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First-Order Query Expressiveness
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Queries and Their Expressiveness

Recall:

• Syntax: a query expression q is a word from a query language (algebra
expression, logical expression, etc.)

• Semantics: a query mapping M is a function that maps a database instance I to a
database table M(I)

• We only study generic queries, which are closed under bijective renaming
(isomorphism of databases)

Definition 11.1: The expressiveness of a query language is characterised by the
set of query mappings that it can express.
Given a query language L, a query mapping M is L-definable if there is a query
expression q ∈ L such that M[q] = M.

We can study expressiveness for all query mappings over all possible databases, or we
can restrict attention to a subset of query mappings or to a subset of databases.
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Boolean Query Mappings

A Boolean query mapping is a query mapping that returns “true” (usually a table with
one empty row) or “false” (usually an empty table).

Every Boolean query mapping

• defines set of databases for which it is true

• defines a decision problem over the set of all databases

• could be decidable or undecidable

• if decidable, it may be characterised in terms of complexity
Note: the “complexity of a mapping” is always “data complexity,” i.e., complexity w.r.t. the size of the

input database; the mapping defines the decision problem and is fixed.
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Expressivity vs. Complexity

All query mappings that can be expressed in first-order logic are of polynomial
complexity, actually in AC0.

Tree CQs

k-Bounded Hypertree Width
everything (sub)polynomial

Conjunctive Queries

Arbitrary Query Mappings

First-Order Queries

Polynomial Time Query Mappings

Data compl.: AC0; everything else: NP

equivalence/containment/emptiness: undec.
Data compl.: AC0, Comb./Query compl.: PSpace

everything undecidable
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The Limits of FO Queries

Are there polynomial query mappings that cannot be expressed in FO?

{ yes!

We already knew this from previous lectures:

• We learned that AC0
⊂ NC1

⊆ . . . ⊆ P

• Hence, there is a problem X in NC1 that is not in AC0

• Therefore, the corresponding query mapping MX is not FO-definable

AC0
⊂ NC1 was first shown for the problem X = Parity:

• Input: finite relational structure I

• Output: “true” if I has an even number of domain elements

The original proof is specific to this problem [Ajtai 1983].
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Any Other FO-Undefinable Problems?

Yes, many.

Strong evidence from complexity theory:

• If any P-complete problem X were FO-definable,

• then every problem in P could be LogSpace-reduced to X

• and then solved in AC0,

• hence every problem in P could be solved in LogSpace,

• that is, P = L.

• Most experts do not think that this is the case.

Therefore, one would expect all P-hard and similarly all NL-hard problems to not be
FO-definable.

{ How can we see this more directly?
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Proving FO-Undefinability

How to show that a query mapping is FO-definable?

{ Find an FO query that expresses the query mapping

How to show that a query mapping is not FO-definable?
{ Not so easy . . . important tools:

• Ehrenfeucht-Fraïssé games

• Locality theorems
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Ehrenfeucht-Fraïssé Games

A method for showing that certain finite structures cannot be distinguished by certain FO
formulas

General idea:

• A game is played on two databases I and J

• There are two players: the Spoiler and the Duplicator

• The players select elements from I and J in each round

• Spoiler wants to show that the two databases are different

• Duplicator wants make the databases appear to be the same

We will always play on finite structures without constant symbols
(remember that one can simulate constants by unary relations with one row)

Markus Krötzsch, 16th/17th May 2022 Database Theory slide 10 of 38



Playing One Run of an EF Game

A single run of the game has a fixed number r of rounds

Spoiler starts each round, and Duplicator answers:

• Spoiler picks a domain element from I or from J

• Duplicator picks an element from the other database (J or I)

{ One element gets picked from each I and J per round
{ Run of game ends with two lists of elements:

a1, . . . , ar ∈ ∆I and b1, . . . , br ∈ ∆J

Duplicator wins the run if:

• For all indices i and j, we have ai = aj if and only if bi = bj.

• For all lists of indices i1, . . . , in and n-ary relation names R,
we have 〈ai1 , . . . , ain〉 ∈ RI if and only if 〈bi1 , . . . , bin〉 ∈ RJ .

“The substructures induced by the selected elements are isomorphic”

Otherwise Spoiler wins the run.
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Example: Run of a Two-Turn EF Game

Spoiler Duplicator

• edges denote a bi-directional binary predicate

• all edges are the same predicate
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Example: Run of a Three-Turn EF Game

Spoiler Duplicator

1

1

2

2

• edges denote a bi-directional binary predicate

• all edges are the same predicate
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Winning the EF Game

The game is won by whoever has a winning strategy:

A player has a winning strategy if he/she can make sure that he/she will win,
whatever the other player is doing.

In other words:

• Duplicator wins if he can duplicate any move that the spoiler makes.

• Spoiler wins if she can spoil any attempt to duplicate her moves.

We write I ∼r J if Duplicator wins the r-round EF game on I and J .

Observation: given enough moves, the spoiler will always win, unless the structures
are isomorphic
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Example

Who wins the 2-round game?
Who wins the 3-round game?

Spoiler Duplicator

• edges denote a bi-directional binary predicate

• all edges are the same predicate
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Quantifier Rank

EF games characterise expressivity of FO formulae based on the nesting depth of
quantifiers:

Definition 11.2: The quantifier rank of a FO formula is the maximal nesting level
of quantifiers within the formula.

Example 11.3:

• A formula without quantifiers has quantifier rank 0
• ∃x.(C(x) ∧ ∀y.(R(x, y)→ x ≈ y) ∧ ∃v.S(x, v)) has quantifier rank 2

Definition 11.4: We write I ≡r J if I and J satisfy the same FO sentences of
rank r (or less).
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Significance of EF Games

Theorem 11.5: For every r, I and J , the following are equivalent:

• I ≡r J , that is, I and J satisfy the same FO sentences of rank r (or less).

• I ∼r J , that is, the Duplicator wins the r-round EF game on I and J .

Therefore, the following are equivalent:

• The query mapping M is FO-definable

• There is an FO sentence ϕ that defines M

• There is a number r such that, for every I accepted by M and every J not
accepted by M, the Spoiler wins the r-round EF game on I and J
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Proof idea (1)

We outline the proof for the direction that is more important to us:

Lemma 11.6: For every r, we find ∼r ⊆ ≡r.

Proof: We show the contrapositive: if I .r J then I /r J .

Hence, suppose there is a
formula ϕr of quantifier depth r such that (w.l.o.g.) I |= ϕr and J |= ¬ϕr.

We sketch the idea for the case that ϕr is in prenex normal form ϕr = Q1x1 . . . Qr.xr.ψ

with Qi ∈ {∃,∀} and ψ a quantifier-free formula:
• Then ¬ϕr is equivalent to ¯ Q1x1 . . . ¯ Qr.xr.¬ψ, where ∃̄ = ∀ and ∀̄ = ∃

• Spoiler will enforce a selection of elements a1, . . . , ar ∈ ∆I and b1, . . . , br ∈ ∆J ,
such that, after i steps of the game, I, {x1 7→ a1, . . . , xi 7→ ai} |= Qi+1xi+1 . . . Qrxr.ψ
and J , {x1 7→ b1, . . . , xi 7→ bi} 6|= Qi+1xi+1. · · · Qrxr.ψ (∗):

– Property (∗) holds initially (i = 0) by assumption.
– In step i + 1, if Qi+1 = ∃, Spoiler selects ai+1 ∈ ∆I such that
I, {x1 7→ a1, . . . , xi+1 7→ ai+1} |= Qi+2xi+2 . . . Qrxr.ψ – this exists because of (∗).

– Any choice bi+1 of Duplicator will be such that
J , {x1 7→ b1, . . . , xi+1 7→ bi+1} 6|= Qi+2xi+2 . . . Qrxr.ψ, since ¯ Qi+1 = ∀.

– The case Qi+1 = ∀ is similar: now Spoiler selects bi+1.
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Proof idea (2)

We outline the proof for the direction that is more important to us:

Lemma 11.6: For every r, we find ∼r ⊆ ≡r.

Proof (continued): Therefore, by (∗), after r rounds we have selected elements
a1, . . . , ar ∈ ∆I and b1, . . . , br ∈ ∆J , such that I, {x1 7→ a1, . . . , xr 7→ ar} |= ψ and
J , {x1 7→ b1, . . . , xr 7→ br} 6|= ψ.

Hence, the substructures induced by the selected elements are not isomorphic
(if they were, we would find that ψ evaluates to the same in both cases)

{ Spoiler wins

The idea can be generalised to formulae ϕr that are not in prenex normal form
(by interleaving the choice of the quantifier and the evaluation of the formula) �

Markus Krötzsch, 16th/17th May 2022 Database Theory slide 19 of 38



Proof idea (2)

We outline the proof for the direction that is more important to us:

Lemma 11.6: For every r, we find ∼r ⊆ ≡r.

Proof (continued): Therefore, by (∗), after r rounds we have selected elements
a1, . . . , ar ∈ ∆I and b1, . . . , br ∈ ∆J , such that I, {x1 7→ a1, . . . , xr 7→ ar} |= ψ and
J , {x1 7→ b1, . . . , xr 7→ br} 6|= ψ.

Hence, the substructures induced by the selected elements are not isomorphic
(if they were, we would find that ψ evaluates to the same in both cases)

{ Spoiler wins

The idea can be generalised to formulae ϕr that are not in prenex normal form
(by interleaving the choice of the quantifier and the evaluation of the formula) �

Markus Krötzsch, 16th/17th May 2022 Database Theory slide 19 of 38



Proof idea (2)

We outline the proof for the direction that is more important to us:

Lemma 11.6: For every r, we find ∼r ⊆ ≡r.

Proof (continued): Therefore, by (∗), after r rounds we have selected elements
a1, . . . , ar ∈ ∆I and b1, . . . , br ∈ ∆J , such that I, {x1 7→ a1, . . . , xr 7→ ar} |= ψ and
J , {x1 7→ b1, . . . , xr 7→ br} 6|= ψ.

Hence, the substructures induced by the selected elements are not isomorphic
(if they were, we would find that ψ evaluates to the same in both cases)

{ Spoiler wins

The idea can be generalised to formulae ϕr that are not in prenex normal form
(by interleaving the choice of the quantifier and the evaluation of the formula) �

Markus Krötzsch, 16th/17th May 2022 Database Theory slide 19 of 38



Proof idea (2)

We outline the proof for the direction that is more important to us:

Lemma 11.6: For every r, we find ∼r ⊆ ≡r.

Proof (continued): Therefore, by (∗), after r rounds we have selected elements
a1, . . . , ar ∈ ∆I and b1, . . . , br ∈ ∆J , such that I, {x1 7→ a1, . . . , xr 7→ ar} |= ψ and
J , {x1 7→ b1, . . . , xr 7→ br} 6|= ψ.

Hence, the substructures induced by the selected elements are not isomorphic
(if they were, we would find that ψ evaluates to the same in both cases)

{ Spoiler wins

The idea can be generalised to formulae ϕr that are not in prenex normal form
(by interleaving the choice of the quantifier and the evaluation of the formula) �

Markus Krötzsch, 16th/17th May 2022 Database Theory slide 19 of 38



Example
Let’s assume all edges denote the (bi-directional) predicate r:

Spoiler Duplicator

I J

Which formula distinguishes the two structures?

For example: ϕ3 = ∃x.∃y.∀z.r(x, z)↔ r(y, z)
• I |= ϕ3
• J 6|= ϕ3

The formula corresponds to 3-move a winning strategy for Spoiler:
• first select opposing corners in I
• then select an element in J that neighbours exactly one of the elements selected by Duplicator
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Using EF Games to Show FO-Undefinability

How to show that a query mapping M can not be FO-defined:

• Let CM be the class of all databases recognised by M

• Find sequences of databases I1,I2,I3, . . . ∈ CM and databases
J1,J2,J3, . . . < CM, such that Ii ∼i Ji

{ for any formula ϕ (however large its quantifier rank r), there is a counterexample
Ir ∈ CM and Jr < CM that ϕ cannot distinguish

Problems:

• How to find such sequences of Ii and Ji?
{ No general strategy exists

• Given suitable sequences, how to show that Ii ∼i Ji?
{ Can be difficult, but doable for some special cases
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Expressiveness on Linear Orders

Let’s look at some very simple structures:

Definition 11.7: A structure I is a linear order if it has a single binary predicate
≤ interpreted as a total, transitive, reflexive and asymmetric relation.

Example 11.8: Consider the following structures:

L6 : 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6
L7 : 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 7

Spoiler can win the 3-round EF game as follows:

Spoiler plays 4 in L7
Duplicator plays 4 in L6: Spoiler plays 6 in L7

Duplicator plays 5 in L6: Spoiler plays 5 in L7 and wins
Duplicator plays 6 in L6: Spoiler plays 7 in L7 and wins

Duplicator plays 3 in L6: symmetric game (flipped horizontally)
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Expressiveness on Linear Orders

Let’s look at some very simple structures:

Definition 11.7: A structure I is a linear order if it has a single binary predicate
≤ interpreted as a total, transitive, reflexive and asymmetric relation.

Example 11.9: Consider the following structures:

L7 : 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 7
L8 : 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 7 ≤ 8

Spoiler cannot win the 3-round EF game:

Spoiler plays 4 in L8: Duplicator plays 4 in L7
Spoiler plays 6 in L8: Duplicator plays 6 in L7; spoiler cannot win
Spoiler plays 7 in L8: Duplicator plays 6 in L7; spoiler cannot win

Other cases similar: Spoiler never wins
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EF Games and Linear Orders

Theorem 11.10: The following are equivalent:

• Lm ∼r Ln

• either (1) m = n, or (2) m ≥ 2r − 1 and n ≥ 2r − 1

Proof:
• First, we show the contrapositive of the =⇒ direction of the theorem:

– If m , n and m ≤ 2r − 1, then Lm /r Ln

– If m , n and n ≤ 2r − 1, then Lm /r Ln (analogous to the previous case)

• We define a winning strategy for the spoiler to show the implication in (2.1)
assuming that n ≥ 2r − 1 (other cases need to be considered separately):
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EF Games and Linear Orders
Proof: We define a winning strategy for the spoiler to show the implication in (2.1)
assuming that n ≥ 2r − 1 (other cases need to be considered separately):

• Throughout this strategy, the spoiler always selects elements from Ln. Therefore,
the duplicator can only select elements from Lm.

• For all i ∈ {1, . . . , r}, let LDi = j − k and RDi = ` − j such that:
– The duplicator chooses the j-th element in the in the i-th move.
– If no element to the left of the j-th element in Lm has been picked by the

duplicator, then k = 0. Otherwise, k is the largest number such that k ≤ j and
the k-th element has been selected by the duplicator.

– If no element to the right of the j-th element in Lm has been picked by the
duplicator, then ` = m. Otherwise, ` is the smallest number such that ` ≥ j
and the `-th element has been selected by the duplicator.

• Game strategy for the spoiler:
– First, the spoiler picks the “middle” element in Ln.
– For each turn i ∈ {2, . . . , r}: if LDi−1 ≤ RDi−1, then the spoiler picks an element

to the left of its last choice such that there are the “same” number of
consecutive unselected elements to its right than to its left. Otherwise, it picks
an element to the right of its last choice that satisfies the same condition.
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EF Games and Linear Orders

Theorem 11.11: The following are equivalent:

• Lm ∼r Ln

• either (1) m = n, or (2) m ≥ 2r − 1 and n ≥ 2r − 1

Proof: To show the ⇐= direction of the theorem, we verify the following implications:
• If m = n, then Lm ∼r Ln.

– If m = n, then Lm and Ln are isomorphic.
– Therefore, the spoiler always the EF game (for any number of rounds).

• If m ≥ 2r − 1 and n ≥ 2r − 1, then Lm ∼r Ln.
– If the premise of the implication holds, then the spoiler cannot make the

duplicator run out of space using the strategy described in the previous slide.
– Therefore, the duplicator does always have enough space to “replicate” the

choices of the spoiler.
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FO-Definability of Parity

Theorem 11.12: Parity is not FO-definable for linear orders, hence it is not FO-
definable for arbitrary databases.

Proof:

• Suppose for a contradiction that Parity is FO-definable by some query ϕ.

• Let r be the quantifier rank of ϕ.

• Consider databases Lm and Ln with m = 2r and n = 2r + 1.

• We know that Lm ∼r Ln, and therefore Lm ≡r Ln.

• Hence, Lm |= ϕ if and only if Ln |= ϕ.

• But Lm ∈ Parity while Ln < Parity.

• Therefore, ϕ does not FO-define Parity. Contradiction. �
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FO-Definability of Connectivity

The Connectivity problem over finite graphs is as follows:

Connectivity

• Input: A finite graph (relational structure with one binary relation “edge”)

• Output: “true” if there is an (undirected) path between any pair of vertices

Theorem 11.13: Connectivity is not FO-definable.

Proof:

• Suppose for a contradiction that Connectivity is FO-definable using a query ϕ.

• We show that this would make Parity FO-definable on linear orders.

• For a linear order L with order predicate ≤, we define a finite graph G(L) over a
binary predicate “edge” such that G(L) is connected if and only if L has an odd
number of elements.
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• Output: “true” if there is an (undirected) path between any pair of vertices

Theorem 11.13: Connectivity is not FO-definable.

Proof:

• Suppose for a contradiction that Connectivity is FO-definable using a query ϕ.

• We show that this would make Parity FO-definable on linear orders.

• For a linear order L with order predicate ≤, we define a finite graph G(L) over a
binary predicate “edge” such that G(L) is connected if and only if L has an odd
number of elements.
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Defining a Graph From a Linear Order

We use abbreviations for the following FO formulas:

succ[x, y] = (x ≤ y) ∧ ¬(y ≤ x) ∧ y is the successor of x

∀z.(z ≤ x ∨ y ≤ z)

min[x] = ∀z.x ≤ z x is the first element

max[x] = ∀z.z ≤ x x is the last element

succ◦[x, y] = succ[x, y] ∨ (max[x] ∧min[y]) circular version of succ

edge[x, y] = ∃z.(succ◦[x, z] ∧ succ◦[z, y]) defining “edges” from the order
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Illustration: Graphs From Linear Orders
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Completing the Proof

Observation:
The graph G(L) is connected if and only if L has odd parity.

Finishing the proof:
Suppose for a contradiction that ϕ FO-defines Connectivity on graphs with predicate
edge.

Then we can produce a formula ϕ′ by replacing every atom of the form edge(s, t) in ϕ by
the expression edge[s, t] (a formula over ≤ only).

Then ¬ϕ′ FO-defines Parity on linear orders.

Since Parity is not FO-definable (not even on linear orders), no such ϕ can exist. �
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Beyond Linear Orders: Locality

Intuition: Duplicator can win an EF game if selected nodes have the same
“neighbourhood”
{ let’s define this for graphs (structures with binary predicates)

Definition 11.14: Consider a graph G. For a natural number d ≥ 0 and a vertex
v, the d-neighbourhood of v, N(v, d), is defined inductively:

• N(v, 0) = {v}

• N(v, d + 1) = N(v, d) ∪
{w | w is a direct neighbour of some w′ ∈ N(v, d)}

Two vertices v and w have the same d-type if the subgraphs G|N(v,d) and G|N(w,d)

are isomorphic.
Two graphs are d-equivalent if, for every d-type, they have the same number of
d-neighbourhoods of this type.
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Locality and FO-definability

A special case of Gaifman’s Locality Theorem of first-order logic:

Theorem 11.15: For every integer r ≥ 1:

• if G1 is 3r−1-equivalent to G2

• then G1 ∼r G2, and thus G1 ≡r G2

{ Intuition: FO can only express local properties

How to show that a query mapping M can not be FO-defined:

• Let CM be the class of all databases recognised by M

• Find sequences of graphs I1,I2,I3, . . . ∈ CM and graphs J1,J2,J3, . . . < CM,
such that Ii is i-equivalent to Ji

{ for any formula ϕ (however large its quantifier rank r), there is a counterexample
I3r−1 ∈ CM and J3r−1 < CM that ϕ cannot distinguish
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Connectivity is not FO-definable (Proof 2)

Theorem 11.16: Connectivity is not FO-definable.

Proof: counterexample for quantifier rank r: set d = 3r

Id Jd

2(d + 1)4(d + 1) 2(d + 1)

• the only d-type is a path of 2d + 1 nodes

• Id and Jd are d-equivalent �
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2-Colourability

Theorem 11.17: 2-Colourability is not FO-definable.

Proof: counterexample for quantifier rank r: set d = 3r (odd number)

Id Jd

3d6d 3d

• the only d-type is a path of 2d + 1 nodes

• Id and Jd are d-equivalent �
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Acyclicity

Theorem 11.18: Acyclicity is not FO-definable.

Proof: counterexample for quantifier rank r: set d = 3r

Id Jd

2d + 24d + 2 2d

• d-types are paths of ≤ 2d + 1 nodes

• Id and Jd are d-equivalent �
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Summary: Limits of FO-Queries

FO queries (and hence Relational Calculus) cannot express properties that require a
“global” view:

• properties where one needs to follow paths

• properties where one needs to count elements

Remember Lecture 1?

“Stops at distance 2 from Helmholtzstr.”

R2 = δTo→From(πTo(Connect ./ R1))

What about all stops reachable from Helmholtzstr.?

{ Not expressible in Relational Calculus

Yet, all examples we saw are in P
{ Is there another query language that could help us?
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Summary and Outlook
FO-queries (and thus CQs) cannot express even all tractable query mappings{
FO-definability

Showing that a query is not FO-definable requires some creativity
{ Ehrenfeucht-Fraïssé Games as one approach

FO-queries can only express “local” properties

Possible proof techniques:
• Ehrenfeucht-Fraïssé Games
• Locality Theorems
• For more approaches see

Chapter 17 of [Abiteboul, Hull, Vianu 1994]

Open questions:

• If FO cannot express all tractable queries, what can?
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