered at time T (refer only to past) whereas Q2 is blocking
⇒ unable to produce output tuples until the entire input is seen

Q1 : repeated(T,X)← msg(T,X),msg(T0,X), T > T0

Q2 : last(T, Z)← msg(T, Z),¬next(T, Z).
next(T, Z)← msg(T1, Z), T1 > T.

PCWA can be enforced using local stratification on time⇒ Streamlog

Possible to express e.g. shortest path queries on streaming arcs

For Sequential Programs, the unique stable model can be computed by fixpoint
iteration over bi-states (old + new predicate versions)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 72/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.8 Datalog for Stream Reasoning

Datalog for Stream Reasoning (cont’d)

Modern Datalog extensions such as Metric Time Datalog (Brandt et al., 2017)
or Streamlog (Zaniolo, 2012), have additional features, e.g. aggregate functions
and algorithms for high-performance stream reasoning

StreamLog solves continuous cumulative evaluation of blocking queries (BLQ)
using a Progressive Closing World Assumption (PCWA) on
timestamped-ordered stream and database facts

Example Q1 can be answered at time T (refer only to past) whereas Q2 is blocking
⇒ unable to produce output tuples until the entire input is seen

Q1 : repeated(T,X)← msg(T,X),msg(T0,X), T > T0

Q2 : last(T, Z)← msg(T, Z),¬next(T, Z).
next(T, Z)← msg(T1, Z), T1 > T.

PCWA can be enforced using local stratification on time⇒ Streamlog

Possible to express e.g. shortest path queries on streaming arcs

For Sequential Programs, the unique stable model can be computed by fixpoint
iteration over bi-states (old + new predicate versions)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 72/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.8 Datalog for Stream Reasoning

Datalog for Stream Reasoning (cont’d)

Modern Datalog extensions such as Metric Time Datalog (Brandt et al., 2017)
or Streamlog (Zaniolo, 2012), have additional features, e.g. aggregate functions
and algorithms for high-performance stream reasoning

StreamLog solves continuous cumulative evaluation of blocking queries (BLQ)
using a Progressive Closing World Assumption (PCWA) on
timestamped-ordered stream and database facts

Example Q1 can be answered at time T (refer only to past) whereas Q2 is blocking
⇒ unable to produce output tuples until the entire input is seen

Q1 : repeated(T,X)← msg(T,X),msg(T0,X), T > T0

Q2 : last(T, Z)← msg(T, Z),¬next(T, Z).
next(T, Z)← msg(T1, Z), T1 > T.

PCWA can be enforced using local stratification on time⇒ Streamlog

Possible to express e.g. shortest path queries on streaming arcs

For Sequential Programs, the unique stable model can be computed by fixpoint
iteration over bi-states (old + new predicate versions)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 72/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.9 ASP-based Formalisms

Outline

1. Multi-Context Systems

2. Stream Reasoning
2.1 Introduction and Motivation
2.2 Background
2.3 Stream Processing
2.4 Databases
2.5 Complex Event Processing
2.6 Temporal Reasoning
2.7 Prolog
2.8 Datalog for Stream Reasoning
2.9 ASP-based Formalisms

3. Multi-Context Stream Systems

4. Conclusions

5. Further Resources

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 73/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.9 ASP-based Formalisms

Recall: Answer Set Programming

Answer Set Programming (ASP) is a widely used approach to declarative
solving of hard combinatorial (optimization) problems

General idea: answer sets are solutions!
Solving a problem instance I by computing answer sets

Problem 

Instance I Program P
Encoding: Model(s)

Solution(s)
ASP Solver

• Method:
1. encode I as a (non-monotonic) logic program P, such that solutions of I are represented by

models of P
2. compute some model M of P, using an ASP solver
3. extract a solution for I from M.

variant: compute multiple/all models (for multiple/all solutions)
• Common: decompose I into problem specification and data
• Approach: guess & check (aka generate & test) plus auxiliary defs

Versatile knowledge representation language supporting default negation,
aggregates, external functions, etc., combined with high-performance solvers

Applications in various domains: configuration, call routing, workspace
management, etc. [AI Magazine, 2016; KI 2018, special issues on ASP]

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 74/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.9 ASP-based Formalisms

Multi-shot Solving

ASP solvers supporting various extensions over rich APIs, e.g., clingo7 or
wasp8, that allow programmers to solve problems iteratively9

Multi-shot solving: execute “ground & solve” for different parts of a
program/instance while preserving internal state of the solver
• Continuously solve changing logic programs!

Iterative grounding and solving is based on composing modules (Pi, Ii,Oi),
where
• Pi is a (ground) program to be solved in the ith iteration, and
• Ii,Oi are sets of ground atoms representing input resp. output atoms

Adding new ground modules to the solver is easy, but removal is hard

Solution: external atoms in rule bodies whose truth values are set via an API
• If a rule must be removed, set the corresponding external atom to false
• High memory consumption due to impossibility of deleting any rules from memory
• ⇒ Restart the solver when a predefined amount of memory is allocated
• ⇒Write programs communicating all changes via external atoms (avoid grounding)
• ⇒ use systems supporting external predicates like in dvlhex (Eiter et al., 2018) to

avoid grounding problems

7https://potassco.org/
8https://github.com/alviano/wasp
9Historically, multi-shot solving was first implemented in oclingo, which is a version of clingo.

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 75/125

https://potassco.org/
https://github.com/alviano/wasp


Multi-Context Stream Reasoning 2. Stream Reasoning 2.9 ASP-based Formalisms

Multi-shot Solving

ASP solvers supporting various extensions over rich APIs, e.g., clingo7 or
wasp8, that allow programmers to solve problems iteratively9

Multi-shot solving: execute “ground & solve” for different parts of a
program/instance while preserving internal state of the solver
• Continuously solve changing logic programs!

Iterative grounding and solving is based on composing modules (Pi, Ii,Oi),
where
• Pi is a (ground) program to be solved in the ith iteration, and
• Ii,Oi are sets of ground atoms representing input resp. output atoms

Adding new ground modules to the solver is easy, but removal is hard
Solution: external atoms in rule bodies whose truth values are set via an API
• If a rule must be removed, set the corresponding external atom to false
• High memory consumption due to impossibility of deleting any rules from memory
• ⇒ Restart the solver when a predefined amount of memory is allocated
• ⇒Write programs communicating all changes via external atoms (avoid grounding)
• ⇒ use systems supporting external predicates like in dvlhex (Eiter et al., 2018) to

avoid grounding problems

7https://potassco.org/
8https://github.com/alviano/wasp
9Historically, multi-shot solving was first implemented in oclingo, which is a version of clingo.

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 75/125

https://potassco.org/
https://github.com/alviano/wasp


Multi-Context Stream Reasoning 2. Stream Reasoning 2.9 ASP-based Formalisms

Stream Reasoning with ASP

Multi-shot solving: natural to implement stream reasoning using ASP (Beck et
al., 2017; Obermeier et al., 2019)
• Careful programs design is essential as large modules need lots of memory
• Using external predicates and external functions is essential for efficient handling of

temporal dependencies between atoms

Single-shot solving: use if search for an answer set can be done in parallel

StreamRule (Mileo et al., 2013) uses ASP for continuous reevaluation of a
program encoding a query to an RDF stream
• Pham et al. (2019b) parallelize evaluation of programs by analyzing their extended

dependency graphs (EDG) indicating dependencies between predicates
• A stratified ASP program can be instantiated for different sets of input predicates, by

respecting connected components in EDG
q(X)← p(X), r(X, Y) q(X)← p(X), s(X)

• The sets are obtained by analyzing dependencies between sinks (indegree=0)
component {p, r, s}, may be split into {p, r} and {p, s} (heuristics)

C-ASP (Pham et al., 2019a): reasoning over RDF streams, a query language
extending standard ASP-core with
• time- and tuple-based windows,
• stream management directives, and
• triggering functions

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 76/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.9 ASP-based Formalisms

Stream Reasoning with ASP

Multi-shot solving: natural to implement stream reasoning using ASP (Beck et
al., 2017; Obermeier et al., 2019)
• Careful programs design is essential as large modules need lots of memory
• Using external predicates and external functions is essential for efficient handling of

temporal dependencies between atoms

Single-shot solving: use if search for an answer set can be done in parallel

StreamRule (Mileo et al., 2013) uses ASP for continuous reevaluation of a
program encoding a query to an RDF stream
• Pham et al. (2019b) parallelize evaluation of programs by analyzing their extended

dependency graphs (EDG) indicating dependencies between predicates
• A stratified ASP program can be instantiated for different sets of input predicates, by

respecting connected components in EDG
q(X)← p(X), r(X, Y) q(X)← p(X), s(X)

• The sets are obtained by analyzing dependencies between sinks (indegree=0)
component {p, r, s}, may be split into {p, r} and {p, s} (heuristics)

C-ASP (Pham et al., 2019a): reasoning over RDF streams, a query language
extending standard ASP-core with
• time- and tuple-based windows,
• stream management directives, and
• triggering functions

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 76/125



Multi-Context Stream Reasoning 2. Stream Reasoning 2.9 ASP-based Formalisms

Stream Reasoning with ASP

Multi-shot solving: natural to implement stream reasoning using ASP (Beck et
al., 2017; Obermeier et al., 2019)
• Careful programs design is essential as large modules need lots of memory
• Using external predicates and external functions is essential for efficient handling of

temporal dependencies between atoms

Single-shot solving: use if search for an answer set can be done in parallel

StreamRule (Mileo et al., 2013) uses ASP for continuous reevaluation of a
program encoding a query to an RDF stream
• Pham et al. (2019b) parallelize evaluation of programs by analyzing their extended

dependency graphs (EDG) indicating dependencies between predicates
• A stratified ASP program can be instantiated for different sets of input predicates, by

respecting connected components in EDG
q(X)← p(X), r(X, Y) q(X)← p(X), s(X)

• The sets are obtained by analyzing dependencies between sinks (indegree=0)
component {p, r, s}, may be split into {p, r} and {p, s} (heuristics)

C-ASP (Pham et al., 2019a): reasoning over RDF streams, a query language
extending standard ASP-core with
• time- and tuple-based windows,
• stream management directives, and
• triggering functions

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 76/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.1 reactive Multi-Context Systems

Outline

1. Multi-Context Systems

2. Stream Reasoning

3. Multi-Context Stream Systems
3.1 reactive Multi-Context Systems
3.2 asynchronous Multi-Context Systems
3.3 Distributed MCS with LARS
3.4 streaming Multi-Context Systems

4. Conclusions

5. Further Resources

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 77/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.1 reactive Multi-Context Systems

reactive MCS

reactive Multi-Context Systems Brewka et al. (2018)

based on managed Multi-Context Systems Brewka et al. (2011b)

preliminary version got presented at ECAI 2014 Brewka et al. (2014)

evolving Multi-Context Systems at ECAI 2014 Gonçalves et al. (2014)

⇒ complete redefinition of rMCS

Current reactive Multi-Context Systems

streamlined definitions

a generalisation of managed Multi-Context Systems

declarative and operative bridge rules

results on inconsistency management

results on complexity

results on simulating other approaches

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 78/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.1 reactive Multi-Context Systems

Syntax
Building Blocks

stove
sensors

position
tracking

medical
sensors

drug dis-
penser

storage
stove Cst

storage

position Cpos

DL
health

ontology Cho

storage

health
monitor Chm

ASP
emergency
control Cec

Ist Ipos

Ims Idd

stove
sensors

position
tracking

medical
sensors

drug dis-
penser

storage
stove Cst

storage

position Cpos

DL
health

ontology Cho

storage

health
monitor Chm

ASP
emergency
control Cec

Ist Ipos

Ims Idd

stove
sensors

position
tracking

medical
sensors

drug dis-
penser

storage
stove Cst

storage

position Cpos

DL
health

ontology Cho

storage

health
monitor Chm

ASP
emergency
control Cec

Ist Ipos

Ims Idd

Ist

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 79/125

Definition (Context)
A context is a triple C = 〈L,OP,mng〉 where

L = 〈KB,BS, acc〉 is a logic,

OP is a set of operations,

mng : 2OP × KB→ KB is a management function.

Definition (Bridge Rule)

Let C = 〈C1, . . . ,Cn〉 be a tuple of contexts and IL = 〈IL1, . . . , ILk〉 a
tuple of input languages. A bridge rule for Ci over C and IL,
i ∈ {1, . . . , n}, is of the form

Op ← a1, . . . , aj, not aj+1, . . . , not am or

next(Op ) ← a1, . . . , aj, not aj+1, . . . , not am

Example
setTemp(hot) ← st::tmp(T), 42 < T

next(setPower(off )) ← ec:turnOff(stove)

next(setPower(off )) ← st::switch, st:pw



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.1 reactive Multi-Context Systems

Syntax
Building Blocks

stove
sensors

position
tracking

medical
sensors

drug dis-
penser

storage
stove Cst

storage

position Cpos

DL
health

ontology Cho

storage

health
monitor Chm

ASP
emergency
control Cec

Ist Ipos

Ims Idd

stove
sensors

position
tracking

medical
sensors

drug dis-
penser

storage
stove Cst

storage

position Cpos

DL
health

ontology Cho

storage

health
monitor Chm

ASP
emergency
control Cec

Ist Ipos

Ims Idd

stove
sensors

position
tracking

medical
sensors

drug dis-
penser

storage
stove Cst

storage

position Cpos

DL
health

ontology Cho

storage

health
monitor Chm

ASP
emergency
control Cec

Ist Ipos

Ims Idd

Ist

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 79/125

Definition (Context)
A context is a triple C = 〈L,OP,mng〉 where

L = 〈KB,BS, acc〉 is a logic,

OP is a set of operations,

mng : 2OP × KB→ KB is a management function.

Definition (Bridge Rule)

Let C = 〈C1, . . . ,Cn〉 be a tuple of contexts and IL = 〈IL1, . . . , ILk〉 a
tuple of input languages. A bridge rule for Ci over C and IL,
i ∈ {1, . . . , n}, is of the form

Op ← a1, . . . , aj, not aj+1, . . . , not am or

next(Op ) ← a1, . . . , aj, not aj+1, . . . , not am

Example
setTemp(hot) ← st::tmp(T), 42 < T

next(setPower(off )) ← ec:turnOff(stove)

next(setPower(off )) ← st::switch, st:pw



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.1 reactive Multi-Context Systems

Syntax
Building Blocks

stove
sensors

position
tracking

medical
sensors

drug dis-
penser

storage
stove Cst

storage

position Cpos

DL
health

ontology Cho

storage

health
monitor Chm

ASP
emergency
control Cec

Ist Ipos

Ims Idd

stove
sensors

position
tracking

medical
sensors

drug dis-
penser

storage
stove Cst

storage

position Cpos

DL
health

ontology Cho

storage

health
monitor Chm

ASP
emergency
control Cec

Ist Ipos

Ims Idd

stove
sensors

position
tracking

medical
sensors

drug dis-
penser

storage
stove Cst

storage

position Cpos

DL
health

ontology Cho

storage

health
monitor Chm

ASP
emergency
control Cec

Ist Ipos

Ims Idd

Ist

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 79/125

Definition (Context)
A context is a triple C = 〈L,OP,mng〉 where

L = 〈KB,BS, acc〉 is a logic,

OP is a set of operations,

mng : 2OP × KB→ KB is a management function.

Definition (Bridge Rule)

Let C = 〈C1, . . . ,Cn〉 be a tuple of contexts and IL = 〈IL1, . . . , ILk〉 a
tuple of input languages. A bridge rule for Ci over C and IL,
i ∈ {1, . . . , n}, is of the form

Op ← a1, . . . , aj, not aj+1, . . . , not am or

next(Op ) ← a1, . . . , aj, not aj+1, . . . , not am

Example
setTemp(hot) ← st::tmp(T), 42 < T

next(setPower(off )) ← ec:turnOff(stove)

next(setPower(off )) ← st::switch, st:pw



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.1 reactive Multi-Context Systems

Syntax
Building Blocks

stove
sensors

position
tracking

medical
sensors

drug dis-
penser

storage
stove Cst

storage

position Cpos

DL
health

ontology Cho

storage

health
monitor Chm

ASP
emergency
control Cec

Ist Ipos

Ims Idd

stove
sensors

position
tracking

medical
sensors

drug dis-
penser

storage
stove Cst

storage

position Cpos

DL
health

ontology Cho

storage

health
monitor Chm

ASP
emergency
control Cec

Ist Ipos

Ims Idd

stove
sensors

position
tracking

medical
sensors

drug dis-
penser

storage
stove Cst

storage

position Cpos

DL
health

ontology Cho

storage

health
monitor Chm

ASP
emergency
control Cec

Ist Ipos

Ims Idd

Ist

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 79/125

Definition (Context)
A context is a triple C = 〈L,OP,mng〉 where

L = 〈KB,BS, acc〉 is a logic,

OP is a set of operations,

mng : 2OP × KB→ KB is a management function.

Definition (Bridge Rule)

Let C = 〈C1, . . . ,Cn〉 be a tuple of contexts and IL = 〈IL1, . . . , ILk〉 a
tuple of input languages. A bridge rule for Ci over C and IL,
i ∈ {1, . . . , n}, is of the form

Op ← a1, . . . , aj, not aj+1, . . . , not am or

next(Op ) ← a1, . . . , aj, not aj+1, . . . , not am

Example
setTemp(hot) ← st::tmp(T), 42 < T

next(setPower(off )) ← ec:turnOff(stove)

next(setPower(off )) ← st::switch, st:pw



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.1 reactive Multi-Context Systems

Syntax
Building Blocks

stove
sensors

position
tracking

medical
sensors

drug dis-
penser

storage
stove Cst

storage

position Cpos

DL
health

ontology Cho

storage

health
monitor Chm

ASP
emergency
control Cec

Ist Ipos

Ims Idd

stove
sensors

position
tracking

medical
sensors

drug dis-
penser

storage
stove Cst

storage

position Cpos

DL
health

ontology Cho

storage

health
monitor Chm

ASP
emergency
control Cec

Ist Ipos

Ims Idd

stove
sensors

position
tracking

medical
sensors

drug dis-
penser

storage
stove Cst

storage

position Cpos

DL
health

ontology Cho

storage

health
monitor Chm

ASP
emergency
control Cec

Ist Ipos

Ims Idd

Ist

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 79/125

Definition (Context)
A context is a triple C = 〈L,OP,mng〉 where

L = 〈KB,BS, acc〉 is a logic,

OP is a set of operations,

mng : 2OP × KB→ KB is a management function.

Definition (Bridge Rule)

Let C = 〈C1, . . . ,Cn〉 be a tuple of contexts and IL = 〈IL1, . . . , ILk〉 a
tuple of input languages. A bridge rule for Ci over C and IL,
i ∈ {1, . . . , n}, is of the form

Op ← a1, . . . , aj, not aj+1, . . . , not am or

next(Op ) ← a1, . . . , aj, not aj+1, . . . , not am

Example
setTemp(hot) ← st::tmp(T), 42 < T

next(setPower(off )) ← ec:turnOff(stove)

next(setPower(off )) ← st::switch, st:pw



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.1 reactive Multi-Context Systems

Syntax
Building Blocks

stove
sensors

position
tracking

medical
sensors

drug dis-
penser

storage
stove Cst

storage

position Cpos

DL
health

ontology Cho

storage

health
monitor Chm

ASP
emergency
control Cec

Ist Ipos

Ims Idd

stove
sensors

position
tracking

medical
sensors

drug dis-
penser

storage
stove Cst

storage

position Cpos

DL
health

ontology Cho

storage

health
monitor Chm

ASP
emergency
control Cec

Ist Ipos

Ims Idd

stove
sensors

position
tracking

medical
sensors

drug dis-
penser

storage
stove Cst

storage

position Cpos

DL
health

ontology Cho

storage

health
monitor Chm

ASP
emergency
control Cec

Ist Ipos

Ims Idd

Ist

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 79/125

Definition (Context)
A context is a triple C = 〈L,OP,mng〉 where

L = 〈KB,BS, acc〉 is a logic,

OP is a set of operations,

mng : 2OP × KB→ KB is a management function.

Definition (Bridge Rule)

Let C = 〈C1, . . . ,Cn〉 be a tuple of contexts and IL = 〈IL1, . . . , ILk〉 a
tuple of input languages. A bridge rule for Ci over C and IL,
i ∈ {1, . . . , n}, is of the form

Op ← a1, . . . , aj, not aj+1, . . . , not am or

next(Op ) ← a1, . . . , aj, not aj+1, . . . , not am

Example
setTemp(hot) ← st::tmp(T), 42 < T

next(setPower(off )) ← ec:turnOff(stove)

next(setPower(off )) ← st::switch, st:pw



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.1 reactive Multi-Context Systems

Syntax

Definition (Reactive Multi-Context System)

A reactive Multi-Context System is a tuple M = 〈C, IL,BR〉, where

C = 〈C1, . . . ,Cn〉 is a tuple of contexts;

IL = 〈IL1, . . . , ILk〉 is a tuple of input languages;

BR = 〈BR1, . . . ,BRn〉 is a tuple such that each BRi, i ∈ {1, . . . , n}, is a set of
bridge rules for Ci over C and IL.

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 80/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.1 reactive Multi-Context Systems

Semantics
Current Snapshot

Definition (Configuration of Knowledge Bases)

Let M = 〈C, IL,BR〉 be an rMCS, such that C = 〈C1, . . . ,Cn〉. A configuration of
knowledge bases for M is a tuple KB = 〈kb1, . . . , kbn〉, such that kbi ∈ KBi, for each
i ∈ {1, . . . , n}. We use ConM to denote the set of all configurations of knowledge
bases for M.

Definition (Belief State)

Let M = 〈〈C1, . . . ,Cn〉, IL,BR〉 be an rMCS. Then, a belief state for M is a tuple
B = 〈B1, . . . ,Bn〉 such that Bi ∈ BSi, for each i ∈ {1, . . . , n}. We use BelM to denote
the set of all belief states for M.

Definition (Input)

Let M = 〈C, 〈IL1, . . . , ILk〉,BR〉 be an rMCS. Then an input for M is a tuple
I = 〈I1, . . . , Ik〉 such that Ii ⊆ ILi, i ∈ {1, . . . , k}. The set of all inputs for M is denoted
by InpM.

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 81/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.1 reactive Multi-Context Systems

Semantics
One-Shot Reasoning

Only utilise Declarative Bridge Rules
A belief state is an Equilibrium if
• the updated knowledge base

(i.e. the management function result on the belief state, the input, and the current
configuration)

• has as the belief state one of the accepted belief states
(i.e. it is part of the deductive closure of the semantics)

Definition (Equilibrium)

Let M = 〈〈C1, . . . ,Cn〉, IL,BR〉 be an rMCS, KB = 〈kb1, . . . , kbn〉 a configuration of
knowledge bases for M, and I an input for M. Then, a belief state B = 〈B1, . . . ,Bn〉 for
M is an equilibrium of M given KB and I if, for each i ∈ {1, . . . , n}, we have that

Bi ∈ acci(kb′), where kb′ = mngi(appnow
i (I,B), kbi).

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 82/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.1 reactive Multi-Context Systems

Semantics
One-Shot Reasoning

Only utilise Declarative Bridge Rules
A belief state is an Equilibrium if
• the updated knowledge base

(i.e. the management function result on the belief state, the input, and the current
configuration)

• has as the belief state one of the accepted belief states
(i.e. it is part of the deductive closure of the semantics)

Definition (Equilibrium)

Let M = 〈〈C1, . . . ,Cn〉, IL,BR〉 be an rMCS, KB = 〈kb1, . . . , kbn〉 a configuration of
knowledge bases for M, and I an input for M. Then, a belief state B = 〈B1, . . . ,Bn〉 for
M is an equilibrium of M given KB and I if, for each i ∈ {1, . . . , n}, we have that

Bi ∈ acci(kb′), where kb′ = mngi(appnow
i (I,B), kbi).

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 82/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.1 reactive Multi-Context Systems

Semantics
Reactive Reasoning

Extend the concept of the Input, to be an Input Stream

Operative Bridge Rules allow configuration changes

Updates are based on the previously computed Equilibrium

Results represented as Equilibria Stream and its dual Configuration Stream

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 83/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.1 reactive Multi-Context Systems

Semantics
Reactive Reasoning

Definition (Update Function)

Let M = 〈C, IL,BR〉 be an rMCS such that C = 〈C1, . . . ,Cn〉, KB = 〈kb1, . . . , kbn〉 a
configuration of knowledge bases for M, I an input for M, and B a belief state for M.
Then, updM(KB, I,B) = 〈kb′1, . . . , kb′n〉 is the update function for M, such that for each
i ∈ {1 . . . , n}, kb′i = mngi(appnext

i (I,B), kbi) holds.

Definition (Input Stream)

Let M = 〈C, IL,BR〉 be an rMCS such that IL = 〈IL1, . . . , ILk〉. An input stream for M
(until τ ) is a function I : [1..τ ]→ InpM where τ ∈ N ∪ {∞}.

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 84/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.1 reactive Multi-Context Systems

Semantics
Equilibria Stream

Definition (Equilibria Stream)

Let M = 〈C, IL,BR〉 be an rMCS, KB a configuration of knowledge bases for M, and
I an input stream for M until τ where τ ∈ N ∪ {∞}. Then, an equilibria stream of M
given KB and I is a function B : [1..τ ]→ BelM such that

Bt is an equilibrium of M given KBt and I t, where KBt is inductively defined as
• KB1 = KB
• KBt+1 = updM(KBt, I t,Bt).

In a dual manner, we will refer to the function KB : [1..τ ]→ ConM as the
configurations stream of M given KB, I, and B.

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 85/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.1 reactive Multi-Context Systems

Semantics
Partial Equilibria Stream

Definition (Partial Equilibria Stream)

Let M = 〈C, IL,BR〉 be an rMCS, KB = 〈kb1, . . . , kbn〉 a configuration of knowledge
bases for M, and I an input stream for M until τ where τ ∈ N ∪ {∞}. Then, a partial
equilibria stream of M given KB and I is a partial function B : [1..τ ] 9 BelM such that

Bt is an equilibrium of M given KBt and I t,

or Bt is undefined.

KBt is inductively defined as

KB1 = KB

KBt+1 =

{
updM(KBt, I t,Bt), if Bt is not undefined.
KBt, otherwise.

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 86/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.1 reactive Multi-Context Systems

Modelling Aspects

Simple Tasks

Flipping data (self-dependent)

Handling time

Windows

Forgetting

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 87/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.1 reactive Multi-Context Systems

Declarative and Operational Bridge Rules

Example

Flip the power for the stove if a switch is pressed.

Declarative approach

setPower(off ) ← st::switch, st:pw

setPower(on) ← st::switch, not st:pw

No Equilibrium can be found

Operational approach

add(switchpower) ← st::switch

next(setPower(off )) ← st::switch, st:pw

next(setPower(on)) ← st::switch, not st:pw

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 88/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.1 reactive Multi-Context Systems

Declarative and Operational Bridge Rules

Example

Flip the power for the stove if a switch is pressed.

Declarative approach

setPower(off ) ← st::switch, st:pw

setPower(on) ← st::switch, not st:pw

No Equilibrium can be found

Operational approach

add(switchpower) ← st::switch

next(setPower(off )) ← st::switch, st:pw

next(setPower(on)) ← st::switch, not st:pw

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 88/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.1 reactive Multi-Context Systems

Declarative and Operational Bridge Rules

Example

Flip the power for the stove if a switch is pressed.

Declarative approach

setPower(off ) ← st::switch, st:pw

setPower(on) ← st::switch, not st:pw

No Equilibrium can be found

Operational approach

add(switchpower) ← st::switch

next(setPower(off )) ← st::switch, st:pw

next(setPower(on)) ← st::switch, not st:pw

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 88/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.1 reactive Multi-Context Systems

Declarative and Operational Bridge Rules

Example

Flip the power for the stove if a switch is pressed.

Declarative approach

setPower(off ) ← st::switch, st:pw

setPower(on) ← st::switch, not st:pw

No Equilibrium can be found

Operational approach

add(switchpower) ← st::switch

next(setPower(off )) ← st::switch, st:pw

next(setPower(on)) ← st::switch, not st:pw

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 88/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.1 reactive Multi-Context Systems

Declarative and Operational Bridge Rules

Example

Flip the power for the stove if a switch is pressed.

Declarative approach

setPower(off ) ← st::switch, st:pw

setPower(on) ← st::switch, not st:pw

No Equilibrium can be found

Operational approach - without sensor data

add(switchpower) ← st::switch

next(setPower(off )) ← st:switchpower, st:pw

next(setPower(on)) ← st:switchpower, not st:pw

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 88/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.1 reactive Multi-Context Systems

Handling Time

Possible ways

Sensor

Time-Context

Time Context

setTime(now(0)) ← not clock:timeAvailable

next(add(timeAvailable)) ← clock:now(0)

next(setTime(now(T + 1))) ← clock:now(T)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 89/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.1 reactive Multi-Context Systems

Forgetting and Windowing

Volatile Information and Reasoning with a Window
next(add(alert(stove, T))) ← c::now(T), ec:alert(stove).

next(del(alert(stove, T))) ← stE:alert(stove, T), not ec:alert(stove).

add(emergency(stove)) ← c::now(T), ec:alert(stove),

stE:alert(stove, T ′),

stE:winE(Y), |T − T ′| ≥ Y.

Dynamic Window
next(set(win(P,X))) ← ed:defWin(P,X), not ed:susp(E).

next(set(win(P, Y))) ← ed:rel(P,E, Y), ed:susp(E).

alarm(E) ← ed:conf(E).

next(add(P(T))) ← c::now(T), s::P.

next(del(P(T ′))) ← ed:P(T ′), c::now(T), ed:win(P, Z), T ′ < T − Z.

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 90/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.2 asynchronous Multi-Context Systems

Outline

1. Multi-Context Systems

2. Stream Reasoning

3. Multi-Context Stream Systems
3.1 reactive Multi-Context Systems
3.2 asynchronous Multi-Context Systems
3.3 Distributed MCS with LARS
3.4 streaming Multi-Context Systems

4. Conclusions

5. Further Resources

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 91/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.2 asynchronous Multi-Context Systems

reactive Multi-Context Systems so far ...

Motivation

integration of heterogeneous KR-formalisms

awareness of continuous flow of knowledge

Realisation

Contexts with different KR & Reasoning formalisms

Bridge-Rules for exchange of beliefs

Notion of Equilibrium as Semantics (“synchron”)

Run represents the change of knowledge and belief over time

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 92/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.2 asynchronous Multi-Context Systems

... and a slight look to online-applications

Many different services and sources of knowledge

Continuous flow of information

Data collection till sufficient knowledge for their tasks is available

Communication is often query-based

Asynchronous communication protocols

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 93/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.2 asynchronous Multi-Context Systems

Computer Aided Emergency Team Management

Example Environment - Emergency Team Management

Emergency Call

Classification and Prioritisation of each case

Overview of available rescue units

Overview on ETAs for each unit and case

Suggesting optimal assignments

Communicate Tasks to rescue units

Requirements

Fast response to events

Consider different sources of data

Modularity for additional components

Human as last instance for decisions

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 94/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.2 asynchronous Multi-Context Systems

Consequences of Asynchronicity

Contexts compute their belief sets independently

No agreement on a common Equilibrium

No defined basis for Bridge-Rules to be applicable

Need for Output-Rules (OR)

Keep track of information provided by OR

Input stream for each context
Interaction with environment:
• aMCS wide input streams
• aMCS wide output streams

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 95/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.2 asynchronous Multi-Context Systems

Other Design-Choices

Each context decide when to compute
• realised by computation controller

Dynamic adjustments of context-management
• computation controller (cc)
• output rules (OR)
• context-semantics (acc)
• context update function (cu)

Logic suite

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 96/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.2 asynchronous Multi-Context Systems

asynchronous Multi-Context Systems
Ellmauthaler and Pührer (2015); Ellmauthaler (2018)

Definition
A data package is a pair D = 〈s, I〉, where s ∈ N is either a context name or a sensor
name, stating the source of D, and I ⊆ IL is a set of pieces of information. An
information buffer is a sequence of data packages.

Definition
Let C = 〈n, LS〉 be a context. An output rule r for C is an expression of the form

〈n, i〉 ← b1, . . . , bj,¬ bj+1, . . . ,¬ bm, (1)
such that n ∈ N is the name of a context or an output stream, i ∈ IL is a piece of
information, and every b` (1 ≤ ` ≤ m) is a belief for C, i.e. b` ∈ B for some B ∈ BSLS.

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 97/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.2 asynchronous Multi-Context Systems

asynchronous Multi-Context Systems
Ellmauthaler and Pührer (2015); Ellmauthaler (2018)

Definition
A data package is a pair D = 〈s, I〉, where s ∈ N is either a context name or a sensor
name, stating the source of D, and I ⊆ IL is a set of pieces of information. An
information buffer is a sequence of data packages.

Definition
Let C = 〈n, LS〉 be a context. An output rule r for C is an expression of the form

〈n, i〉 ← b1, . . . , bj,¬ bj+1, . . . ,¬ bm, (1)
such that n ∈ N is the name of a context or an output stream, i ∈ IL is a piece of
information, and every b` (1 ≤ ` ≤ m) is a belief for C, i.e. b` ∈ B for some B ∈ BSLS.

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 97/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.2 asynchronous Multi-Context Systems

asynchronous Multi-Context Systems

Definition
Let C = 〈n, LS〉 be a context, OR a set of output rules for C, B ∈ BLS a belief set, and
n′ ∈ N a name. Then, the data package

dC(B,OR, n′) = 〈n, {i | r ∈ OR, head(r) = 〈n′, i〉,B |= body(r)}〉
is the output of C with respect to OR under relevant for n.

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 98/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.2 asynchronous Multi-Context Systems

asynchronous Multi-Context Systems

Definition
Let C = 〈n, LS〉 be a context. A configuration of C is a tuple CF = 〈kb,ACC, IB,CM〉,
where kb ∈ KBLS, ACC ∈ ACCLS, IB is a finite information buffer, and CM is a context
management for C which is a triple CM = 〈cc, cu,OR〉, where

cc is a computation controller for C,

OR is a set of output rules for C, and

cu is a context update function for C which is a function that maps an
information buffer IB = D1, . . . ,Dm and an admissible knowledge base of LS to a
configuration CF′ = 〈kb′,ACC′, IB′,CM′〉 of C with IB′ = Dk, . . . ,Dm for some
k ≥ 1.

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 99/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.2 asynchronous Multi-Context Systems

asynchronous Multi-Context Systems

aMCS Ms1

s2

s3

C3
kb

ACC

IB cc cu OR

C1
kb

ACC

IB cc cu OR

C2
kb

ACC

IB cc cu OR

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 100/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.2 asynchronous Multi-Context Systems

Run of an aMCS

Configuration of an aMCS

Configuration for each Context

Content of each output stream (output buffer)

Definition (Run structure)

Let M = 〈〈C1, . . . ,Cn〉, 〈o1, . . . , om〉〉 be an aMCS. A run structure for M is a sequence
R = . . . ,CFt,CFt+1,CFt+2, . . . ,

where t ∈ Z is a point in time, and every CFt′ in R (t′ ∈ Z) is a configuration of M.

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 101/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.2 asynchronous Multi-Context Systems

Run of an aMCS

Configuration of an aMCS

Configuration for each Context

Content of each output stream (output buffer)

Definition (Run structure)

Let M = 〈〈C1, . . . ,Cn〉, 〈o1, . . . , om〉〉 be an aMCS. A run structure for M is a sequence
R = . . . ,CFt,CFt+1,CFt+2, . . . ,

where t ∈ Z is a point in time, and every CFt′ in R (t′ ∈ Z) is a configuration of M.

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 101/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.2 asynchronous Multi-Context Systems

Run of an aMCS

Time-awareness

Computation of belief sets takes time

Enumeration of belief sets takes time

Verification of non-existence of (further) belief sets takes time

Run execution

If a Context finds a belief set, OR are applied

Information is distributed to input-buffers of contexts or output streams

If a Context has finished its computation, EOC is sent to all stakeholders

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 102/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.2 asynchronous Multi-Context Systems

Example of an aMCS

Navigation

Amb Manager Task Planner

Case AnalyserMed Ontology

ER Employee

Case Dispatcher

Traffic state
Ambulance

CAET Management

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 103/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.2 asynchronous Multi-Context Systems

Differences to rMCS

rMCSs use equilibria
• strong semantics
• tight integration approach where context semantics are interdependent
• every context need to agree→ synchronous approach

rMCSs have equilibria as source of non-determinism

aMCSs have computation time as source of non-determinism

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 104/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.2 asynchronous Multi-Context Systems

Simulation of rMCS

For each Context Ci of the rMCS, introduce three aMCS Contexts:
• Ckb

i stores its current knowledge base
• Ckb′

i stores update of the knowledge base and compute its semantics
• Cm

i implements the bridge rules and the management function

Three contexts for the rMCS, where
• Cobs receives sensor data and distributes the information,
• Cguess guesses equilibrium candidates and propagates them to Cm

i , and
• Ccheck compares all results of the contexts and informs other contexts if an

equilibrium has been found

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 105/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.2 asynchronous Multi-Context Systems

Simulation of rMCS

For each Context Ci of the rMCS, introduce three aMCS Contexts:
• Ckb

i stores its current knowledge base
• Ckb′

i stores update of the knowledge base and compute its semantics
• Cm

i implements the bridge rules and the management function

Three contexts for the rMCS, where
• Cobs receives sensor data and distributes the information,
• Cguess guesses equilibrium candidates and propagates them to Cm

i , and
• Ccheck compares all results of the contexts and informs other contexts if an

equilibrium has been found

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 105/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Outline

1. Multi-Context Systems

2. Stream Reasoning

3. Multi-Context Stream Systems
3.1 reactive Multi-Context Systems
3.2 asynchronous Multi-Context Systems
3.3 Distributed MCS with LARS
3.4 streaming Multi-Context Systems

4. Conclusions

5. Further Resources

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 106/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Interval Streams

Interval stream is pair SI = (T, η), where
• T is a timeline and
• evaluation function η : A → 2I(T) is a mapping that assigns to every atom a ∈ A a

subset of the set of nonempty closed intervals over T, i.e., I(T) = {I = [i, j] | I ⊆ T}

Equivalence: Two interval streams SI = (T, η) and S′I = (T ′, η′) are equivalent,
if T = T ′ and for every a ∈ A,

⋃
η(a) =

⋃
η′(a)

Mapping between interval and LARS streams using canonical form

LARS Stream

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917

Substream for a time-

based window of size 6 

30 31

v  (video) m (online meeting)Atom occurrence 

Canonical formCanonical form

Interval streamInterval stream

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 107/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Interval Streams

Interval stream is pair SI = (T, η), where
• T is a timeline and
• evaluation function η : A → 2I(T) is a mapping that assigns to every atom a ∈ A a

subset of the set of nonempty closed intervals over T, i.e., I(T) = {I = [i, j] | I ⊆ T}

Equivalence: Two interval streams SI = (T, η) and S′I = (T ′, η′) are equivalent,
if T = T ′ and for every a ∈ A,

⋃
η(a) =

⋃
η′(a)

Mapping between interval and LARS streams using canonical form

LARS Stream

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917

Substream for a time-

based window of size 6 

30 31

v  (video) m (online meeting)Atom occurrence 

Canonical formCanonical form

Interval streamInterval stream

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 107/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Interval Streams

Interval stream is pair SI = (T, η), where
• T is a timeline and
• evaluation function η : A → 2I(T) is a mapping that assigns to every atom a ∈ A a

subset of the set of nonempty closed intervals over T, i.e., I(T) = {I = [i, j] | I ⊆ T}

Equivalence: Two interval streams SI = (T, η) and S′I = (T ′, η′) are equivalent,
if T = T ′ and for every a ∈ A,

⋃
η(a) =

⋃
η′(a)

Mapping between interval and LARS streams using canonical form

LARS Stream

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917

Substream for a time-

based window of size 6 

30 31

v  (video) m (online meeting)Atom occurrence 

Canonical formCanonical form

Interval streamInterval stream

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 107/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Interval Streams, cont’d

Substreams: S′I = (T ′, η′) is a substream of SI = (T, η), denoted S′I ⊆ SI , if
• T′ ⊆ T and
• for every I′ ∈ η′(a), where a ∈ A, some I ∈ η(a) exists such that I′ ⊆ I

Window functions in the interval semantics “crop” intervals

A window function w is any (computable) function that given an interval stream
SI = (T, η) and a time point t, returns a substream S′I = w(SI , t) of SI

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917

Substream for a time-

based window of size 6 

30 31

v  (video) m (online meeting)Atom occurrence 

Canonical form

Interval stream

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 108/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Interval Streams, cont’d

Substreams: S′I = (T ′, η′) is a substream of SI = (T, η), denoted S′I ⊆ SI , if
• T′ ⊆ T and
• for every I′ ∈ η′(a), where a ∈ A, some I ∈ η(a) exists such that I′ ⊆ I

Window functions in the interval semantics “crop” intervals

A window function w is any (computable) function that given an interval stream
SI = (T, η) and a time point t, returns a substream S′I = w(SI , t) of SI

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917

Substream for a time-

based window of size 6 

30 31

v  (video) m (online meeting)Atom occurrence 

Canonical form

Interval stream

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 108/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Interval Streams, cont’d

Substreams: S′I = (T ′, η′) is a substream of SI = (T, η), denoted S′I ⊆ SI , if
• T′ ⊆ T and
• for every I′ ∈ η′(a), where a ∈ A, some I ∈ η(a) exists such that I′ ⊆ I

Window functions in the interval semantics “crop” intervals

A window function w is any (computable) function that given an interval stream
SI = (T, η) and a time point t, returns a substream S′I = w(SI , t) of SI

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917

Substream for a time-

based window of size 6 

30 31

v  (video) m (online meeting)Atom occurrence 

Canonical form

Interval stream

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 108/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Streaming Atoms

Streaming atoms (A+) are defined by the grammar:

a | @ta | �w@ta | �w3a | �w2a

Satisfaction: Given a structure M = (SI ,W) and the evaluation time point t ∈ T

• atom a ∈ A holds, if t ∈
⋃
η(a), e.g., m holds at t = 29

• 2a holds, if
⋃
η(a) = T, e.g., 2m does not hold, but �62m does;

• 3a holds, if
⋃
η(a) 6= ∅, e.g., �63v holds;

• @t′a holds, if t′ ∈
⋃
η(a), e.g., �6@28v does not hold; and

• �wα holds, if α holds for w(SI , t) at t

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917

Substream for a time-

based window of size 6 

30 31

v  (video) m (online meeting)Atom occurrence 

Canonical form

Interval stream

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 109/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Streaming Atoms

Streaming atoms (A+) are defined by the grammar:

a | @ta | �w@ta | �w3a | �w2a

Satisfaction: Given a structure M = (SI ,W) and the evaluation time point t ∈ T

• atom a ∈ A holds, if t ∈
⋃
η(a), e.g., m holds at t = 29

• 2a holds, if
⋃
η(a) = T, e.g., 2m does not hold, but �62m does;

• 3a holds, if
⋃
η(a) 6= ∅, e.g., �63v holds;

• @t′a holds, if t′ ∈
⋃
η(a), e.g., �6@28v does not hold; and

• �wα holds, if α holds for w(SI , t) at t

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917

Substream for a time-

based window of size 6 

30 31

v  (video) m (online meeting)Atom occurrence 

Canonical form

Interval stream

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 109/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Streaming Atoms

Streaming atoms (A+) are defined by the grammar:

a | @ta | �w@ta | �w3a | �w2a

Satisfaction: Given a structure M = (SI ,W) and the evaluation time point t ∈ T
• atom a ∈ A holds, if t ∈

⋃
η(a), e.g., m holds at t = 29

• 2a holds, if
⋃
η(a) = T, e.g., 2m does not hold, but �62m does;

• 3a holds, if
⋃
η(a) 6= ∅, e.g., �63v holds;

• @t′a holds, if t′ ∈
⋃
η(a), e.g., �6@28v does not hold; and

• �wα holds, if α holds for w(SI , t) at t

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917

Substream for a time-

based window of size 6 

30 31

v  (video) m (online meeting)Atom occurrence 

Canonical form

Interval stream

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 109/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Streaming Atoms

Streaming atoms (A+) are defined by the grammar:

a | @ta | �w@ta | �w3a | �w2a

Satisfaction: Given a structure M = (SI ,W) and the evaluation time point t ∈ T
• atom a ∈ A holds, if t ∈

⋃
η(a), e.g., m holds at t = 29

• 2a holds, if
⋃
η(a) = T, e.g., 2m does not hold, but �62m does;

• 3a holds, if
⋃
η(a) 6= ∅, e.g., �63v holds;

• @t′a holds, if t′ ∈
⋃
η(a), e.g., �6@28v does not hold; and

• �wα holds, if α holds for w(SI , t) at t

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917

Substream for a time-

based window of size 6 

30 31

v  (video) m (online meeting)Atom occurrence 

Canonical form

Interval stream

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 109/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Streaming Atoms

Streaming atoms (A+) are defined by the grammar:

a | @ta | �w@ta | �w3a | �w2a

Satisfaction: Given a structure M = (SI ,W) and the evaluation time point t ∈ T
• atom a ∈ A holds, if t ∈

⋃
η(a), e.g., m holds at t = 29

• 2a holds, if
⋃
η(a) = T, e.g., 2m does not hold, but �62m does;

• 3a holds, if
⋃
η(a) 6= ∅, e.g., �63v holds;

• @t′a holds, if t′ ∈
⋃
η(a), e.g., �6@28v does not hold; and

• �wα holds, if α holds for w(SI , t) at t

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917

Substream for a time-

based window of size 6 

30 31

v  (video) m (online meeting)Atom occurrence 

Canonical form

Interval stream

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 109/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Streaming Atoms

Streaming atoms (A+) are defined by the grammar:

a | @ta | �w@ta | �w3a | �w2a

Satisfaction: Given a structure M = (SI ,W) and the evaluation time point t ∈ T
• atom a ∈ A holds, if t ∈

⋃
η(a), e.g., m holds at t = 29

• 2a holds, if
⋃
η(a) = T, e.g., 2m does not hold, but �62m does;

• 3a holds, if
⋃
η(a) 6= ∅, e.g., �63v holds;

• @t′a holds, if t′ ∈
⋃
η(a), e.g., �6@28v does not hold; and

• �wα holds, if α holds for w(SI , t) at t

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917

Substream for a time-

based window of size 6 

30 31

v  (video) m (online meeting)Atom occurrence 

Canonical form

Interval stream

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 109/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Streaming Atoms

Streaming atoms (A+) are defined by the grammar:

a | @ta | �w@ta | �w3a | �w2a

Satisfaction: Given a structure M = (SI ,W) and the evaluation time point t ∈ T
• atom a ∈ A holds, if t ∈

⋃
η(a), e.g., m holds at t = 29

• 2a holds, if
⋃
η(a) = T, e.g., 2m does not hold, but �62m does;

• 3a holds, if
⋃
η(a) 6= ∅, e.g., �63v holds;

• @t′a holds, if t′ ∈
⋃
η(a), e.g., �6@28v does not hold; and

• �wα holds, if α holds for w(SI , t) at t

12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 2917

Substream for a time-

based window of size 6 

30 31

v  (video) m (online meeting)Atom occurrence 

Canonical form

Interval stream

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 109/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Logic-based framework for Analytical Reasoning over Streams (LARS)

LARS is a language for stream reasoning that combines advantages of ASP with
temporal 3, 2, @t and window operators �

Plain LARS rules are of the form
r : α← β1, . . . , βm, not βm+1, . . . , not βn where

• the head α is an atom a or @ta, and
• βi are streaming atoms that occur in positive B+(r) = {β1, . . . , βm} or negative

B−(r) = {βm+1, . . . , βn} body

Satisfaction: Given a structure M = (SI ,W) and the evaluation time point t ∈ T,
we define that:

• M, t |= α, where α ∈ A+, if α holds in SI at t;
• M, t |= B(r) if M, t |= βi and M, t 6|= βj, where βi ∈ B+(r) and βj ∈ B−(r);
• M, t |= r if M, t |= B(r) implies M, t |= α;
• M, t |= Π if for every rule r in Π it holds that M, t |= r

Differentiate between a data stream DI = (T, ηD) of extensional atoms AE and
an interpretation stream SInt = (T, η) for DI where η(a) = ηD(a), for all a ∈ AE.
Answer stream for a data stream DI = (T, ηD) and a plain LARS program Π is
an interpretation stream SInt = (T, η) such that

• SInt, t |= Π, and
• every substream S′Int of SInt that is an interpretation stream for DI such that

S′Int, t |= ΠSInt,t = {r ∈ Π | SInt, t |= B(r)} is equivalent to SInt

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 110/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Logic-based framework for Analytical Reasoning over Streams (LARS)

LARS is a language for stream reasoning that combines advantages of ASP with
temporal 3, 2, @t and window operators �

Plain LARS rules are of the form
r : α← β1, . . . , βm, not βm+1, . . . , not βn where

• the head α is an atom a or @ta, and
• βi are streaming atoms that occur in positive B+(r) = {β1, . . . , βm} or negative

B−(r) = {βm+1, . . . , βn} body

Satisfaction: Given a structure M = (SI ,W) and the evaluation time point t ∈ T,
we define that:

• M, t |= α, where α ∈ A+, if α holds in SI at t;
• M, t |= B(r) if M, t |= βi and M, t 6|= βj, where βi ∈ B+(r) and βj ∈ B−(r);
• M, t |= r if M, t |= B(r) implies M, t |= α;
• M, t |= Π if for every rule r in Π it holds that M, t |= r

Differentiate between a data stream DI = (T, ηD) of extensional atoms AE and
an interpretation stream SInt = (T, η) for DI where η(a) = ηD(a), for all a ∈ AE.
Answer stream for a data stream DI = (T, ηD) and a plain LARS program Π is
an interpretation stream SInt = (T, η) such that

• SInt, t |= Π, and
• every substream S′Int of SInt that is an interpretation stream for DI such that

S′Int, t |= ΠSInt,t = {r ∈ Π | SInt, t |= B(r)} is equivalent to SInt

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 110/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Logic-based framework for Analytical Reasoning over Streams (LARS)

LARS is a language for stream reasoning that combines advantages of ASP with
temporal 3, 2, @t and window operators �

Plain LARS rules are of the form
r : α← β1, . . . , βm, not βm+1, . . . , not βn where
• the head α is an atom a or @ta, and

• βi are streaming atoms that occur in positive B+(r) = {β1, . . . , βm} or negative
B−(r) = {βm+1, . . . , βn} body

Satisfaction: Given a structure M = (SI ,W) and the evaluation time point t ∈ T,
we define that:

• M, t |= α, where α ∈ A+, if α holds in SI at t;
• M, t |= B(r) if M, t |= βi and M, t 6|= βj, where βi ∈ B+(r) and βj ∈ B−(r);
• M, t |= r if M, t |= B(r) implies M, t |= α;
• M, t |= Π if for every rule r in Π it holds that M, t |= r

Differentiate between a data stream DI = (T, ηD) of extensional atoms AE and
an interpretation stream SInt = (T, η) for DI where η(a) = ηD(a), for all a ∈ AE.
Answer stream for a data stream DI = (T, ηD) and a plain LARS program Π is
an interpretation stream SInt = (T, η) such that

• SInt, t |= Π, and
• every substream S′Int of SInt that is an interpretation stream for DI such that

S′Int, t |= ΠSInt,t = {r ∈ Π | SInt, t |= B(r)} is equivalent to SInt

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 110/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Logic-based framework for Analytical Reasoning over Streams (LARS)

LARS is a language for stream reasoning that combines advantages of ASP with
temporal 3, 2, @t and window operators �

Plain LARS rules are of the form
r : α← β1, . . . , βm, not βm+1, . . . , not βn where
• the head α is an atom a or @ta, and
• βi are streaming atoms that occur in positive B+(r) = {β1, . . . , βm} or negative

B−(r) = {βm+1, . . . , βn} body

Satisfaction: Given a structure M = (SI ,W) and the evaluation time point t ∈ T,
we define that:

• M, t |= α, where α ∈ A+, if α holds in SI at t;
• M, t |= B(r) if M, t |= βi and M, t 6|= βj, where βi ∈ B+(r) and βj ∈ B−(r);
• M, t |= r if M, t |= B(r) implies M, t |= α;
• M, t |= Π if for every rule r in Π it holds that M, t |= r

Differentiate between a data stream DI = (T, ηD) of extensional atoms AE and
an interpretation stream SInt = (T, η) for DI where η(a) = ηD(a), for all a ∈ AE.
Answer stream for a data stream DI = (T, ηD) and a plain LARS program Π is
an interpretation stream SInt = (T, η) such that

• SInt, t |= Π, and
• every substream S′Int of SInt that is an interpretation stream for DI such that

S′Int, t |= ΠSInt,t = {r ∈ Π | SInt, t |= B(r)} is equivalent to SInt

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 110/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Logic-based framework for Analytical Reasoning over Streams (LARS)

LARS is a language for stream reasoning that combines advantages of ASP with
temporal 3, 2, @t and window operators �

Plain LARS rules are of the form
r : α← β1, . . . , βm, not βm+1, . . . , not βn where
• the head α is an atom a or @ta, and
• βi are streaming atoms that occur in positive B+(r) = {β1, . . . , βm} or negative

B−(r) = {βm+1, . . . , βn} body

Satisfaction: Given a structure M = (SI ,W) and the evaluation time point t ∈ T,
we define that:

• M, t |= α, where α ∈ A+, if α holds in SI at t;
• M, t |= B(r) if M, t |= βi and M, t 6|= βj, where βi ∈ B+(r) and βj ∈ B−(r);
• M, t |= r if M, t |= B(r) implies M, t |= α;
• M, t |= Π if for every rule r in Π it holds that M, t |= r

Differentiate between a data stream DI = (T, ηD) of extensional atoms AE and
an interpretation stream SInt = (T, η) for DI where η(a) = ηD(a), for all a ∈ AE.
Answer stream for a data stream DI = (T, ηD) and a plain LARS program Π is
an interpretation stream SInt = (T, η) such that

• SInt, t |= Π, and
• every substream S′Int of SInt that is an interpretation stream for DI such that

S′Int, t |= ΠSInt,t = {r ∈ Π | SInt, t |= B(r)} is equivalent to SInt

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 110/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Logic-based framework for Analytical Reasoning over Streams (LARS)

LARS is a language for stream reasoning that combines advantages of ASP with
temporal 3, 2, @t and window operators �

Plain LARS rules are of the form
r : α← β1, . . . , βm, not βm+1, . . . , not βn where
• the head α is an atom a or @ta, and
• βi are streaming atoms that occur in positive B+(r) = {β1, . . . , βm} or negative

B−(r) = {βm+1, . . . , βn} body

Satisfaction: Given a structure M = (SI ,W) and the evaluation time point t ∈ T,
we define that:
• M, t |= α, where α ∈ A+, if α holds in SI at t;

• M, t |= B(r) if M, t |= βi and M, t 6|= βj, where βi ∈ B+(r) and βj ∈ B−(r);
• M, t |= r if M, t |= B(r) implies M, t |= α;
• M, t |= Π if for every rule r in Π it holds that M, t |= r

Differentiate between a data stream DI = (T, ηD) of extensional atoms AE and
an interpretation stream SInt = (T, η) for DI where η(a) = ηD(a), for all a ∈ AE.
Answer stream for a data stream DI = (T, ηD) and a plain LARS program Π is
an interpretation stream SInt = (T, η) such that

• SInt, t |= Π, and
• every substream S′Int of SInt that is an interpretation stream for DI such that

S′Int, t |= ΠSInt,t = {r ∈ Π | SInt, t |= B(r)} is equivalent to SInt

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 110/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Logic-based framework for Analytical Reasoning over Streams (LARS)

LARS is a language for stream reasoning that combines advantages of ASP with
temporal 3, 2, @t and window operators �

Plain LARS rules are of the form
r : α← β1, . . . , βm, not βm+1, . . . , not βn where
• the head α is an atom a or @ta, and
• βi are streaming atoms that occur in positive B+(r) = {β1, . . . , βm} or negative

B−(r) = {βm+1, . . . , βn} body

Satisfaction: Given a structure M = (SI ,W) and the evaluation time point t ∈ T,
we define that:
• M, t |= α, where α ∈ A+, if α holds in SI at t;
• M, t |= B(r) if M, t |= βi and M, t 6|= βj, where βi ∈ B+(r) and βj ∈ B−(r);

• M, t |= r if M, t |= B(r) implies M, t |= α;
• M, t |= Π if for every rule r in Π it holds that M, t |= r

Differentiate between a data stream DI = (T, ηD) of extensional atoms AE and
an interpretation stream SInt = (T, η) for DI where η(a) = ηD(a), for all a ∈ AE.
Answer stream for a data stream DI = (T, ηD) and a plain LARS program Π is
an interpretation stream SInt = (T, η) such that

• SInt, t |= Π, and
• every substream S′Int of SInt that is an interpretation stream for DI such that

S′Int, t |= ΠSInt,t = {r ∈ Π | SInt, t |= B(r)} is equivalent to SInt

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 110/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Logic-based framework for Analytical Reasoning over Streams (LARS)

LARS is a language for stream reasoning that combines advantages of ASP with
temporal 3, 2, @t and window operators �

Plain LARS rules are of the form
r : α← β1, . . . , βm, not βm+1, . . . , not βn where
• the head α is an atom a or @ta, and
• βi are streaming atoms that occur in positive B+(r) = {β1, . . . , βm} or negative

B−(r) = {βm+1, . . . , βn} body

Satisfaction: Given a structure M = (SI ,W) and the evaluation time point t ∈ T,
we define that:
• M, t |= α, where α ∈ A+, if α holds in SI at t;
• M, t |= B(r) if M, t |= βi and M, t 6|= βj, where βi ∈ B+(r) and βj ∈ B−(r);
• M, t |= r if M, t |= B(r) implies M, t |= α;

• M, t |= Π if for every rule r in Π it holds that M, t |= r

Differentiate between a data stream DI = (T, ηD) of extensional atoms AE and
an interpretation stream SInt = (T, η) for DI where η(a) = ηD(a), for all a ∈ AE.
Answer stream for a data stream DI = (T, ηD) and a plain LARS program Π is
an interpretation stream SInt = (T, η) such that

• SInt, t |= Π, and
• every substream S′Int of SInt that is an interpretation stream for DI such that

S′Int, t |= ΠSInt,t = {r ∈ Π | SInt, t |= B(r)} is equivalent to SInt

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 110/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Logic-based framework for Analytical Reasoning over Streams (LARS)

LARS is a language for stream reasoning that combines advantages of ASP with
temporal 3, 2, @t and window operators �

Plain LARS rules are of the form
r : α← β1, . . . , βm, not βm+1, . . . , not βn where
• the head α is an atom a or @ta, and
• βi are streaming atoms that occur in positive B+(r) = {β1, . . . , βm} or negative

B−(r) = {βm+1, . . . , βn} body

Satisfaction: Given a structure M = (SI ,W) and the evaluation time point t ∈ T,
we define that:
• M, t |= α, where α ∈ A+, if α holds in SI at t;
• M, t |= B(r) if M, t |= βi and M, t 6|= βj, where βi ∈ B+(r) and βj ∈ B−(r);
• M, t |= r if M, t |= B(r) implies M, t |= α;
• M, t |= Π if for every rule r in Π it holds that M, t |= r

Differentiate between a data stream DI = (T, ηD) of extensional atoms AE and
an interpretation stream SInt = (T, η) for DI where η(a) = ηD(a), for all a ∈ AE.
Answer stream for a data stream DI = (T, ηD) and a plain LARS program Π is
an interpretation stream SInt = (T, η) such that

• SInt, t |= Π, and
• every substream S′Int of SInt that is an interpretation stream for DI such that

S′Int, t |= ΠSInt,t = {r ∈ Π | SInt, t |= B(r)} is equivalent to SInt

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 110/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Logic-based framework for Analytical Reasoning over Streams (LARS)

LARS is a language for stream reasoning that combines advantages of ASP with
temporal 3, 2, @t and window operators �

Plain LARS rules are of the form
r : α← β1, . . . , βm, not βm+1, . . . , not βn where
• the head α is an atom a or @ta, and
• βi are streaming atoms that occur in positive B+(r) = {β1, . . . , βm} or negative

B−(r) = {βm+1, . . . , βn} body

Satisfaction: Given a structure M = (SI ,W) and the evaluation time point t ∈ T,
we define that:
• M, t |= α, where α ∈ A+, if α holds in SI at t;
• M, t |= B(r) if M, t |= βi and M, t 6|= βj, where βi ∈ B+(r) and βj ∈ B−(r);
• M, t |= r if M, t |= B(r) implies M, t |= α;
• M, t |= Π if for every rule r in Π it holds that M, t |= r

Differentiate between a data stream DI = (T, ηD) of extensional atoms AE and
an interpretation stream SInt = (T, η) for DI where η(a) = ηD(a), for all a ∈ AE.

Answer stream for a data stream DI = (T, ηD) and a plain LARS program Π is
an interpretation stream SInt = (T, η) such that

• SInt, t |= Π, and
• every substream S′Int of SInt that is an interpretation stream for DI such that

S′Int, t |= ΠSInt,t = {r ∈ Π | SInt, t |= B(r)} is equivalent to SInt

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 110/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Logic-based framework for Analytical Reasoning over Streams (LARS)

LARS is a language for stream reasoning that combines advantages of ASP with
temporal 3, 2, @t and window operators �

Plain LARS rules are of the form
r : α← β1, . . . , βm, not βm+1, . . . , not βn where
• the head α is an atom a or @ta, and
• βi are streaming atoms that occur in positive B+(r) = {β1, . . . , βm} or negative

B−(r) = {βm+1, . . . , βn} body

Satisfaction: Given a structure M = (SI ,W) and the evaluation time point t ∈ T,
we define that:
• M, t |= α, where α ∈ A+, if α holds in SI at t;
• M, t |= B(r) if M, t |= βi and M, t 6|= βj, where βi ∈ B+(r) and βj ∈ B−(r);
• M, t |= r if M, t |= B(r) implies M, t |= α;
• M, t |= Π if for every rule r in Π it holds that M, t |= r

Differentiate between a data stream DI = (T, ηD) of extensional atoms AE and
an interpretation stream SInt = (T, η) for DI where η(a) = ηD(a), for all a ∈ AE.
Answer stream for a data stream DI = (T, ηD) and a plain LARS program Π is
an interpretation stream SInt = (T, η) such that

• SInt, t |= Π, and
• every substream S′Int of SInt that is an interpretation stream for DI such that

S′Int, t |= ΠSInt,t = {r ∈ Π | SInt, t |= B(r)} is equivalent to SInt

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 110/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Logic-based framework for Analytical Reasoning over Streams (LARS)

LARS is a language for stream reasoning that combines advantages of ASP with
temporal 3, 2, @t and window operators �

Plain LARS rules are of the form
r : α← β1, . . . , βm, not βm+1, . . . , not βn where
• the head α is an atom a or @ta, and
• βi are streaming atoms that occur in positive B+(r) = {β1, . . . , βm} or negative

B−(r) = {βm+1, . . . , βn} body

Satisfaction: Given a structure M = (SI ,W) and the evaluation time point t ∈ T,
we define that:
• M, t |= α, where α ∈ A+, if α holds in SI at t;
• M, t |= B(r) if M, t |= βi and M, t 6|= βj, where βi ∈ B+(r) and βj ∈ B−(r);
• M, t |= r if M, t |= B(r) implies M, t |= α;
• M, t |= Π if for every rule r in Π it holds that M, t |= r

Differentiate between a data stream DI = (T, ηD) of extensional atoms AE and
an interpretation stream SInt = (T, η) for DI where η(a) = ηD(a), for all a ∈ AE.
Answer stream for a data stream DI = (T, ηD) and a plain LARS program Π is
an interpretation stream SInt = (T, η) such that
• SInt, t |= Π, and

• every substream S′Int of SInt that is an interpretation stream for DI such that
S′Int, t |= ΠSInt,t = {r ∈ Π | SInt, t |= B(r)} is equivalent to SInt

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 110/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Logic-based framework for Analytical Reasoning over Streams (LARS)

LARS is a language for stream reasoning that combines advantages of ASP with
temporal 3, 2, @t and window operators �

Plain LARS rules are of the form
r : α← β1, . . . , βm, not βm+1, . . . , not βn where
• the head α is an atom a or @ta, and
• βi are streaming atoms that occur in positive B+(r) = {β1, . . . , βm} or negative

B−(r) = {βm+1, . . . , βn} body

Satisfaction: Given a structure M = (SI ,W) and the evaluation time point t ∈ T,
we define that:
• M, t |= α, where α ∈ A+, if α holds in SI at t;
• M, t |= B(r) if M, t |= βi and M, t 6|= βj, where βi ∈ B+(r) and βj ∈ B−(r);
• M, t |= r if M, t |= B(r) implies M, t |= α;
• M, t |= Π if for every rule r in Π it holds that M, t |= r

Differentiate between a data stream DI = (T, ηD) of extensional atoms AE and
an interpretation stream SInt = (T, η) for DI where η(a) = ηD(a), for all a ∈ AE.
Answer stream for a data stream DI = (T, ηD) and a plain LARS program Π is
an interpretation stream SInt = (T, η) such that
• SInt, t |= Π, and
• every substream S′Int of SInt that is an interpretation stream for DI such that

S′Int, t |= ΠSInt,t = {r ∈ Π | SInt, t |= B(r)} is equivalent to SInt

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 110/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Ticker (Beck et al., 2017)

Engine time specifies duration of a time point

Different output options: push-based, pull-based, based on model change

Code (Scala): https://github.com/hbeck/ticker

Two reasoning modes

1. Repeated single-shot solving with static encoding (Clingo)

2. Incremental evaluation using Truth Maintenance System (TMS) techniques
(Doyle, 1979)
• Input: model M for program P, rule r
• Output: model M′ for P ∪ {r} =⇒ for new incremental rules
• Extension: model M′ for P \ {r} =⇒ for expired rules

exploit Elkan’s [1990] result:
• the answer sets of normal programs P correspond to the admissible models of TMS

JTMS(P)
• excludes constraints/odd loops in TMS

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 111/125

https://github.com/hbeck/ticker


Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Laser (Bazoobandi et al., 2017b)

Plain Fragment
• Like Ticker, Plain LARS + sliding windows, but aiming at:
• high performance / throughput
• ⇒ focus on deterministic programs (positive & stratified)

Fast model update
• efficient substitution management
• extend semi-naive evaluation (used e.g. for Datalog)
• incorporate temporal dimension
• track intervals how long (sub)formulas are guaranteed to hold
• ⇒ avoids redundant re-derivations
• ⇒ efficient removal of expired derivations

Performance
• Laser outperforms Ticker, C-SPARQL and CQELS in micro-benchmarks
• source code is available at https://github.com/karmaresearch/laser

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 112/125

https://github.com/karmaresearch/laser


Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Distributed Stream Reasoner (Eiter et al., 2019)

LARS engines Ticker and Laser do monolithic evaluation using a clock (ticks)

Performance issues under load

As in stream processing, distribute computation

Distributed LARS (Outline):

Streaming atoms: a | @t′a | �@t′a | �3a | �2a

cast time-point to interval semantics (support triggers)

Decompose program P using a (stream) dependency graph

A component graph over it yields a network of subprograms P1, . . . ,Pm
• each Pi is run by a stream reasoner

• publishes streaming atoms to its successors,
• requests streaming atoms from its predecessors (for itself or successors)

• a special master node interfaces the outside world (publishes all external atoms,
wants all internal atoms)

stream-stratification (no cycle through windows) ensures a data pipeline

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 113/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Distributed Stream Reasoner (Eiter et al., 2019)

LARS engines Ticker and Laser do monolithic evaluation using a clock (ticks)

Performance issues under load

As in stream processing, distribute computation

Distributed LARS (Outline):

Streaming atoms: a | @t′a | �@t′a | �3a | �2a

cast time-point to interval semantics (support triggers)

Decompose program P using a (stream) dependency graph

A component graph over it yields a network of subprograms P1, . . . ,Pm
• each Pi is run by a stream reasoner

• publishes streaming atoms to its successors,
• requests streaming atoms from its predecessors (for itself or successors)

• a special master node interfaces the outside world (publishes all external atoms,
wants all internal atoms)

stream-stratification (no cycle through windows) ensures a data pipeline

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 113/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Component Graph: Network Administration

LARS Encoding
high← value(V),�k sec@T alpha(V), 18 ≤ V.

mid← value(V),�k sec@T alpha(V), 12 ≤ V < 18.

low← value(V),�k sec@T alpha(V), V ≤ 12.

lfu← �k sec� high.

lru← �k sec� mid.

fifo← �k sec� low,�[k sec]3 rtm50.
done← lfu ∨ lru ∨ fifo.
random← not done.

Ticker encoding (for k = 3):
high :- value(V), alpha(V) at T [3 sec], 18 <= V.
mid :- value(V), alpha(V) at T [3 sec], 12 <= V, V < 18.
low :- value(V), alpha(V) at T [3 sec], V <= 12.
lfu :- high always [3 sec].
lru :- mid always [3 sec].
fifo :- low always [3 sec], rtm50 [3 sec].
done :- lfu.
done :- lru.
done :- fifo.
random :- not done.
value(5). value(15). value(25).

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 114/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Component Graph: Network Administration

LARS Encoding
high← value(V),�k sec@T alpha(V), 18 ≤ V.

mid← value(V),�k sec@T alpha(V), 12 ≤ V < 18.

low← value(V),�k sec@T alpha(V), V ≤ 12.

lfu← �k sec� high.

lru← �k sec� mid.

fifo← �k sec� low,�[k sec]3 rtm50.
done← lfu ∨ lru ∨ fifo.
random← not done.

Ticker encoding (for k = 3):
high :- value(V), alpha(V) at T [3 sec], 18 <= V.
mid :- value(V), alpha(V) at T [3 sec], 12 <= V, V < 18.
low :- value(V), alpha(V) at T [3 sec], V <= 12.
lfu :- high always [3 sec].
lru :- mid always [3 sec].
fifo :- low always [3 sec], rtm50 [3 sec].
done :- lfu.
done :- lru.
done :- fifo.
random :- not done.
value(5). value(15). value(25).

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 114/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Component Graph: Network Administration, cont’d

<<master>>

high :- value(V),alpha(V) at T in [3 s],(18) <= (V).
mid :- value(V),alpha(V) at T in [3 s],(12) <= (V),(V) < (18).

low :- value(V),alpha(V) at T in [3 s],(V) <= (12).
value(5).

value(15).
value(25).

[alpha(V)
,off

,rtm50]

lfu :- high always in [3 s].
lru :- mid always in [3 s].

fifo :- low always in [3 s],rtm50 in [3 s].
done :- lfu.
done :- lru.
done :- fifo.

random :- not done.
finish :- off in [1 s],done.

finish :- off in [1 s],random.

[done
,fifo

,finish
,high
,lfu
,low
,lru
,mid

,random
,value(V)]

[high
,low
,mid
,off

,rtm50
,value(V)]

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 115/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.3 Distributed MCS with LARS

Distributed Stream Reasoning System

Stream Reasoning Component

Data  
stream

External  
systems Answer 

stream 

Master

Ground

Next Trigger

Stream
Reasoner

Store

TriggerTrigger / Timer

Interval 
DB

Ticker
encoding

Answer streams

Data/commands

Legend

Master: computes the component graph and spawns nodes in the network

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 116/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.4 streaming Multi-Context Systems

Outline

1. Multi-Context Systems

2. Stream Reasoning

3. Multi-Context Stream Systems
3.1 reactive Multi-Context Systems
3.2 asynchronous Multi-Context Systems
3.3 Distributed MCS with LARS
3.4 streaming Multi-Context Systems

4. Conclusions

5. Further Resources

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 117/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.4 streaming Multi-Context Systems

streaming Multi-Context Systems (Dao-Tran and Eiter, 2017)

streaming MCS are extending managed MCS by
• allowing window atoms in bridge rules (as in plain LARS rules)⇒ can process input

streams, contexts remain abstract

op← β1, . . . , βj, not βj+1, . . . , not βm

where op ∈ opsi is an operation, βi = (ci : αi) is a bridge atom, ci ∈ {1, . . . , n} and
αi is a streaming atom for a context Cci

• Example consider a simple setup in which an edge router r1 reports about its
caching strategy to a router r2 located in the middle of the network

Context C1 (router r1)

ACCrouter

Context C2 (router r2)

ACCrouter

update(strategy(r1, fifo))← (1 : �52 fifo)

• the bridge rule updates the local KB of the router r2 by accessing the output of the
context C1 for the neighbor router r1 that used fifo strategy for the last 5 time units

• enabling extensions with streaming contexts as in the Distributed Stream Reasoner

• In the example above the set of acceptable belief sets ACCrouter is defined by the
LARS encoding presented above

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 118/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.4 streaming Multi-Context Systems

streaming Multi-Context Systems (Dao-Tran and Eiter, 2017)

streaming MCS are extending managed MCS by
• allowing window atoms in bridge rules (as in plain LARS rules)⇒ can process input

streams, contexts remain abstract

op← β1, . . . , βj, not βj+1, . . . , not βm

where op ∈ opsi is an operation, βi = (ci : αi) is a bridge atom, ci ∈ {1, . . . , n} and
αi is a streaming atom for a context Cci

• Example consider a simple setup in which an edge router r1 reports about its
caching strategy to a router r2 located in the middle of the network

Context C1 (router r1)

ACCrouter

Context C2 (router r2)

ACCrouter

update(strategy(r1, fifo))← (1 : �52 fifo)

• the bridge rule updates the local KB of the router r2 by accessing the output of the
context C1 for the neighbor router r1 that used fifo strategy for the last 5 time units

• enabling extensions with streaming contexts as in the Distributed Stream Reasoner
• In the example above the set of acceptable belief sets ACCrouter is defined by the

LARS encoding presented above

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 118/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.4 streaming Multi-Context Systems

streaming Multi-Context Systems, cont’d

Further extensions include:
• sMCS can model computation time fi for a context Ci and data transfer time ∆ik

between contexts Ci and Ck ⇒ timestamps of atoms in the stream are corrected
• asynchronous execution as well as ignore and restart policies for incoming data
• supports both pushing and pulling execution modes

sMCS describe different modes in which a context Ci might occur using its state
si = (si, oi, kbi), where
• si ⊆ {IE, SE} is the execution status IE – Intended Execution with pull or push – and

SE – Start Execution like idle or busy.
• oi is an output belief set or ε if no output is streamed to other contexts
• kbi is a local KB that can be changed

A run of an sMCS is a sequence s = s(0), . . . , s(t) of global states
s(i) = (s1(i), . . . , sn(i)) where each sj(i) is a state of Ci

Semantics sMCS can simulate rMCS using the notion of an idelized run:
• Idea: model an idealized system that can compute equilibria between two

consecutive time points⇒ ACC can be computed finitely often between these points
• Let the transferring time be 0 and δ be an infinitesimally small chronon denoting

computation time, i.e., t < t + δ and t + δ = t + kδ for any k ∈ N− {0}
• Then, for every state s

oi(t + δ) = ACC(kbi(t + δ)) and kbi(t + 1) = kbi(t + δ)

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 119/125



Multi-Context Stream Reasoning 3. Multi-Context Stream Systems 3.4 streaming Multi-Context Systems

sMCS: Feedback Equilibria

Idealized settings are very rare in practice and completely asynchronous
computations can be uncomfortable, e.g., mutually dependent contexts
Idea of Feedback Equilibria:
• focus on Strongly Connected Components (SCC) of a context dependency graph,

i.e., Ci → Cj if a bridge atom (j : A) occurs in bri
• ignore/delay data appearing in the stream from outside of the system
• while computing, any context C can request stability of its SCC C at a time te with a

timeout time to
• the contexts in C are restarted with the state of a stream at te
• at to the SCC C either reports an equilibrium or restarts its contexts with input collected

from the stream at to

Given a run s at a time te, the Feedback Equilibrium of C is defined as follows:

∀ Ci ∈ C belief set BSi ∈ ACCi(mngi(appδi (s, te), kbi(te)))

where
• mng is a management function and
• appδi is a set of all applicable bridge rules that considers all data in the input stream

till te as well as data streamed within C during δ – cyclic information flow is respected

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 120/125



Multi-Context Stream Reasoning 4. Conclusions 4.1 Summary

Outline

1. Multi-Context Systems

2. Stream Reasoning

3. Multi-Context Stream Systems

4. Conclusions
4.1 Summary
4.2 Open Issues

5. Further Resources

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 121/125



Multi-Context Stream Reasoning 4. Conclusions 4.1 Summary

Summary

Stream Reasoning is a topic of growing interest
A variety of multi-context systems that can be used to in stream reasoning
scenarios exist:
• reactive Multi-Context Systems Brewka et al. (2018)
• asynchronous Multi-Context Systems (Ellmauthaler and Pührer, 2015; Ellmauthaler,

2018)
• streaming Multi-Context Systems (Dao-Tran and Eiter, 2017)
• timed MCS (Cabalar et al., 2019)

Stream Reasoning is related to temporal reasoning, but distinctive features
• windows
• incrementality
• push vs pull
• . . .

Important uses cases and applications
• monitoring & control
• prediction
• diagnosis/configuration

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 122/125



Multi-Context Stream Reasoning 4. Conclusions 4.2 Open Issues

Outline

1. Multi-Context Systems

2. Stream Reasoning

3. Multi-Context Stream Systems

4. Conclusions
4.1 Summary
4.2 Open Issues

5. Further Resources

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 123/125



Multi-Context Stream Reasoning 4. Conclusions 4.2 Open Issues

Open Issues

Model management
• incremental evaluation, yield similar models
• View maintenance for stratified Datalog, e.g., (Motik et al., 2019)

Algorithms suitable for distributed fail-safe stream reasoning

Computation of justifications and debugging of stream reasoning systems

Deal with quantitative versions of semantics
• deal with noise, uncertainty
• probabilistic semantics, e.g., (Nickles and Mileo, 2014)
• optimization

Integration with other languages and formalisms (automata, regular
expressions)

More powerful windows (e.g. aggregates, returning results)

Integration in more complex environments (CPS, MCS)

Benchmarking and applications

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 124/125



Multi-Context Stream Reasoning 5. Further Resources

Resources

General website providing information about Stream Reasoning resources,
events, competitions, etc.:
http://streamreasoning.org/

RDF Stream Reasoning Community Group:
https://www.w3.org/community/rsp/

An overview of Stream Processing software:
https://bit.ly/2m3RCnG

Selected software:
• ETALIS Complex Event Processing system:
https://github.com/sspider/etalis

• Example of a multi-shot Stream Reasoner based on clasp
https://github.com/potassco/aspStream

• Ticker LARS reasoner:
https://github.com/hbeck/ticker

• Laser LARS reasoner:
https://github.com/karmaresearch/Laser

• Distributed LARS reasoner:
https://git-ainf.aau.at/Paul.Ogris/distributed-sr

• Experiments Codes ans Data for StreamRule Parallization:
https://github.com/ThuLePham/SR_Experiments

Ellmauthaler and Schekotihin Bamberg, Germany, September 21, 2020 125/125

http://streamreasoning.org/
https://www.w3.org/community/rsp/
https://bit.ly/2m3RCnG
https://github.com/sspider/etalis
https://github.com/potassco/aspStream
https://github.com/hbeck/ticker
https://github.com/karmaresearch/Laser
https://git-ainf.aau.at/Paul.Ogris/distributed-sr
https://github.com/ThuLePham/SR_Experiments


References I

Daniel J. Abadi, Donald Carney, Ugur Cetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Michael Stonebraker,
Nesime Tatbul, and Stanley B. Zdonik. Aurora: a new model and architecture for data stream management. VLDB J.,
12(2):120–139, 2003.

James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM, 26(11):832–843, November 1983.

Peter Alvaro, William R. Marczak, Neil Conway, Joseph M. Hellerstein, David Maier, and Russell Sears. Dedalus: Datalog in
time and space. In Datalog, volume 6702 of Lecture Notes in Computer Science, pages 262–281. Springer, 2010.

Darko Anicic, Sebastian Rudolph, Paul Fodor, and Nenad Stojanovic. Stream reasoning and complex event processing in
ETALIS. Semantic Web Journal, 2012.

Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito, Rajeev Motwani, Itaru Nishizawa, Srivastava Utkarsh,
Dilys Thomas, Rohit Varma, and Jennifer Widom. STREAM: the stanford stream data manager. IEEE Data Eng. Bull.,
26(1):19–26, 2003.

Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL continuous query language: semantic foundations and query
execution. VLDB J., 15(2):121–142, 2006.

Alexander Artikis, Marek Sergot, and Georgios Paliouras. An event calculus for event recognition. IEEE Trans. Knowl. Data
Eng., 2014.

Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and Michael Grossniklaus. C-SPARQL: a
continuous query language for rdf data streams. Int. J. Semantic Computing, 4(1):3–25, 2010.

Roger S. Barga, Jonathan Goldstein, Mohamed H. Ali, and Mingsheng Hong. Consistent streaming through time: A vision for
event stream processing. In CIDR, pages 363–374. www.cidrdb.org, 2007.

Marianne Baudinet, Jan Chomicki, and Pierre Wolper. Temporal deductive databases. In Temporal Databases, pages
294–320. Benjamin/Cummings, 1993.

Hamid R. Bazoobandi, Harald Beck, and Jacopo Urbani. Expressive stream reasoning with laser. In The Semantic Web -
ISWC 2017 - 16th International Semantic Web Conference, Vienna, Austria, October 21-25, 2017, Proceedings, Part I,
pages 87–103, 2017.

Hamid R. Bazoobandi, Harald Beck, and Jacopo Urbani. Expressive stream reasoning with laser. In Claudia d’Amato, Miriam
Fernández, Valentina A. M. Tamma, Freddy Lécué, Philippe Cudré-Mauroux, Juan F. Sequeda, Christoph Lange, and Jeff
Heflin, editors, The Semantic Web - ISWC 2017 - 16th International Semantic Web Conference, Vienna, Austria, October
21-25, 2017, Proceedings, Part I, volume 10587 of Lecture Notes in Computer Science, pages 87–103. Springer, 2017.



References II

Harald Beck, Thomas Eiter, and Christian Folie. Ticker: A system for incremental asp-based stream reasoning. TPLP,
17(5-6):744–763, 2017.

William P. Bejeck and Neha Narkhede. Kafka Streams in Action. Manning Publications, 2018.

S. Brandt, E. Güzel Kalayci, R. Kontchakov, V. Ryzhikov, G. Xiao, and M. Zakharyaschev. Ontology-based data access with a
horn fragment of metric temporal logic. In Proceedings 31st Conference on Artificial Intelligence (AAAI ’17). AAAI Press,
2017.

Lars Brenna, Alan J. Demers, Johannes Gehrke, Mingsheng Hong, Joel Ossher, Biswanath Panda, Mirek Riedewald, Mohit
Thatte, and Walker M. White. Cayuga: a high-performance event processing engine. In SIGMOD Conference, pages
1100–1102. ACM, 2007.

Gerhard Brewka and Thomas Eiter. Equilibria in heterogeneous nonmonotonic multi-context systems. In AAAI, pages
385–390. AAAI Press, 2007.

Gerd Brewka, Thomas Eiter, and Miroslaw Truszczyński. Answer set programming at a glance. Communications of the ACM,
54(12):92–103, 2011. doi>10.1145/2043174.2043195.

Gerhard Brewka, Thomas Eiter, Michael Fink, and Antonius Weinzierl. Managed multi-context systems. In IJCAI, pages
786–791. IJCAI/AAAI, 2011.

Gerhard Brewka, Stefan Ellmauthaler, and Jörg Pührer. Multi-context systems for reactive reasoning in dynamic environments.
In ECAI, volume 263 of FAIA, pages 159–164. IOS Press, 2014.

Gerd Brewka, Thomas Eiter, and Miroslaw Truszczyński, editors. AI Magazine: special issue on Answer Set Programming.
AAAI Press, 2016. Volume 37, number 3. Editorial pp. 5-6.

Gerhard Brewka, Stefan Ellmauthaler, Ricardo Gonçalves, Matthias Knorr, João Leite, and Jörg Pührer. Reactive multi-context
systems: Heterogeneous reasoning in dynamic environments. Artificial Intelligence, 256:68–104, 2018.

Pedro Cabalar, Stefania Costantini, Giovanni De Gasperis, and Andrea Formisano. Multi-context systems in dynamic
environments. Ann. Math. Artif. Intell., 86(1-3):87–120, 2019.

Jean-Paul Calbimonte, José Mora, and Óscar Corcho. Query rewriting in RDF stream processing. In Proc. of ESWC 2016,
pages 486–502, 2016.



References III

Don Carney, Uǧur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Greg Seidman, Michael Stonebraker, Nesime
Tatbul, and Stan Zdonik. Monitoring streams: a new class of data management applications. In Proc. of VLDB 2002, pages
215–226, 2002.

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons using branching-time temporal
logic. In Dexter Kozen, editor, Logics of Programs, Workshop, Yorktown Heights, New York, May 1981, volume 131 of
Lecture Notes in Computer Science, pages 52–71. Springer, 1981.

Corinna Cortes, Kathleen Fisher, Daryl Pregibon, Anne Rogers, and Frederick Smith. Hancock: A language for analyzing
transactional data streams. In Data Stream Management - Processing High-Speed Data Streams, pages 387–408. 2016.

Gianpaolo Cugola and Alessandro Margara. TESLA: a formally defined event specification language. In DEBS, pages 50–61.
ACM, 2010.

Gianpaolo Cugola and Alessandro Margara. Complex event processing with T-REX. Journal of Systems and Software,
85(8):1709–1728, 2012.

Minh Dao-Tran and Thomas Eiter. Streaming multi-context systems. In IJCAI, pages 1000–1007. ijcai.org, 2017.

U. Dayal, E. Hanson, and J. Widom. Active database systems. In W. Kim, editor, Modern Database Systems, pages 434–456.
Addison Wesley, 1995.

Emanuele Della Valle, Stefano Ceri, Davide Francesco Barbieri, Daniele Braga, and Alessandro Campi. A first step towards
stream reasoning. In FIS, pages 72–81, 2008.

Emanuele Della Valle, Stefano Ceri, Frank van Harmelen, and Dieter Fensel. It’s a streaming world! reasoning upon rapidly
changing information. IEEE Intelligent Systems, 24:83–89, 2009.

Patrick Doherty, Jonas Kvarnström, and Fredrik Heintz. A temporal logic-based planning and execution monitoring framework
for unmanned aircraft systems. Autonomous Agents and Multi-Agent Systems, 19(3):332–377, 2009.

Jon Doyle. A truth maintenance system. Artif. Intell., 12(3):231–272, 1979.

Thomas Eiter, Stefano Germano, Giovambattista Ianni, Tobias Kaminski, Christoph Redl, Peter Schüller, and Antonius
Weinzierl. The DLVHEX system. KI, 32(2-3):187–189, 2018.

Thomas Eiter, Paul Ogris, and Konstantin Schekotihin. A distributed approach to LARS stream reasoning (system paper).
TPLP, 19(5-6):974–989, 2019.



References IV

Charles Elkan. A rational reconstruction of nonmonotonic truth maintenance systems. Artif. Intell., 43(2):219–234, 1990.

Stefan Ellmauthaler and Jörg Pührer. Asynchronous multi-context systems. In Advances in Knowledge Representation, Logic
Programming, and Abstract Argumentation - Essays Dedicated to Gerhard Brewka on the Occasion of His 60th Birthday,
volume 9060 of LNCS. Springer, 2015.

Stefan Ellmauthaler. Multi-Context Reasoning in Continuous Data-Flow Environments. PhD thesis, Leipzig University, 2018.

ETSI. TR 101 607; Intelligent Transport Systems (ITS); Cooperative ITS (C-ITS); Release 1. 2013.

Wai Fu Fung, David Sun, and Johannes Gehrke. COUGAR: the network is the database. In Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data, Madison, Wisconsin, USA, June 3-6, 2002, page 621, 2002.

Chiara Ghidini and Fausto Giunchiglia. Local models semantics, or contextual reasoning=locality+compatibility. Artificial
Intelligence, 127(2):221–259, 2001.

Ricardo Gonçalves, Matthias Knorr, and João Leite. Evolving multi-context systems. In ECAI14, volume 263 of FAIA, pages
375–380, 2014.

Georg Gottlob, Erich Grädel, and Helmut Veith. Datalog LITE: a deductive query language with linear time model checking.
ACM Trans. Comput. Log., 3(1):42–79, 2002.

Fredrik Heintz, Jonas Kvarnström, and Patrick Doherty. Bridging the sense-reasoning gap: Dyknow - stream-based
middleware for knowledge processing. Advanced Engineering Informatics, 24(1):14–26, 2010.

Tomas Hrycej. A temporal extension of prolog. J. Log. Program., 15(1&2):113–145, 1993.

Fabian Hueske and Vasiliki Kalavri. Stream processing with Apache Flink. OReilly Media, 2019.

Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems, 2(4):255–299, 1990.

Georg Lausen, Bertram Ludäscher, and Wolfgang May. On active deductive databases: The statelog approach. In Burkhard
Freitag, Hendrik Decker, Michael Kifer, and Andrei Voronkov, editors, Transactions and Change in Logic Databases,
International Seminar on Logic Databases and the Meaning of Change, Schloss Dagstuhl, Germany, September 23-27,
1996 and ILPS ’97 Post-Conference Workshop on (Trans)Actions and Change in Logic Programming and Deductive
Databases, (DYNAMICS’97) Port Jefferson, NY, USA, October 17, 1997, Invited Surveys and Selected Papers, volume
1472 of Lecture Notes in Computer Science, pages 69–106. Springer, 1998.



References V

David C. Luckham. Rapide: A language and toolset for simulation of distributed systems by partial orderings of events. In
Partial Order Methods in Verification, volume 29 of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 329–357. DIMACS/AMS, 1996.

David C. Luckham. The power of events - an introduction to complex event processing in distributed enterprise systems. ACM,
2005.

Samuel Madden, Mehul Shah, Joseph M. Hellerstein, and Vijayshankar Raman. Continuously adaptive continuous queries
over streams. In 2002 ACM SIGMOD International Conference on Management of Data, pages 49–60, 2002.

Alessandra Mileo, Ahmed Abdelrahman, Sean Policarpio, and Manfred Hauswirth. Streamrule: A nonmonotonic stream
reasoning system for the semantic web. In Wolfgang Faber and Domenico Lembo, editors, Web Reasoning and Rule
Systems - 7th International Conference, RR 2013, Mannheim, Germany, July 27-29, 2013. Proceedings, volume 7994 of
Lecture Notes in Computer Science, pages 247–252. Springer, 2013.

Boris Motik, Yavor Nenov, Robert Piro, and Ian Horrocks. Maintenance of datalog materialisations revisited. Artif. Intell.,
269:76–136, 2019.

Matthias Nickles and Alessandra Mileo. Web stream reasoning using probabilistic answer set programming. In RR, volume
8741 of Lecture Notes in Computer Science, pages 197–205. Springer, 2014.

Philipp Obermeier, Javier Romero, and Torsten Schaub. Multi-shot stream reasoning in answer set programming: A preliminary
report. OJDB, 6(1):33–38, 2019.

Mehmet A. Orgun and William W. Wadge. A relational algebra as a query language for temporal DATALOG. In DEXA, pages
276–281. Springer-Verlag, Wien, 1992.

Balaji Padmanabhan and Alexander Tuzhilin. Pattern discovery in temporal databases: A temporal logic approach. In KDD,
pages 351–354. AAAI Press, 1996.

Thu-Le Pham, Muhammad Intizar Ali, and Alessandra Mileo. C-asp: Continuous asp-based reasoning over rdf streams. In
Marcello Balduccini, Yuliya Lierler, and Stefan Woltran, editors, Logic Programming and Nonmonotonic Reasoning, pages
45–50, Cham, 2019. Springer International Publishing.

Thu-Le Pham, Muhammad Intizar Ali, and Alessandra Mileo. Enhancing the scalability of expressive stream reasoning via
input-driven parallelization. Semantic Web, 10(3):457–474, 2019.



References VI

Danh Le Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, and Manfred Hauswirth. A native and adaptive approach for unified
processing of linked streams and linked data. In ISWC (1), pages 370–388, 2011.

Danh Le Phuoc, Josiane Xavier Parreira, and Manfred Hauswirth. Linked stream data processing. In Reasoning Web, 2012.

Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE Computer Society, 1977.

Han Reichgelt. Semantics for reified temporal logic. In On Advances in Artificial Intelligence, pages 49–61, New York, NY,
USA, 1987. John Wiley & Sons, Inc.

Alessandro Ronca, Mark Kaminski, Bernardo Cuenca Grau, Boris Motik, and Ian Horrocks. Stream reasoning in temporal
datalog. In Sheila A. McIlraith and Kilian Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7,
2018, pages 1941–1948. AAAI Press, 2018.

Torsten Schaub and Stefan Woltran. Special issue on answer set programming. KI, 32(2-3):101–103, 2018.

Peter Schüller. Inconsistency in multi-context systems: Analysis and efficient evaluation. PhD thesis, Vienna University of
Technology, 2012.

Paul Tarau, Jan Wielemaker, and Tom Schrijvers. Lazy stream programming in prolog. CoRR, abs/1907.11354, 2019. TPLP,
special issue on ICLP 2019, to appear.

Douglas B. Terry, David Goldberg, David A. Nichols, and Brian M. Oki. Continuous queries over append-only databases. In
SIGMOD Conference, pages 321–330. ACM Press, 1992.

Antonius Weinzierl. Inconsistency management under preferences for multi-context systems and extensions. PhD thesis, Ph.
D. thesis, Vienna University of Technology, 2014.

J. Widom and S. Ceri, editors. Active Database Systems: Triggers and Rules For Advanced Database Processing. Morgan
Kaufmann, 1996.

Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex event processing over streams. In SIGMOD
Conference, pages 407–418. ACM, 2006.

Carlo Zaniolo. Logical foundations of continuous query languages for data streams. In Datalog, volume 7494 of Lecture Notes
in Computer Science, pages 177–189. Springer, 2012.


	Multi-Context Systems
	Stream Reasoning
	Multi-Context Stream Systems
	Conclusions
	Further Resources
	References

