arxiv:1201.4089v3 [cs.Al] 3 Jun 2013

A Description Logic Primer

Markus Krotzsch, FrantiSek Siméik, lan Horrocks
Department of Computer Science, University of Oxford, UK

Abstract. This paper provides a self-contained first introductionesdliption log-
ics (DLs). The main concepts and features are explainedexamples before syn-
tax and semantics of the DEROZQ are defined in detail. Additional sections re-
view lightweight DL languages, discuss the relationshithtoOWL Web Ontology
Language and give pointers to further reading.

Introduction

Description logics (DLs) are a family of knowledge represéion languages that are
widely used in ontological modelling. An important praeticeason for this is that they
provide one of the main underpinnings for the OWL Web Ontglbgnguage as stan-
dardised by the World Wide Web Consortium (W3C). Howeversbiave been used in
knowledge representation long before the advent of onicddgrodelling in the context
of the Semantic Web, tracing back to first DL modelling langgsin the mid 1980s.

As their name suggests, DLs are logics (in fact most DLs aciddble fragments
of first-order logic), and as such they are equipped witbrenal semanticsa precise
specification of the meaning of DL ontologies. This formahsatics allows humans and
computer systems to exchange DL ontologies without ambyigsito their meaning, and
also makes it possible to use logical deductiomfer additional information from the
facts stated explicitly in an ontology — an important feattivat distinguishes DLs from
other modelling languages such as UML.

The capability of inferring additional knowledge increaske modelling power of
DLs but it also requires some understanding on the side afntbdeller and, above alll,
good tool support for computing the conclusions. The comput of inferences is called
reasoningand an important goal of DL language design has been to etisineasoning
algorithms of good performance are available. This is orta@feasons why there is not
just a single description logic: the best balance betwepnessivity of the language and
complexity of reasoning depends on the intended applicatio

In this paper we provide a self-contained first introductimdescription logics. We
start by explaining the basic way in which knowledge is mtedein DLs in Section 1
and continue with an intuitive introduction to the most imgat DL modelling features
in Section 2. This leads us to the rather expressive DL ca#llB@7Q, the syntax of
which we summarise in Section 3. In Section 4, we explain tidedying ideas of DL

“Version 1.2 of 3 June 2013. Comments and suggestions can fe téeMarkus Krotzsch at
markus.kroetzsch@cs.ox.ac.uk. This document can freelyded and distributed under the terms of CC
By-SA-NC 3.0. Please contact the authors if you would likesfaroduce this document under another license.

http://arxiv.org/abs/1201.4089v3
http://korrekt.org/
http://www.cs.ox.ac.uk/isg/people/frantisek.simancik/
http://www.cs.ox.ac.uk/ian.horrocks/
http://creativecommons.org/licenses/by-nc-sa/3.0/

semantics and use it to define the meaning&07Q ontologies. Many DLs can be
obtained by omitting some features&RO7Q and in Section 5 we review some of the
most important DLs obtained in this way. In particular, tinisludes various lightweight
description logics that allow for particularlyffecient reasoning. In Section 6 we discuss
the relationship of DLs to the OWL Web Ontology Language. \&eatude with pointers
to further reading in Section 7.

1. Basic Building Blocks of DL Ontologies

Description logics (DLs) provide means to model the relalups between entities in a
domain of interest. In DLs there are three kinds of entittesicepts, roles and individual
names: Concepts represent sets of individuals, roles represaatyrelations between
the individuals, and individual names represent singl&iddals in the domain. Readers
familiar with first-order logic will recognise these as upgaredicates, binary predicates
and constants.

For example, an ontology modelling the domain of people aei family relation-
ships might use concepts suehrent to represent the set of all parents drainale to
represent the set of all female individuals, roles suchaaentOf to represent the (bi-
nary) relationship between parents and their childrenjagigidual names such aslia
andjohn to represent the individuals Julia and John.

Unlike a database, a DL ontology does not fully describe &iqudar situation or
“state of the world”; rather it consists of a set of statersertlled axioms, each of
which must be true in the situation described. These axigpisdlly capture only partial
knowledge about the situation that the ontology is desegijand there may be many dif-
ferent states of the world that are consistent with the ogiplAlthough, from the point
of view of logic, there is no principal ffierence between filerent types of axioms, it is
customary to separate them into three groups: assertiadBal() axioms, terminological
(TBox) axioms and relational (RBox) axioms.

1.1. Asserting Facts with ABox Axioms
ABox axioms capture knowledge about named individuals, ttee concepts to which
they belong and how they are related to each other. The moshom ABox axioms are
concept assertionsuch as

Mother(julia), (1)
which asserts that Julia is a mother or, more precisely thigaindividual namegllia is
aninstanceof the concepMother.

Role assertiondescribe relations between named individuals. The asgerti

parentOf(julia, john), (2)

for example, states that Julia is a parent of John or, moreigalg, that the individual
nameduliais in the relation that is representedpmrentOf to the individual namegbhn.

1In OWL concepts and roles are respectively known as classkpraperties; see Section 6.

The previous sentence shows that it can be rather cumbetsaxplicitly point out that
the relationships expressed by an axiom are really relships between the individuals,
sets and relations that are represented by the respedtivédimal names, concepts and
roles. Assuming that this subtle distinction between sgtitdadentifiers and semantic
entities is understood, we will thus often adopt a more siapm readable formulation.
Section 4 below explains the underlying semantics with tgrgarecision.

Although it is intuitively clear that Julia and John aréfeient individuals, this fact
does not logically follow from what we have stated so far. Dlosnot make theinique
name assumptiqiso diferent names might refer to the same individual unless attplic
stated otherwise. Thadividual inequalityassertion

julia # john 3

is used to assert that Julia and John are actudiigréint individuals. On the other hand,
anindividual equalityassertion, such as

john = johnny, 4)
states that two dierent names are known to refer to the same individual. Steatgins
can arise, for example, when combining knowledge aboutaheesiomain from several
different sources, a task that is knowroasology alignment

1.2. Expressing Terminological Knowledge with TBox Axioms

TBox axioms describe relationships between concepts. ¥ample, the fact that all
mothers are parents is expressed bydhcept inclusion

Mother C Parent, (5)

in which case we say that the concefiither is subsumedby the concepParent. Such
knowledge can be used to infer further facts about indivgluleor example, (1) and (5)
together imply that Julia is a parent.

Concept equivalencasserts that two concepts have the same instances, as in

Person = Human. (6)
While synonyms are an obvious example of equivalent cosc@pipractice one more
often uses concept equivalence to give a name to complerssipns as introduced in
Section 2.1 below. Furthermore, such additional conceptessions can be combined
with equivalence and inclusion to describe more complerasitns such as the disjoint-
ness of concepts, which asserts that two concepts do n@ ahgiinstances.

1.3. Modelling Relationships between Roles with RBox Axiom

RBox axioms refer to properties of roles. As for conceptssBupportole inclusion
androle equivalencaxioms. For example, the inclusion

parentOf £ ancestorOf (7

states thaparentOf is asubroleof ancestorOf, i.e., every pair of individuals related by
parentOf is also related byncestorOf. Thus (2) and (7) together imply that Julia is an
ancestor of John.

In role inclusion axiomsyole compositioncan be used to describe roles such as
uncleOf. Intuitively, if Charles is a brother of Julia and Julia is arent of John, then
Charles is an uncle of John. This kind of relationship betwte rolesbrotherOf,
parentOf anduncleOf is captured by theomplex role inclusiomxiom

brotherOf o parentOf C uncleOf. (8)

Note that role composition can only appear on the left-haahel sf complex role inclu-
sions. Furthermore, in order to retain decidability of tedng (see the end of Section 4
for a discussion on decidability), complex role inclusiars governed by additional
structural restrictions that specify whether or not a atite of such axioms can be used
together in one ontology.

Nobody can be both a parent and a child of the same individoathe two roles
parentOf andchildOf are disjoint. In DLs we can writdisjoint rolesas follows:

Disjoint(parentOf, childOf). (9)

Further RBox axioms includele characteristicsuch as reflexivity, symmetry and
transitivity of roles. These are closely related to a nundfeather DL features and we
will discuss them again in more detail in Section 2.5.

2. Constructorsfor Conceptsand Roles

The basic types of axioms introduced in Section 1 are ratheteld for accurate mod-
elling. To describe more complex situations, DLs allow nemaepts and roles to be
built using a variety of dferent constructors. We distinguish concept and role coostr
tors depending on whether concept or role expressions agtrasted. In the case of
concepts, one can further separate basic Boolean corssuule restrictions and nom-
inalgenumerations. At the end of this section, we revisit the timithl kinds of RBox
axioms that have been omitted in Section 1.3.

2.1. Boolean Concept Constructors

Boolean concept constructors provide basic Boolean dpesathat are closely related to
the familiar operations of intersection, union and compatof sets, or to conjunction,
disjunction and negation of logical expressions.

For example, concept inclusions allow us to state that athers are female and that
all mothers are parents, but what we really mean is that metmeexactlythe female
parents. DLs support such statements by allowing us to fammptex concepts such as
theintersection(also callecconjunctior)

Female 1 Parent, (20)

which represents the set of individuals that are both feraald parents. A complex
concept can be used in axioms in exactly the same way as aicatontept, e.g., in the
equivalenceMother = Female rn Parent.

Union (also calledisjunction is the dual of intersection. For example, the concept

Father LI Mother (12)

describes those individuals that are either fathers or ersttf\gain, it can be used in an
axiom such a®arent = Father LI Mother, which states that a parent is either a father or
a mother (and vice versa).

Sometimes we are interested in individuals thandbbelong to a certain concept,
e.g., in women who are not married. These could be descripduebcomplex concept

Female rm =Married, (12)

where thecomplemen(also callechegatior) -Married represents the set of all individu-
als that are not married.

Itis sometimes useful to be able to make a statement abonyt ienvidual, e.g., to
say that everybody is either male or female. This can be aplisined by the axiom

T C Male U Female, (13)

where thetop conceptT is a special concept with every individual as an instance; it
can be viewed as an abbreviation @t/ -C for an arbitrary concepf. Note that this
modelling is rather coarse as it presupposes that everyidchdil has a gender, which
may not be reasonable for instances of a concept suClomputer. We will see more
useful applications for later on.

To express that, for the purposes of our modelling, nobodybeaboth a male and
a female at the same time, we can declare the set of male agdttbéfemale individ-
uals to be disjoint. While ontology languages like OWL padw®/ia basic constructor for
disjointness, it is naturally captured in DLs with the axiom

Male M Female C L, (14)

where thebottom concept is the dual ofT, that is the special concept with no individ-
uals as instances; it can be seen as an abbreviatidhforC for an arbitrary concept
C. The above axiom thus says that the intersection of the twoegats is empty.

2.2. Role Restrictions

So far we have seen how to use TBox and RBox axioms to expilasenships between

concepts and roles, respectively. The most interestinyfeaf DLs, however, is their

ability to form statements that link concepts and roles tioge For example, there is an
obvious relationship between the conceptent and the rolgarentOf, namely, a parent

is someone who is a parent of at least one individual. In Dhis, telationship can be

captured by the concept equivalence

Parent = dparentOf. T, (15)

where theexistential restrictiordparentOf. T is a complex concept that describes the set
of individuals that are parents of at least one individuast@ance ofr). Similarly, the
conceptdparentOf.Female describes those individuals that are parents of at least one
female individual, i.e., those that have a daughter.

To represent the set of individuals all of whose children fareale, we use the
universal restriction

VparentOf.Female. (16)

It is @ common error to forget that (16) also includes thoskviduals that have no
children at all. More accurately (and less naturally), tkim@ can be said to describe
the set of all individuals that have “no children other thaméle ones,” i.e., that have
“no children that are not female.” Following this wordingetconcept (16) could indeed
be equivalently expressed adparentOf.-Female. If this meaning is not intended, one
can describe the individuals who have at least one child atidal their children being
female by the concepBparentOf.T) rm (¥parentOf.Female).

Existential and universal restrictions are useful in camalibn with the top concept
for expressinglomainandrange restrictionon roles; that is, restrictions on the kinds of
individual that can be in the domain and range of a given mdeaestrict the domain of
sonOf to male individuals we can use the axiom

dsonOf.T C Male, a7
and to restrict its range to parents we can write
T C VsonOf.Parent. (18)

In combination with the asserti@onOf(john, julia), these axioms would then allow us to
deduce that John is male and Julia is a parent. It is intage&iinote how this behaviour
contrasts with the meaning @bnstraintsin databases. Constraints would also allow
us to state, e.g., that all sons must be male. However, giagntbe fact that John is
a son of Julia, such a constraint would simply be violateddieg to an error) rather
than implying that John is male. Mistaking DL axioms for cmasts is a very common
source of modelling errors.

Number restrictionsllow us to restrict the number of individuals that can beheal
via a given role. For example, we can form #itdleast restriction

>2 childOf.Parent (19)

to describe the set of individuals that are children of atiiéao parents, and the-most
restriction

<2 childOf.Parent (20)

for those that are children of at most two parents. The a®erson C >2 childOf.Parent
M <2childOf.Parent then states that every person is a child of exactly two parent

Finally, local reflexivitycan be used to describe the set of individuals that are tklate
to themselves via a given role. For example, the set of iddais that talk to themselves
is described by the concept

JtalksTo.Self. (21)
2.3. Nominals

As well as defining concepts in terms of other concepts (aled),dt may also be useful
to define a concept by simply enumerating its instances. ¥ample, we might define
the concepBeatle by enumerating its instancgehn, paul, george, andringo. Enumer-
ations are not supported natively in DLs, but they can be ksitad in DLs usinghomi-
nals A nominal is a concept that has exactly one instance. Fenpba{john} is the con-
cept whose only instance is (the individual representeddiy). Combining nominals
with union, the enumeration in our example could be exprkase

Beatle = {john} U {paul} LI {george} LI {ringo}. (22)

Itis interesting to note that, using nominals, a concepriss Mother(julia) can be
turned into a conceptinclusidjulia} C Mother and a role assertigrarentOf(julia, john)
into a concept inclusiofjulia} T JparentOf.{john}. This illustrates that the distinction
between ABox and TBox does not have a deeper logical meaning.

2.4. Role Constructors

In contrast to the variety of concept constructors, DLs jmewnly few constructors for
forming complexroles. In practicawerse rolesare the most important such constructor.
Intuitively, the relationship between the rolesrentOf andchildOf is that, for example,
if Julia is a parent of John, then John is a child of Julia ame viersa. More formally,
parenfOf is the inverse othildOf, which in DLs can be expressed by the equivalence

parentOf = childOf~, (23)

where the complex rolehildOf™ represents the inverse diildOf.

In analogy to the top concept, DLs also providetimé/ersal role represented by,
which always relates all pairs of individuals. It typicatiiays a minor role in modelling,
but it establishes symmetry between roles and concepts avtop element. Similarly,
an empty rolethat corresponds to the bottom concept is also availableAf ®ut has
rarely been introduced as a constructor in DLs; however,avedefine any rol® to be
empty using the axiont C -3dR.T (“all things do not relate to anything throudgy).
Interestingly, the universal role cannot be defined by TBaaras using the constructors
introduced above, and in particular universal role restns cannot express that a role
is universal.

2Although there are a few interesting things that could beesged witHJ, such asoncept product§l6],
tool support is rarely ficient for using this feature in practice.

2.5. More RBox Axioms: Role Characteristics

In Section 1.3 we introduced three forms of RBox axioms: mtdusions, role equiv-
alences and role disjointness. OWL provides a variety oémthnamely role transi-
tivity, symmetry, asymmetry, reflexivity and irreflexivitfhese are sometimes consid-
ered as basic axiom types in DLs as well, using some suggestitation such as
TrangancestorOf) to express that the rolencestorOf is transitive. However, such ax-
ioms are just syntactic sugar; all role characteristicshmaxpressed using the features
of DLs that we have already introduced.

Transitivityis a special form of complex role inclusion. For examplensitivity of
ancestorOf can be captured by the axioamcestorOf o ancestorOf = ancestorOf. A
role issymmetridf it is equivalent to its own inverse, e.gnarriedTo = marriedTo™, and
itis asymmetrigf it is disjoint from its own inverse, as iBisjoint(parentOf, parentOf").

If desired,global reflexivitycan be expressed by imposing local reflexivity on the top
concept as im C Jdknows.Self. A role isirreflexiveif it is never locally reflexive, as in
the case ofr C =dmarriedTo.Self.

3. TheDescription Logic SROIQ

In this section, we summarise the various features that bega introduced informally
above to provide a comprehensive definition of DL syntax.rigao yields the descrip-
tion logic calledSROZQ, which is one of the most expressive DLs commonly consid-
ered today. It also largely agrees in expressivity with thiolmgy language OWL 2 DL,
though there are still someftiirences as explained in Section 6.

Formally, every DL ontology is based on three finite setsgfigture symbols: a set
N, of individual namesa setN¢c of concept nameand a seNg of role namesUsually
these sets are assumed to be fixed for some application atttbaeéore not mentioned
explicitly. Now the set ofSROZQ role expression® (over this signature) is defined by
the following grammatr:

R :=U|NRr|Nr™

whereU is the universal role (Section 2.4). Based on this, the s&RD7Q concept
expressiong is defined as:

C:=Nc | (CMNC)|(CUC)|-C|T|L|3IRC|YRC]|>nRC|<nRC |IR.Self| (N}

wheren is a non-negative integer. As usual, expressions likel C) represent any ex-
pression of the form@ r1 D) with C,D € C. It is common to omit parentheses if this
cannot lead to confusion with expressions dfefient semantics. For example, parenthe-
ses do not matter foh LI B LI C whereas the expressioAst1 B L C andIRAM B are
ambiguous.

Using the above sets of individual names, roles and condbpxiomsof SRO7Q
can be defined to be of the following basic forms:

ABoX: C(N)) R(Ni, N) Ni = N Ni £ N
TBox: ccc c=C
RBox: RCR R=R RoRLCR Disjoint(R, R)

with the intuitive meanings as explained in Section 1 and 2.

Roughly speaking, #R0OIQ ontology (orknowledge bagds simply a set of such
axioms. To ensure the existence of reasoning algorithmstkaorrect and terminating,
however, additional syntactic restrictions must be impas® ontologies. These restric-
tions refer not to single axioms but to the structure of thelmgy as a whole, hence they
are calledstructural restrictions The two such conditions relevant 8RO Q are based
on the notions ofimplicity andregularity. Notably, both are automatically satisfied for
ontologies that do not contain complex role inclusion axgom

Arole Rin an ontology0 is callednon-simplef some complex role inclusion axiom
(i.e., one that uses role compositionin O implies instances dR; otherwise it is called
simple A more precise definition of the non-simple role expressiofhthe ontologyO
is given by the following rules:

e if O contains an axiorS o T C R, thenRis non-simple,

e if Ris non-simple, then its invers$® is also non-simplé,

¢ if Ris non-simple and contains any of the axionRC S, S = RorR = S, then
S is also non-simple.

All other roles are called simpfeNow for a SROZQ ontology it is required that the
following axioms and concepts contain simple roles only:

Restricted axioms: Disjoint(R, R)

Restricted concept expressions: dR.Self >nR.C <nR.C.

The other structural restriction that is relevant8R07Q is calledregularityand is
concerned with RBox axioms only. Roughly speaking, theiatiin ensures that cyclic
dependencies between complex role inclusion axioms oadwri a limited form. For
details, please see the pointers given in Section 7. Fonthediuctory treatment in this
paper, it stiices to note that regularity, just like simplicity, is a prdyef the ontology
as a whole that cannot be checked for each axiom individuallyimportant practical
consequence is that the union of two regular ontologies nodgmger be regular. This
must be taken into account when merging ontologies in practi

4. Description Logic Semantics

The formal meaning of DL axioms is given by their model-thetimr semantics. In par-
ticular, the semantics specifies what the logical consezpgenf an ontology are. The
formal semantics is therefore the main guideline for evenl that computes logical
consequences of DL ontologies, and a basic understanditsyadrking is vital to make

3If R= S~ already is an inverse role, th&T should be read &3. We do not allow expressions lie .
4Whether the universal rold is simple or not is a matter of preference that does fietathe computational
properties of the logic [17]. However, the universal rol©WL 2 is considered non-simple.

reasonable modelling choices and to comprehend the repudts by software applica-
tions. Luckily, the semantics of description logics is nfidult to understand provided
that some common misconceptions are avoided.

Intuitively speaking, an ontology describes a particuiaragion in a given domain
of discourse. For example, the axioms in Sections 1 and Zibesz particular situation
in the “families and relationships” domain. However, ooties usually cannot fully
specify the situation that they describe. On the one hamdetis no formal relationship
between the symbols we use and the objects that they reprréisenndividual name
julia, for example, is just a syntactic identifier with no intringneaning. Indeed, the
intended meaning of the identifiers in our ontologies hasmniloénce on their formal
semantics: what we know about them stems only from the ogittdbaxioms. On the
other hand, the axioms in an ontology typically do not prewdidmplete information. For
example, (3) and (4) in Section 1.1 state that some indivédue equal and that others
are unequal, but in many other cases this information mighett unspecified.

Description logics have been designed to deal with suchnipdete information.
Rather than making default assumptions in order to fullycBp®ne particular interpre-
tation for each ontology, the DL semantics generally camrsi@ll the possible situations
(i.e., states of the world) where the axioms of an ontologylddold (we also say:
where the axioms argatisfied. This characteristic is sometimes called een World
Assumptiorsince it keeps unspecified information opeA.logical consequence of an
ontology is an axiom that holds in all interpretations tteitsy the ontology, i.e., some-
thing that is true in all conceivable states of the world tigitee with what is said in the
ontology. The more axioms an ontology contains, the moreiipare the constraints
that it imposes on possible interpretations, and the femterpretations exist that sat-
isfy all of the axioms. Conversely, if fewer interpretatsosatisfy an ontology, then more
axioms hold in all of them, and more logical consequencdsviofrom the ontology.
The previous two sentences imply that the semantics of igitiser logics ismonotonic
additional axioms always lead to additional consequermees)ore informally, the more
knowledge we feed into a DL system the more results it returns

An extreme case is when an ontology is not satisfied in anygregation. The ontol-
ogy is then calledinsatisfiableor inconsistentin this casesveryaxiom holds vacuously
in all of the (zero) interpretations that satisfy the onggldSuch an ontology is clearly of
no utility, and avoiding inconsistency (and checking fanithe first place) is therefore
an important task during modelling.

We have outlined above the most important ideas of DL sermsriVhat remains
to be done is to define what we really mean by an “interpretatimd which conditions
must hold for particular axioms to be satisfied by an inteigdien. For this, we closely
follow the intuitive ideas established above: an intergtien 7 consists of a set’ called
the domainof 7 and an interpretation functioh that maps each atomic concepto a
setA? c A?, each atomic rol® to a binary relatiorR? ¢ A7 x A?, and each individual
nameato an elemen&’ € A’. The interpretation of complex concepts and roles follows
from the interpretation of the basic entities. Table 1 shbhaw to obtain the semantics
of each compound expression from the semantics of its By tsR’ -successor of” we
mean any individuay such thatx,y) € R?. The definition should confirm the intuitive

5A Closed World Assumptioftloses” the interpretation by assuming that every factegtlicitly stated
to be true is actually false. Both terms are not formally et and rather outline the general flavour of a
semantics than any particular definition.

10

Table 1. Syntax and semantics ROZQ constructors

Syntax Semantics

Individuals:
individual name a al

Roles:
atomic role R R!
inverse role R (X Y) | ¢y, x)y € RT}
universal role U Al x AT

Concepts:
atomic concept A AL
intersection cnbD cf npf
union CubD cfubf
complement -C Af\ct
top concept T AL
bottom concept 1 0
existential restriction 3JRC {x | someR!-successor ok is in C'}
universal restriction YRC {x | all R -successors of are inC’}
at-least restriction >nRC {x | at leastn R!-successors of are inCZ}
at-most restriction <nRC {x | at mosn R -successors of are inC’}
local reflexivity JR Self (x| (X, x) € R}
nominal {a} {al)

wherea, b € N; are individual namesA € N¢ is a concept nam&;, D € C are conceptsR € R is a role

Table 2. Syntax and semantics SfROZQ axioms

Syntax Semantics
ABox:
concept assertion C(a) al ec’
role assertion R(a, b) @ ,blyeRl
individual equality axb al =p!
individual inequality azb al #bl
TBox:
concept inclusion ccD e e
concept equivalence CcC=D cl =pf
RBox:
role inclusion RCS Rf c s’
role equivalence R=S Rl = st
complex role inclusion RioR;ES RIoRIcS’
role disjointness Disjoint(R,.S) RINSf=0

explanations given for each case in Section 2. For exanfpesémantics dfemale 11
Parent is indeed the intersection of the semanticefale andParent.

Since an interpretatiod fixes the meaning of all entities, we can unambiguously
say for each axiom whether it holds ihor not. An axioma holdsin 7 (we also say/
satisfiesyr and writeJ [«) if the corresponding condition in Table 2 is met. Again she
definitions fully agree with the intuitive explanations givin Section 1. If all axioms
in an ontologyO hold in 7 (i.e., if 7 satisfiesO, written 7 E O), then’ is amodel

11

of 0. Thus a model is an abstraction of a state of the world thadfieest all axioms in
the ontology. An ontology igonsistentf it has at least one model. An axiomis a
consequencef an ontologyO (or O entailsa, writtenO k «) if @ holds in every model
of 0. In particular, an inconsistent ontology entails everyaxi

A noteworthy consequence of this semantics is the meanimglaefidual names in
DL ontologies. We already remarked that DLs do not usuallkenthe Unique Name
Assumption, and indeed our formal definition allows two undiial names to be inter-
preted as the same individual (element of the domain). Blgssven more important is
the fact that the domain of an interpretation is allowed totaim many individuals that
are not represented by any individual name. A common comfuisi modelling arises
from the implicit assumption that interpretations mustyordntain individuals that are
represented by individual names (such individuals are eddled named individuals
For example, one could wrongly assume the ontology congisti the axioms

parentOf(julia, john) manyChildren(julia) manyChildren C >3 parentOf. T

to be inconsistent since it requires Julia to have at leabil8ren when only one (John)
is given. However, there are many conceivable models wheiedoes have three chil-
dren, even though only one of the children is explicitly namé significant number of
modelling errors can be traced back to similar misconceptibat are easy to prevent if
the general open world assumption of DLs is kept in mind.

Another point to note is that the above specification of thea#ics does not pro-
vide any hint as to how to compute the relevant entailmenfsactical software tools.
There are infinitely many possible interpretations, eactwloith may have an infinite
domain (in fact there are some ontologies that are satisfigdhy interpretations with
infinite domains). Therefore it is impossible to test aleimretations to see if they model
a given ontology, and impossible to test all models of an logipto see if they entail a
given axiom. Rather, one has to devise deduction procedmeprove their correctness
with respect to the above specification. The interplay ofaderexpressive features can
make reasoning algorithms more complicated and in somes ¢asan even be shown
that no correct and terminating algorithm exists at all. (iteat reasoning is undecid-
able). For our purposes it fiices to know that entailment of axioms is decidable for
SROIQ (with the structural restrictions explained in Section Bylahat a number of
free and commercial tools are available. Such tools are&jlgioptimised for more spe-
cific reasoning problems, such as consistency checkingrtalment of concept sub-
sumptions (subsumption checking) or of concept asserfiostance checking). Many
of these standard inferencing problems can be expressedhrs bf each other, so they
can be handled by very similar reasoning algorithms.

5. Important Fragmentsof SROZIQ

Many different description logics have been introduced in the liteea Typically, they
can be characterised by the types of constructors and axfahthey allow, which are
often a subset of the constructorsSROZQ. For example, the description logigLC

is the fragment o8RO Q that allows no RBox axioms and onty, LI, —, 3 andV as its
concept constructors. The extensionALC with transitive roles is traditionally denoted

12

by the letterS. Some other letters used in DL names hint at a particulartogeter, such
as inverse roleg, nominalg0, qualified number restriction®, and role hierarchies (role
inclusion axioms without compositiory. So, for example, the DL named LCHIQ
extendsALC with role hierarchies, inverse roles and qualified numbstrietions. The
letter R most commonly refers to the presence of role inclusiongllcflexivity Self,
and the universal rold, as well as the additional role characteristics of travigjtisym-
metry, asymmetry, role disjointness, reflexivity, and fleeivity. This naming scheme
explains the nam8ROI Q.

In recent years, fragments of DLs have been specificallyldped in order to ob-
tain favourable computational properties. For this puepesLC is already too large,
since it only admits reasoning algorithms that run in wasste exponential time. More
lightweight DLs can be obtained by further restricting eegwivity, while at the same
time a number of additiona$ROZQ features can be added without loosing the good
computational properties. The three main approaches fairobg lightweight DLs are
&L, DLP andDL-Lite, which also correspond to language fragments OWL EL, OWL RL
and OWL QL of the Web Ontology Language.

The &L family of description logics is characterised by allowinglimited use of
existential quantifiers and concept intersection. Themaigiescription logi&€ L allows
only those features and but no unions, complements or universal quantifiers, and no
RBox axioms. Further extensions of this language are knavb/& andEL*. The
largest such extension allows the constructars, L, 3, Self, nominals and the univer-
sal role, and it supports all types of axioms other than rgtamsetry, asymmetry and
irreflexivity. Interestingly, all standard reasoning tag&r this DL can still be solved in
worst-case polynomial time. One can even drop the struaesaiction of regularity that
is important forSROIQ. EL has been used to model large but lightweight ontologies
that consist mainly of terminological data, in particulathe life sciences. A number of
reasoners are specifically optimised for handéifrtype ontologies, the most recent of
which is the ELK reasoner for OWL Ef..

DLP is short forDescription Logic Program&nd comprises various DLs that are
syntactically restricted in such a way that axioms could alsread as rules in first-order
Horn logic without function symbols. Due to this, DLP-tymglcs can be considered as
kinds of rule languages (hence the name OWL RL) contained.s Do accomplish this,
one has to allow dierent syntactic forms for subconcepts and superconceptsicept
inclusion axioms. We do not provide the details here. Whilss i general may require
us to consider domain elements that are not representeddbwdnal names, for DLP
one can always restrict attention to models in which all doreements are represented
by individual names. This is why DLP is often used to augmertdblases (interpreted as
sets of ABox axioms), e.g., in an implementation of OWL RLKe Dracle 11g database
management system.

DL-Lite is a family of DLs that is also used in combination viarge data collec-
tions and existing databases, in particular to augmentxpeessivity of a query lan-
guage that retrieves such data. This approach, known adagytBased Data Access,
considers ontologies as a language for construatiagsor mapping ruleson top of
existing data. The core feature of DL-Lite is that data as@as be realised with stan-
dard query languages such as SQL that are not aware of therbangies. Ontological

Shttpy/elk-reasoner.googlecode.com

13

http://elk-reasoner.googlecode.com/

information is merely used in a query preprocessing stege DLP, DL-Lite requires
different syntactic restrictions for subconcepts and supeepia. We do not present the
details here.

6. Relationship to OWL

The OWL Web Ontology Languagga knowledge representation language standardised
by the World Wide Web Consortium (W3C). OWL is one of the masportant appli-
cations of description logics today. In this section, wefbyioutline the relationship of
the two languages. A comprehensive treatment is beyondcthygesof this paper; see
Section 7 for pointers to further reading. The current wrsif the OWL specification is
OWL 2 as standardised in 2009. This supersedes the earliér Dstandard of 2004.

The main building blocks of OWL are indeed very similar to gshof DLs, with
the main diference that concepts are callddssesand roles are callegroperties It is
therefore not surprising that description logics have hathgr influence on the devel-
opment of OWL and the expressive features that it providesoHcally, however, OWL
has also been conceived as an extension to RDF, a Web datdlinppienguage whose
expressivity is comparable to DL ABoxes. The formal sen@if RDF is subtly dier-
ent from that of DLs, even though both lead to the same cormserps in many common
cases. Extending the RDF semantics to the expressive ésabirOWL improves the
compatibility between the two, but it also makes reasonimdpeidable. Therefore, it has
been decided to specify both styles of formal semantics ¥i.Othe Direct Semantics
based on DLs and thRDF-based Semantics

In this section, we are therefore mainly interested in the®iSemantics of OWL.
This semantics is only defined for OWL ontologies that abigecértain syntactic re-
strictions (essentially the restriction that the OWL axsoan be read aSROIQ ax-
ioms for which the structural restrictions of Section 3 aatisfied). This syntactic frag-
ment of OWL is calledDWL DL’ Under the Direct Semantics, large parts of OWL DL
can indeed be considered as a syntactic variar8RD7Q. For example, the axiom
Mother = Female m Parent would be written as follows in OWL:

EquivalentClasses(Mother ObjectIntersectionOf(Female Parent))

where the symbolslother, Female andParent would be identifier strings that conform
to the OWL specificatiof.The above example illustrates the close relationship betwe
the syntax ofSROZQ and that of OWL. In many cases, it is indeed enough to tramslat
an operator symbol a$R0O7Q into the corresponding operator name in OWL, which is
then written in prefix notation like a function. This is alsbythe above form of syntax
is calledFunctional-Style SyntaxiThe OWL standard provides a number of syntactic
forms that can be used to express OWL ontologies. The mostipemt among these
is the RDFXML serialisation since it is the only format that all confising OWL tools

7In contrast, the OWL language without any syntactic coisisas calledOWL Full. It comprises ontologies
that can only be interpreted under the RDF-based Semantics.

8Entity names in OWL are generally based on Uniform Resouteatlfiers (URIs). The details are not
relevant here.

14

need to understand. On the other hand, it is moffecdit for humans to read and we do
not present it here.

Itis interesting to note that there are still a fevitdiences between OWL DL under
the Direct Semantics an®ROZ Q. On a syntactic level, OWL provides a lot more oper-
ators that, though logically redundant, can be convenieshartcuts for compound DL
axioms. For example, OWL has special constructs for spagjf§omain and range of
a property, even though these could equally well be expdegsén Section 2.2. These
kinds of features also include the empty (bottom) propevhich can easily be defined
but is not included as a language feature in DLs.

However, OWL also includes some expressive features thatigvaot include in
our treatment oSROZQ above. Most notably, this includes support for datatypes an
datatype literals. These behave like classes and indivithraes but come with a fixed,
pre-defined interpretation. For example, the datatype émi@an values has exactly two
elements — true and false — in any interpretation. This caa bé introduced in DLs
by so-calledconcrete domaind.e., pre-defined interpretation domains. Both DLs and
OWL in this case strictly distinguish rolgsoperties that relate to “abstract” individuals
from those that relate to values from some datatype. In OW& cbnstructs that relate to
datatypes include “Data” in their name while constructd thtate to abstract individu-
als include “Object.” For example, OWL distinguish@sjectIntersectionOf (used
above) fromDataIntersectionOf (the intersection of datatypes).

The only other logical feature that is missing in DLs are atledd Keys These are
special forms of rules that can be used for data integraonghly speaking, a key spec-
ifies that two named individuals are entailed to be equakifthgree on certain property
values and class memberships, similar to key constrairdati@bases. For example, the
combination of nationality and registration number mighttbeated as a key for (i.e.,
sufficient to uniquely identify) motor vehicles.

Besides the logical features, OWL also includes a numbett@raspects that are
not considered in description logics at all. For exampléndludes means of naming
an ontology and of importing ontological axioms from oneaogy into another. Fur-
ther extra-logical features include a simple forrmwdta-modellingalledpunning non-
logical axioms tadeclareidentifiers, and the possibility to adthnotationgo arbitrary
axioms and entities similar to comments in a programminguage.

7. Further Reading

This paper can only provide a first introduction to desooiptogics and OWL. More de-
tailed introductory texts can be found in the lecture noféh@®Reasoning Web Summer
School: Rudolph provides a detailed discussion of DL seiosuaind modelling [15],
Baader gives a general overview with extended historice@sfl], and Sattler focusses
on tableau-based reasoning methods [18]. An extensiveduadtion to lightweight de-
scription logics is given by Krétzsch [12].

For a more detailed coverage of OWL and its relationship tg W& recommend
the textbook-oundations of Semantic Web Technolog&}sThis introductory text also
treats the relationship of DLs to first-order logic, DL quanswering and extensions for
rule-based modelling (related to keys in OWL), which we hawétted here. An in-depth
treatment of description logics and related research $apiprovided by th®escription

15

http://www.semantic-web-book.org/

Logic HandbooK3], which also covers interesting aspects of deductioonriigms and
computational complexity that are beyond the scope of thiep

A number of research papers focus on specific topics in Dlasdly related to this
paper is the original article afROZ @, which also provides the details on regularity con-
ditions that have been skipped above [9]. A detailed disonssf OWL datatypes and
their description logic semantics is given by Motik and Haks [13]. There are also var-
ious works that focus o8 [2,10], DLF/OWL RL [6,11] and DL-Lite [4]. Current de-
velopmentsin DL research are discussed at the annual DLaNogk(see httgydl.kr.org/
for proceedings) and at the major Semantic Web and Atrtifiot@lligence conferences.

The primary resources on OWL 2 are the online documents affibeification [14]
where the OWL Primer provides a first introduction [7]. Thé&eliences of the 2009
OWL 2 standard to its predecessor are explained in [5].

Many related tools such as reasoners and ontology editeravailable. The most
popular free ontology editor is Proté§éyhich can be used with a variety of OWL
reasoners. Pointers to current OWL reasoners are best fmlim° Popular systems
for large parts of OWL 2 DL $ROIQ) include FaCH#+, HermiT, Pellet and Racer-
Pro. Some typical lightweight systems are ELK (OWL EL), jCEWL EL), Owlgress
(OWL QL), OWLIM (OWL RL and QL), Quonto (OWL QL) and Snorock@WL EL).
Details about these tools and related publications can dmedfon the respective home-
pages.

AcknowledgementsWe thank Fernando Bobillo, Peter Patel-Schneider and Bvgen
Zolin for helpful comments on an earlier version of this text

References

[1] Franz Baader. Description logics. In Sergio Tessarigjd® Franconi, Thomas Eiter, Claudio Gutier-
rez, Siegfried Handschuh, Marie-Christine Rousset, anthfeeA. Schmidt, editordReasoning Web.
Semantic Technologies for Information Systems — 5th latemmal Summer School, 200%lume 5689
of LNCS pages 1-39. Springer, 2009. Available at ttigt.inf.tu-dresden.geesearctpapers.html.

[2] Franz Baader, Sebastian Brandt, and Carsten Lutz. RyishéE L envelope. In Leslie Pack Kaelbling
and Alessandro $@otti, editors,Proc. 19th Int. Joint Conf. on Artificial Intelligence (IJCB5), pages
364-369. Professional Book Center, 2005.

[3] Franz Baader, Diego Calvanese, Deborah McGuinnessigl@aNardi, and Peter Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementatiard Applications Cambridge Univer-
sity Press, second edition, 2007.

[4] Diego Calvanese, Guiseppe De Giacomo, Domenico Lemlaaridio Lenzerini, and Riccardo Rosati.
Tractable reasoning andhieient query answering in description logics: The DL-Litenfyy. J. of Auto-
mated Reasonin@9(3):385-429, 2007.

[5] Bernardo Cuenca Grau, lan Horrocks, Boris Motik, Bijaarsta, Peter Patel-Schneider, and Ulrike Sat-
tler. OWL 2: The next step for OWLJ. of Web Semantic§:309-322, 2008.

[6] Benjamin N. Grosof, lan Horrocks, Raphael Volz, and &tebecker. Description logic programs: com-
bining logic programs with description logic. Proc. 12th Int. Conf. on World Wide Web (WWW'’03)
pages 48-57. ACM, 2003.

[7] Pascal Hitzler, Markus Krétzsch, Bijan Parsia, Petd?dtel-Schneider, and Sebastian Rudolph, editors.
OWL 2 Web Ontology Language: PrimewW3C Recommendation, 27 October 2009. Available at
httpy/www.w3.orgTR/owl2-primey.

httpy/protege.stanford.edu
104 list of reasoners can be found, e.g., at Htgmanticweb.oygyiki/Category:Reasoner.

16

http://dl.kr.org/
http://lat.inf.tu-dresden.de/research/papers.html
http://www.w3.org/TR/owl2-primer/
http://protege.stanford.edu/
http://semanticweb.org/wiki/Category:Reasoner

[8] Pascal Hitzler, Markus Krotzsch, and Sebastian Rudokgundations of Semantic Web Technologies
Chapman & HaJlCRC, 2009.

[9] lan Horrocks, Oliver Kutz, and Ulrike Sattler. The eveoma irresistibleSROZQ. In Patrick Doherty,
John Mylopoulos, and Christopher A. Welty, editoPspc. 10th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’'08ges 57-67. AAAI Press, 2006.

[10] Markus Krétzsch. Hicient rule-based inferencing for OWL EL. In Toby Walsh, ediProc. 22nd Int.
Conf. on Artificial Intelligence (IJCAI'11l)pages 2668-2673. AAAI Prgs¥CAI, 2011.

[11] Markus Krotzsch. The not-so-easy task of computinglsubsumptions in OWL RL. In Philippe
Cudré-Mauroux, Jé Heflin, Evren Sirin, Tania Tudorache, Jérdbme Euzenat, Mahtdauswirth,
Josiane Xavier Parreira, Jim Hendler, Guus Schreiber, smaBernstein, and Eva Blomqvist, editors,
Proc. 11th Int. Semantic Web Conf. (ISWC’1®&)lume 7649 o NCS pages 279-294. Springer, 2012.

[12] Markus Krotzsch. OWL 2 Profiles: An introduction to ligheight ontology languages. In Thomas
Eiter and Thomas Krennwallner, editoPypceedings of the 8th Reasoning Web Summer School, Vienna,
Austria, September 3-8 201%2olume 7487 ofLNCS pages 112-183. Springer, 2012. Available at
httpy/korrekt.orgpag¢OWL_2_Profiles.

[13] Boris Motik and lan Horrocks. OWL datatypes: Design amgllementation. In Amit Sheth, Sten
Staab, Mike Dean, Massimo Paolucci, Diana Maynard, TimBthin, and Krishnaprasad Thirunarayan,
editors,Proc. 7th Int. Semantic Web Conf. (ISWC'08&)lume 5318 o£ NCS pages 307-322. Springer,
2008.

[14] W3C OWL Working Group.OWL 2 Web Ontology Language: Document Overvigd8C Recommen-
dation, 27 October 2009. Available at htfpww.w3.0rgTR/owl2-overview.

[15] Sebastian Rudolph. Foundations of description logicdn Axel Polleres, Claudia d’Amato,
Marcelo Arenas, Siegfried Handschuh, Paula Kroner, Sadobaowski, and Peter F. Patel-
Schneider, editorsReasoning Web. Semantic Technologies for the Web of Dateh Infrna-
tional Summer School 201¥olume 6848 ofLNCS pages 76-136. Springer, 2011. Available at
httpy/www.aifb.kit.edywelyIncollection302¢en.

[16] Sebastian Rudolph, Markus Krétzsch, and Pascal Hitz¥dl elephants are bigger than all mice. In
Franz Baader, Carsten Lutz, and Boris Motik, editétmc. 21st Int. Workshop on Description Logics
(DL'08), volume 353 of CEUR Workshop ProceedingSEUR-WS.org, 2008.

[17] Sebastian Rudolph, Markus Krétzsch, and Pascal Hitg&laeap Boolean role constructors for descrip-
tion logics. In St&en Holldobler, Carsten Lutz, and Heinrich Wansing, edjtér®c. 11th European
Conf. on Logics in Artificial Intelligence (JELIA'0O8yolume 5293 olNAI, pages 362-374. Springer,
2008.

[18] Ulrike Sattler. Reasoning in description logics: Basiextensions, and relatives. In Grigoris Antoniou,
Uwe ARmann, Cristina Baroglio, Stefan Decker, Nicola Herzaula-Lavinia Patranjan, and Robert
Tolksdorf, editorsReasoning Web — 3rd International Summer School, 200lime 4636 ofLNCS
pages 154-182. Springer, 2007.

17

http://korrekt.org/page/OWL_2_Profiles
http://www.w3.org/TR/owl2-overview/
http://www.aifb.kit.edu/web/Incollection3026/en

