
Theorem Proving for Metric Temporal Logic
over the Naturals

Ullrich Hustadt1, Ana Ozaki2, and Clare Dixon1

1 Department of Computer Science, University of Liverpool, UK
{cldixon,uhustadt}@liverpool.ac.uk

2 Center for Advancing Electronics Dresden (cfaed), TU Dresden
Ana.Ozaki@tu-dresden.de

Abstract We study translations from Metric Temporal Logic (MTL)
over the natural numbers to Linear Temporal Logic (LTL). In particular,
we present two approaches for translating from MTL to LTL which
preserve the ExpSpace complexity of the satisfiability problem for MTL.
In each of these approaches we consider the case where the mapping
between states and time points is given by (1) a strict monotonic function
and by (2) a non-strict monotonic function (which allows multiple states
to be mapped to the same time point). Our translations allow us to
utilise LTL solvers to solve satisfiability and we empirically compare the
translations, showing in which cases one performs better than the other.

1 Introduction

Linear and branching-time temporal logics have been used for the specification
and verification of reactive systems. In linear-time temporal logic [22,11] we can,
for example, express that a formula ψ holds now or at some point in the future
using the formula ♦ψ (ψ holds eventually). However, some applications require
not just that a formula ψ will hold eventually but that it holds within a particular
time-frame, for example, between 3 and 7 moments from now.

To express such constraints, a range of Metric Temporal Logics (MTL) have
been proposed [3,4], considering different underlying models of time and operators
allowed. MTL has been used to formalise vehicle routing problems [17], monitoring
of algorithms [27] and cyber-physical systems [1], among others [15]. A survey
about MTL and its fragments can be found in [20]. It is known that MTL over the
reals is undecidable, though, decidable fragments have been investigated [6,2,5].

Here we consider MTL with pointwise semantics over the natural numbers,
following [3], where each state in the sequence is mapped to a time point on a
time line isomorphic to the natural numbers. In this instance of MTL, temporal
operators are annotated with intervals, which can be finite or infinite. For example,
♦[3,7] means that p should hold in a state that occurs in the interval [3, 7] of
time, while 2[2,∞)p means that p should hold in all states that occur at least 2
moments from now. In contrast to LTL, where the time difference from one state
to the next is always 1, in MTL, time is allowed to irregularly ‘jump’ from one

2

state to the next. For example, using #[2,2]p we can state that the time difference
from the current state to the next state is 2.

Furthermore, following Alur and Henzinger [3], the mapping between states
and time points is given by a (weakly) monotonic function, which allows multiple
states to be mapped to the same time point. Underlying this semantics is the so-
called digital-clock assumption: Different states that are associated with the same
discrete clock record events happening between successive clock ticks. Similarly, if
no events occur over one or more successive clock ticks, no state will be associated
with those clock ticks. In this work, we also consider the semantics where the
mapping between states and time points is given by a strictly monotonic function,
which forces time to progress from one state to another.

We provide two approaches for translating from MTL to LTL: in the first
approach we introduce a fresh propositional variable that we call ‘gap’, which
is used to encode the ‘jumps’ between states, as mentioned above; the second
approach is inspired by [3], where fresh propositional variables encode time
differences between states. In each approach we consider the case where the
mapping between states and time points is given by

1. a strict monotonic function and by

2. a non-strict monotonic function (which allows multiple states to be mapped
to the same time point).

All translations are polynomial w.r.t. the largest constant occurring in an interval
(although exponential in the size of the MTL formula due to the binary encoding
of the constants). Since the satisfiability problem for LTL is PSpace-complete [25],
our translations preserve the ExpSpace complexity of the MTL satisfiability
problem over the natural numbers [3].

Using these translations from MTL to LTL, we apply four temporal solvers,
one resolution based [16], one tableau based [13], one based on model checking [7],
and the other based on labelled superposition with partial model guidance [18];
to investigate the properties of the resulting formulae experimentally. To the
best of our knowledge, there are no implementations of solvers for MTL with
pointwise discrete semantics. In particular, our contributions are:

– translations from MTL to LTL which preserve the ExpSpace complexity of
the MTL satisfiability problem;

– an experimental analysis of the behaviour of LTL solvers on the resulting
formulae;

– to exemplify which kind of problems can be solved using MTL we also provide
encodings of the classical Multiprocessor Job-Shop Scheduling problem [14,8]
into MTL.

In the following we provide the syntax and semantics of LTL and MTL
(Section 2), show our translations from MTL to LTL (Sections 3 and 4) and
experimental results (Section 5). We then show how one can encode the Mul-
tiprocessor Job-Shop Scheduling problem into MTL with strict and non-strict
semantics (Section 6) and present experimental results (Section 7).

3

2 Preliminaries

We briefly state the syntax and semantics of LTL and MTL. Let P be a (countably
infinite) set of propositional variables. Well formed formulae in LTL are formed
according to the rule:

ϕ,ψ := p | ¬ϕ | (ϕ ∧ ψ) | #ϕ | (ϕUψ)

where p ∈ P. We often omit parentheses if there is no ambiguity. We denote by
#c a sequence of c next operators, i.e., #0ϕ = ϕ and #n+1ϕ = ##nϕ, for every
n ∈ N.

An LTL model or state sequence σ over (N, <) is an infinite sequence of states
σi ⊆ P, i ∈ N. The semantics of LTL is defined as follows.

(σ, i) |= p iff p ∈ σi
(σ, i) |= (ϕ ∧ ψ) iff (σ, i) |= ϕ and (σ, i) |= ψ
(σ, i) |= ¬ϕ iff (σ, i) 6|= ϕ
(σ, i) |= #ϕ iff (σ, i+ 1) |= ϕ
(σ, i) |= (ϕUψ) iff ∃k ≥ i : (σ, k) |= ψ and ∀j, i ≤ j < k : (σ, j) |= ϕ

Further connectives can be defined as usual: true ≡ p ∨ ¬p, false ≡ ¬(true),
♦ϕ ≡ trueUϕ and 2ϕ ≡ ¬♦¬ϕ. MTL formulae are constructed in a way similar
to LTL, with the difference that temporal operators are now bounded by an
interval I with natural numbers as end-points or ∞ on the right side. Note that
since we work with natural numbers as end-points we can assume w.l.o.g that
all our intervals are of the form [c1, c2] or [c1,∞), where c1, c2 ∈ N. Well formed
formulae in MTL are formed according to the rule:

ϕ,ψ := p | ¬ϕ | (ϕ ∧ ψ) | #Iϕ | (ϕUIψ)

where p ∈ P. A timed state sequence ρ = (σ, τ) over (N, <) is a pair consisting
of an infinite sequence σ of states σi ⊆ P, i ∈ N, and a function τ : N → N
that maps every i corresponding to the i-th state to a time point τ(i) such that
τ(i) < τ(i + 1). A non-strict timed state sequence ρ = (σ, τ) over (N, <) is a
pair consisting of an infinite sequence σ of states σi ⊆ P, i ∈ N, and a function
τ : N→ N that maps every i corresponding to the i-th state to a time point τ(i)
such that τ(i) ≤ τ(i+ 1). We assume w.l.o.g. that τ(0) = 0. The semantics of
MTL is defined as follows (we omit propositional cases, which are as in LTL).

(ρ, i) |= p iff p ∈ σi
(ρ, i) |= (ϕ ∧ ψ) iff (ρ, i) |= ϕ and (ρ, i) |= ψ
(ρ, i) |= ¬ϕ iff (ρ, i) 6|= ϕ
(ρ, i) |= #Iϕ iff (ρ, i+ 1) |= ϕ and τ(i+ 1)− τ(i) ∈ I
(ρ, i) |= (ϕUIψ) iff ∃k ≥ i : τ(k)− τ(i) ∈ I and (ρ, k) |= ψ

and ∀j, i ≤ j < k : (ρ, j) |= ϕ

Further connectives can be defined as usual: ♦Iϕ ≡ trueUIϕ and 2Iϕ ≡ ¬♦I¬ϕ.
To transform an MTL formula into Negation Normal Form, one uses the con-
strained dual until ŨI operator [20], defined as (ϕŨIψ) ≡ ¬(¬ϕUI¬ψ).

4

.

p
gap p

0 1 2 3

Figure 1: Example illustrating Definition 1

An MTL formula ϕ is in Negation Normal Form (NNF) iff the negation
operator (¬) occurs only in front of propositional variables. One of the differences
between MTL and LTL is that in LTL we have the equivalence ¬(#p) ≡ #¬p,
whereas in MTL ¬(#[2,2]p) 6≡ #[2,2]¬p. If ¬(#[2,2]p) then either p does not occur
in the next state or the next state does not occur with time difference 2. We can
express this as follows: ¬(#[2,2]p) ≡ #[2,2]¬p ∨#[0,1]true ∨#[3,∞)true.

An MTL formula ϕ is in Flat Normal Form (FNF) iff it is of the form
p0 ∧

∧
i 2[0,∞)(pi → ψi) where p0, pi are propositional variables or true and ψi

is either a formula of propositional logic or it is of the form #Iψ1, ψ1UIψ2 or
ψ1ŨIψ2 where ψ1, ψ2 are formulae of propositional logic.

One can transform an MTL formula into FNF by renaming subformulae
with nested operators, as in [10,29]. For example, assume that we are given the
following MTL formula: #[2,3](¬2[1,2]q). We first transform our formula into NNF
and obtain: #[2,3](♦[1,2]¬q). We then transform it into FNF: p0 ∧ 2[0,∞)(p0 →
#[2,3]p1)∧ 2[0,∞)(p1 → ♦[1,2]¬q). The transformations into NNF and FNF are
satisfiability preserving and can be performed in polynomial time.

3 From MTL to LTL: encoding ‘gaps’

Assume that our MTL formulae are in NNF and FNF. The main idea for our
proof is to map each timed state sequence ρ = (σ, τ) to a state sequence σ′ such
that ρ = (σ, τ) is a model of an MTL formula if, and only if, σ′ is a model of our
LTL translation. We first present our translation using the strict semantics and
then show how to adapt it for the non-strict semantics, where multiple states are
allowed to be mapped to the same time point.

Strict Semantics We translate MTL formulae for discrete time models into
LTL using a new propositional variable gap. ¬gap is true in those states σ′j of σ′

such that there is i ∈ N with τ(i) = j and gap is true in all other states of σ′.
We now define our mappings between MTL and LTL models.

Definition 1. Given a timed state sequence ρ = (σ, τ), we define σ′ = σ′0σ
′
1 . . .,

where σ′j is as follows:

σ′j =

{
σi if there is i ∈ N such that τ(i) = j;
{gap} otherwise.

Figure 1 illustrates the mapping given by Definition 1. For instance, if ρ =
(σ, τ) is the timed state sequence on the left side of Figure 1(a) then (ρ, 0) |=

5

MTL Strict Gap Translation

(#[0,∞)α)] (#[1,∞)α)]

(#[c1,∞)α)] (
∧

1≤k<c1
#kgap) ∧#c1(gapU(α ∧ ¬gap))

(#[c1,c2]α)]
∨

c1≤l≤c2
(#l(¬gap ∧ α) ∧

∧
1≤k<l #

kgap)

(#[0,0]α)] false

(#[0,c2]α)] (#[1,c2]α)]

(αU[0,∞)β)] (gap ∨ α)U(¬gap ∧ β)

(αU[c1,∞)β)] (
∧

0≤k<c1
#k(gap ∨ α)) ∧#c1((gap ∨ α)U(¬gap ∧ β))

(αU[c1,c2]β)]
∨

c1≤l≤c2
(#l(¬gap ∧ β) ∧

∧
0≤k<l #

k(gap ∨ α))

(αU[0,0]β)] ¬gap ∧ β
(αU[0,c2]β)] (¬gap ∧ β) ∨ (αU[1,c2]β)]

Table 1: Strict Gap Translation from MTL to LTL, where α, β are propositional
formulae and c1, c2 > 0.

#[2,3]p. As shown in Table 1, we translate #[2,3]p into:
∨

2≤l≤3(#l(¬gap ∧ p) ∧∧
1≤k<l #

kgap).
Note that the state sequence represented on the right side of Figure 1 is a

model of the translation. Since gap is a propositional variable not occurring in σ,
the time points mapped by the image of τ do not contain gap.

Definition 2. Given a state sequence σ′ such that (σ′, 0) |= ¬gap ∧2(♦¬gap),
we inductively define ρ = (σ0, τ(0))(σ1, τ(1)) . . ., where (σ0, τ(0)) = (σ′0, 0)
and, for i, j, k ∈ N and i > 0, (σi, τ(i)) is as follows:

σi = σ′j and τ(i) = j if j > τ(i− 1), gap 6∈ σ′j and for all k,
τ(i− 1) < k < j, gap ∈ σ′k.

As σ′ is such that (σ′, 0) |= ¬gap ∧2(♦¬gap), for each i ∈ N we have τ(i) ∈ N.
Also, for i > 0, τ(i) > τ(i− 1) and, so, τ : N→ N is well defined.

Example Assume that we are given the following MTL formula in NNF and
FNF: ϕ = p0 ∧2[0,∞)(p0 → #[2,3]p1)∧ 2[0,∞)(p1 → ♦[1,2]¬q). Using Table 1, we
translate ϕ into LTL as follows (recall that ♦Iψ ≡ trueUIψ):

ϕ] = p0 ∧2[0,∞)(p0 → (¬gap ∧ (
∨

2≤l≤3(#l(¬gap ∧ p1) ∧
∧

1≤k<l #
kgap))

∧2[0,∞)(p1 → (¬gap ∧ (
∨

1≤l≤2(#l(¬gap ∧ ¬q))))

We are ready for Theorem 1, which states the correctness of our translation
from MTL to LTL using ‘gap’s.

Theorem 1 Let ϕ = p0 ∧
∧
i 2[0,∞)(pi → ψi) be an MTL formula in NNF and

FNF. Let ϕ] = p0 ∧
∧
i 2(pi → (¬gap ∧ ψ]i)) be the result of replacing each ψi in

6

0

q, same

2

. . .

q

. . .

1

gap

3

Figure 2: Example illustrating Definition 3

ϕ by ψ]i as in Table 1. Then, ϕ is satisfiable if, and only if, ϕ]∧¬gap∧2(♦¬gap)
is satisfiable.

Proof (Sketch). Assume ϕ is satisfied by a timed state sequence ρ = (σ, τ). We
then use Definition 1 to define a state sequence σ′ and show with a structural
inductive argument that σ′ is a model of ϕ] ∧ ¬gap ∧2(♦¬gap). For the other
direction, we assume that ϕ]∧¬gap∧2(♦¬gap) is satisfied by a state sequence σ′

and use Definition 2 to define a timed state sequence ρ. We again use a structural
inductive argument to show that ρ is a model of ϕ. o

Non-Strict Semantics We now show how we modify the Gap translation for
non-strict timed state sequences. We introduce a fresh propositional variable
called ‘same’. same is true exactly in those states σ′j of σ′ such that there is
i ∈ N with τ(i) = j and, for i > 0, τ(i) = τ(i − 1). Note that same and gap
cannot both be true in any state. We say that a state s is a gap state if gap ∈ s.
We now define our mappings between MTL and LTL models.

Definition 3. Let ρ = (σ, τ) be a non-strict timed state sequence. We define
σ′ = σ′0σ

′
1 . . . by initially setting σ′ = σ and then modifying σ′ with the two

following steps:
1. For i > 0, if τ(i)− τ(i− 1) = 0 then set σ′i := σi ∪ {same};
2. For i, j ≥ 0, if σ′j is the i-th non-gap state in σ′, σ′j+1 is a non-gap state and

τ(i+ 1)− τ(i) = k > 1 then add k − 1 states of the form {gap} between σ′j
and σ′j+1.

Figure 2 illustrates the mapping given by Definition 3. For instance, if ρ = (σ, τ) is
the non-strict timed state sequence on the left side of Figure 1 then (ρ, 0) |= ♦[2,2]q.
As shown in Table 2, we translate ♦[2,2]q into: sameU(¬same∧#(sameU(¬same∧
#((q∧¬gap)∨#(sameU(q∧same)))))). The main distinction from the translation
presented in Table 1 is that here we use nested until operators to make progress
in our encoding of the time line whenever we find a state with ¬same. Note that
the state sequence represented on the right side of Figure 1 is a model of the
translation (recall that ♦[2,2]q ≡ trueU[2,2]q).

Definition 4. Let σ′ be a state sequence such that (σ′, 0) |= ¬gap ∧ ¬same ∧
2(♦¬gap) ∧2(¬same ∨ ¬gap) ∧2(gap→ #¬same). We first define τ : N→ N
by setting τ(0) = 0 and, for i > 0, τ(i) is as follows:

τ(i) =

{
τ(i−1) if σ′j is the i+1-th non-gap state and same ∈ σ′j
τ(i−1)+k+1 otherwise,

7

MTL Non-Strict Gap Translation

(#[0,∞)α)] (#[0,0]α)] ∨ (#[1,∞)α)]

(#[0,c2]α)] (#[0,0]α)] ∨ (#[1,c2]α)]

(#[0,0]α)] #(α ∧ same)
(αU[c1,∞)β)] α ∧#((α ∧ same)U(¬same ∧ (αU[c1−1,∞)β)]))

(αU[0,∞)β)] (gap ∨ α)U(¬gap ∧ β)

(αU[c1,c2]β)] α ∧#((α ∧ same)U(¬same ∧ (αU[c1−1,c2−1]β)]))

(αU[0,0]β)] (β ∧ ¬gap) ∨ (α ∧#((α ∧ same)U(β ∧ same)))
(αU[0,c2]β)] (αU[0,0]β)] ∨ (αU[1,c2]β)]

Table 2: Non-Strict Gap Translation from MTL to LTL, using gap and same,
where α, β are propositional logic formulae, c1, c2 > 0 and (#[c1,∞)α)] and

(#[c1,c2]α)] are as in Table 1.

where k ≥ 0 is the number of gap states between the i-th and i + 1-th non-gap
states. We now define σ as follows:

σi = σ′j \ {same}, where σ′j is the i+ 1-th non-gap state.

We are ready for Theorem 2, which states the correctness of our translation
from MTL to LTL using the variables ‘gap’ and ‘same’.

Theorem 2 Let ϕ = p0 ∧
∧
i 2[0,∞)(pi → ψi) be an MTL formula in NNF and

FNF. Let ϕ] = p0 ∧
∧
i 2(pi → (¬gap ∧ ψ]i)) be the result of replacing each ψi in

ϕ by ψ]i as in Table 2. Then, ϕ is satisfiable if, and only if, ϕ] ∧¬gap∧¬same∧
2(♦¬gap) ∧2(¬same ∨ ¬gap) ∧2(gap→ #¬same) is satisfiable.

Proof (Sketch). We use Definitions 3 and 4 to map models of ϕ into models of
ϕ] ∧¬gap∧2(♦¬gap) and vice versa. The correctness of our translation is again
given by a structural inductive argument. As mentioned, the main difference
w.r.t. to Theorem 1 is that here we use the propositional variable same to encode
multiple states mapped to the same time point. o

4 From MTL to LTL: encoding time differences

Assume that our MTL formulae are in NNF and FNF. Similar to the previous
section our proof strategy relies on mapping each timed state sequence ρ = (σ, τ)
to a state sequence σ′ such that ρ = (σ, τ) is a model of an MTL formula if,
and only if, σ′ is a model of our LTL translation. We first show a translation
under the strict semantics and then we show how to adapt it for the non-strict
semantics.

8

Strict Semantics Let C − 1 be the greatest number occurring in an interval
in an MTL formula ϕ or 1, if none occur. We say that a timed state sequence
ρ = (σ, τ) is C-bounded, for a constant C ∈ N, if τ(0) ≤ C and, for all i ∈ N,
τ(i+ 1)− τ(i) ≤ C. To map a timed state sequence ρ = (σ, τ) to a state sequence
σ′ we employ the following result adapted from [4].

Theorem 3 Let ϕ be an MTL formula. If there is a timed state sequence ρ =
(σ, τ) such that (ρ, 0) |= ϕ then there is a C-bounded timed state sequence ρC
such that (ρC , 0) |= ϕ.

By Theorem 3, w.l.o.g., we can consider only timed state sequences where
the time difference from a state to its previous state is bounded by C. Then, we
can encode time differences with a set Πδ = {δ−i | 1 ≤ i ≤ C} of propositional
variables where each δ−i represents a time difference of i w.r.t. the previous
state (one could also encode the time difference to the next state instead of the
difference from the previous state). We also use propositional variables of the
form snm with the meaning that ‘the sum of the time differences from the last
n states to the current state is m’. For our translation, we only need to define
these variables up to sums bounded by 2 · C. We can now define our mapping
from an MTL model to an LTL model3.

Definition 5. Given a C-bounded timed state sequence ρ = (σ, τ), we define
σ′ = σ′0σ

′
1 . . . by setting σ′0 = σ0 and, for i > 0:

σ′i = σi ∪ {δ−k , s1k | τ(i)− τ(i− 1) = k, 1 ≤ k ≤ C}
∪ {sj+1

min(l+k,2·C) | s
1
k ∈ σ′i and sjl ∈ σ′i−1}

where 1 ≤ j < 2 · C, 1 ≤ l ≤ 2 · C and 1 ≤ k ≤ C (assume variables of the form
snm and δ−n do not occur in σ).

In Definition 5, if, for example, τ(2)− τ(0) = 4 then (σ′, 2) |= s24. Intuitively,
the variable s24 allow us to group together all the cases where the sum of the time
differences from the last 2 states to the current state is 4. This happens when:
τ(2)− τ(1) = 3 and τ(1)− τ(0) = 1; or τ(2)− τ(1) = 1 and τ(1)− τ(0) = 3; or
τ(2)− τ(1) = 2 and τ(1)− τ(0) = 2.

The next lemma gives the main properties of σ′. First, we need some notation.
We use two additional n-ary boolean operators ⊕=1 and ⊕≤1. If S = {ϕ1, . . . , ϕn}
is a finite set of LTL formulae, then ⊕=1(ϕ1, . . . , ϕn), also written ⊕=1S, is an
LTL formula. Let σ′ be a state sequence and i ∈ N. Then (σ′, i) |= ⊕=1S iff
(σ′, i) |= ϕj for exactly one ϕj ∈ S, 1 ≤ j ≤ n. Similarly, (σ′, i) |= ⊕≤1S iff
(σ′, i) |= ϕj for at most one ϕj ∈ S, 1 ≤ j ≤ n. By definition of σ′ the following
lemma is immediate.

Lemma 1. Let SC be the conjunction of the following:

3 We write min(l + k, 2 · C) for the minimum between l + k and 2 · C. If the minimum
is 2 · C then sj+1

2·C means that the sum of the last j + 1 variables is greater or equal
to 2 · C.

9

MTL Strict Time Difference Translation

(#[c1,∞)α)] #((
∨

c1≤i≤C δ
−
i) ∧ α)

(#[0,∞)α)] #α

(#[c1,c2]α)] #((
∨

c1≤i≤c2
δ−i) ∧ α)

(#[0,c2]α)] (#[1,c2]α)]

(#[0,0]α)] false

(αU[c1,∞)β)]
∨

1≤i≤c1
(#i((

∨
c1≤j≤c1+C sij) ∧ αUβ) ∧ (

∧
0≤k<i #kα))

(αU[0,∞)β)] αUβ
(αU[c1,c2]β)]

∨
1≤i≤c2

(#i((
∨

c1≤j≤c2
sij) ∧ β) ∧ (

∧
0≤k<i #kα))

(αU[0,c2]β)] β ∨ (αU[1,c2]β)]

(αU[0,0]β)] β

Table 3: Strict Time Difference Translation from MTL to LTL where α, β are
propositional logic formulae and c1, c2 > 0.

1. #2⊕=1 Πδ, for Πδ = {δ−k | 1 ≤ k ≤ C};
2. 2(δ−k ↔ s1k), for 1 ≤ k ≤ C;
3. 2⊕≤1 Πi, for 1 ≤ i ≤ 2 · C and Πi = {sij | i ≤ j ≤ 2 · C};
4. 2((#s1k ∧ s

j
l)→ #sj+1

min(l+k,2·C)), for {s1k, s
j
l , s

j+1
min(l+k,2·C)} ⊆

⋃
1≤i≤2·C Π

i.

Given a C-bounded timed state sequence ρ = (σ, τ), let σ′ = σ′0σ
′
1 . . . be as in

Definition 5. Then, (σ′, 0) |= SC .

Point 1 ensures that at all times, the time difference k from the current state
to the previous (if it exists) is uniquely encoded by the variable δ−k . In Point 2
we have that the sum of the difference of the last state to the current, encoded
by s1k, is exactly δ−k . Point 3 ensures that at all times we cannot have more than
one value for the sum of the time differences of the last i states. Finally, Point 4
has the propagation of sum variables: if the sum of the last j states is l and the
time difference to the next is k then the next state should have that the sum of
the last j + 1 states is l + k. We now define our mapping from an LTL model of
SC to an MTL model (for this mapping, we actually only need Point 1).

Definition 6. Given a state sequence σ′ = σ′0σ
′
1 . . . such that (σ′, 0) |= SC , we

define a C-bounded timed state sequence ρ = (σ, τ) by setting σi = σ′i \ (Πδ ∪⋃
1≤j≤2C Π

j), for i ∈ N, and:

τ(i) =

{
0 if i = 0
τ(i− 1) + k if i > 0, δ−k ∈ σ′i

Note that ρ, in particular, τ , in Definition 6 is well-defined because for every
i ∈ N there is exactly one k such that δ−k ∈ σ′i. As shown in Table 3, we translate,
for example, #[2,3]p into #((δ−2 ∨ δ

−
3) ∧ p). We are ready for Theorem 4, which

states the correctness of our translation using time differences.

10

MTL Non-Strict Time Difference Translation

(#[k1,∞)α)] #((
∨

k1≤i≤C δ
−
i) ∧ α)

(#[k1,k2]α)] #((
∨

k1≤i≤k2
δ−i) ∧ α)

(αU[c1,∞)β)] α ∧#
∨

1≤i≤c1
((α ∧ δ−0)U i(¬δ−0 ∧ α), (¬δ−0 ∧ (

∨
c1≤j≤c1+C sij) ∧ αUβ))

(αU[0,∞)β)] αUβ
(αU[c1,c2]β)] α ∧#

∨
1≤i≤c2

((α∧δ−0)U i(¬δ−0 ∧α), (¬δ−0 ∧(
∨

c1≤j≤c2
sij) ∧ (αU[0,0]β)]))

(αU[0,c2]β)] (αU[0,0]β)] ∨ (αU[1,c2]β)]

(αU[0,0]β)] β ∨ (α ∧#((α ∧ δ−0)U(β ∧ δ−0)))

Table 4: Non-Strict Time Difference Translation from MTL to LTL where α, β
are propositional logic formulae, k1, k2 ≥ 0 and c1, c2 > 0.

Theorem 4 Let ϕ = p0 ∧
∧
i 2[0,∞)(pi → ψi) be an MTL formula in NNF and

FNF. Let ϕ] = p0 ∧
∧
i 2(pi → ψ]i) be the result of replacing each ψi in ϕ by ψ]i

as in Table 3. Then, ϕ is satisfiable if, and only if, ϕ] ∧ SC is satisfiable.

Proof (Sketch). Assume ϕ is satisfied by a timed state sequence ρ = (σ, τ). We
then use Definition 5 to define a state sequence σ′ and show with a structural
inductive argument that σ′ is a model of ϕ] ∧ SC . For the other direction, we
assume that ϕ] ∧ SC is satisfied by a state sequence σ′ and use Definition 6 to
define a timed state sequence ρ. We again use a structural inductive argument to
show that ρ is a model of ϕ. o

Example Assume that we are given the following MTL formula in NNF and
FNF: ϕ = p0 ∧2[0,∞)(p0 → #[2,3]p1) ∧2[0,∞)(p1 → ♦[1,2]¬q). Using Table 3, we
translate ϕ into LTL as follows:

ϕ] = p0 ∧2[0,∞)(p0 → (¬gap ∧ (#[2,3]p1)]))
∧2[0,∞)(p1 → (¬gap ∧ (♦[1,2]¬q)])),

where

(#[2,3]p1)] = #((
∨

2≤i≤3 δ
−
i) ∧ p1)

(♦[1,2]¬q)] =
∨

1≤i≤2(#i((
∨

1≤j≤2 sij) ∧ ¬q))

(recall that ♦Iψ ≡ trueUIψ). By Theorem 4, ϕ is satisfiable iff ϕ] ∧ S4 is
satisfiable, where S4 is the conjunction of the following:
1. #2⊕=1 Πδ, for Πδ = {δ−k | 1 ≤ k ≤ 4};
2. 2(δ−k ↔ s1k), for 1 ≤ k ≤ 4;
3. 2⊕≤1 Πi, for 1 ≤ i ≤ 8 and Πi = {sij | i ≤ j ≤ 8};
4. 2(#s1k ∧ s

j
l → #sj+1

min(l+k,8)), for {s1k, s
j
l , s

j+1
min(l+k,8)} ⊆

⋃
1≤i≤8Π

i.

11

Non-Strict Semantics We now show how we modify the Time Difference
translation for non-strict timed state sequences. We extend the set Πδ = {δ−i |
1 ≤ i ≤ C} of propositional variables representing time differences with δ−0 , which
holds whenever the time difference to the previous state is 0. We say that a state
is non-zero if the time difference to the previous state is non-zero. The meaning
of the variables of the form snm also needs to change, it now indicates that ‘the
sum of the time differences from the last n non-zero states to the current state is
m’. As before, for our translation, we only need to define these variables up to
sums bounded by 2 · C. We can now define our mapping from an MTL model to
an LTL model.

Given a C-bounded non-strict timed state sequence (σ, τ), we define a state
sequence σ′ as in Definition 5, with the difference that, whenever τ(i) = τ(i− 1),
we now make δ−0 true in σ′i and copy all variables of the form snm in σ′i−1 to σ′i.
Let S′C be the conjunction of the following:

1. #2⊕=1 Πδ, for Πδ = {δ−k | 0 ≤ k ≤ C};
2. 2(δ−k ↔ s1k), for 1 ≤ k ≤ C;
3. 2⊕≤1 Πi, for 1 ≤ i ≤ 2 · C and Πi = {sij | i ≤ j ≤ 2 · C};
4. 2((#s1k ∧ s

j
l)→ #sj+1

min(l+k,2·C)), for {s1k, s
j
l , s

j+1
min(l+k,2·C)} ⊆

⋃
1≤i≤2·C Π

i;

5. 2((#δ−0 ∧ s
j
l)→ #sjl), for sjl ∈

⋃
1≤i≤2·C Π

i.

It is easy to see that (σ′, 0) |= S′C . Note that the only difference from S′C to
SC , defined in Lemma 1, is Point 5 which propagates the variables of the form snm
to the next state if the time difference is zero. The mapping from an LTL model
of S′C to an MTL model is defined in the same way as in Definition 6 (but now k
in δ−k can be zero). To simplify the notation, in Table 4 we write φUnγ, χ as a
shorthand for φU(γ ∧#(φUn−1γ, χ)), where φU1γ, χ = φUχ. Theorem 5 states
the correctness of our translation (Table 4) using non-strict time differences. It
can be proved with ideas similar to those used in the proof of Theorem 4. The
main distinction appears in the translation of the ‘until’ formulas, where we nest
until operators so that we can count n non-zero states and then check whether
a variable of the form snm holds (in the strict case all states are non-zero, so in
Table 3 we can count these states with next operators).

Theorem 5 Let ϕ = p0 ∧
∧
i 2[0,∞)(pi → ψi) be an MTL formula in NNF and

FNF. Let ϕ] = p0 ∧
∧
i 2(pi → ψ]i) be the result of replacing each ψi in ϕ by ψ]i

as in Table 4. Then, ϕ is satisfiable if, and only if, ϕ] ∧ S′C is satisfiable.

Proof (Sketch). We use our modified versions of Definitions 5 and 6 for the non-
strict semantics to map models of ϕ into models of ϕ] ∧ S′C and vice versa. The
correctness of our translation is again given by a structural inductive argument.
As mentioned, the main difference w.r.t. to Theorem 4 is that here we use the
propositional variable δ−0 to encode multiple states mapped to the same time
point. o

12

(a) Performance on
♦[0,b1]p ∧ 2[0,∞)¬p

(b) Performance on
#[10,∞)p ∧#[b2,∞)¬p

Strict
Semantics

Non-Strict
Semantics

Strict
Semantics

Non-Strict
Semantics

TD + LS4
Gap + LS4
TD + NuSMV
Gap + NuSMV
TD + pltl
Gap + pltl
TD + TRP++

Gap + TRP++

Figure 3: Heat map for the performance of LTL provers on θ1b1 and θ2b2 . Each
rectangle represents the runtime of a prover on an encoding of a formula, with
runtimes given in colours as follows:

< 0.01 sec > 0.01 sec, ≤ 0.25 sec > 0.25 sec, ≤ 0.50 sec > 0.50 sec, ≤ 1 sec
> 1 sec, ≤ 2 sec > 2 sec, ≤ 4 sec > 4 sec, ≤ 8 sec > 8 sec, ≤ 16 sec
> 16 sec, ≤ 32 sec > 32 sec, ≤ 64 sec > 64 sec, ≤ 125 sec > 125 sec, ≤ 250 sec
> 250 sec, ≤ 500 sec > 500 sec, ≤ 1000 sec Timeout exceeded

5 Empirical Evaluation of the Translations

In order to empirically evaluate the translations, we have used them together with
four LTL satisfiability solvers, LS4, NuSMV, pltl and TRP++. The last three per-
formed well in the LTL solver comparison by Schuppan and Darmawan [23] while
LS4 has been included because of its excellent performance in our experiments.

NuSMV 2.6.0 [19] uses a reduction of the LTL satisfiability problem to the LTL
model checking problem [7]. It is then possible to decide the latter problem either
using a BDD-based algorithm or a SAT-based algorithm. Here, we use the latter
with completeness check enabled which turns NuSMV into a decision procedure
for the LTL satisfiability problem. With the pltl [21] system we have used the
graph method which is based on a one-pass and-or tree tableau calculus [13]
and is time complexity optimal for LTL. TRP++ 2.2 [28] is based on an ordered
resolution calculus that operates on LTL formulae in a clausal normal form [16].
LS4 [18] is an LTL prover based on labelled superposition with partial model
guidance developed by Suda and Weidenbach [26]. It operates on LTL formulae
in the same clausal normal form as TRP++.

We focus on formulae where differences between the two translations could
lead to differences in the behaviour of solvers on these formulae. In particular,
for (αU[c1,c2]β) the Strict and Non-Strict Time Difference Translations contain
disjunctive subformulae of the form

∨
c1≤j≤c2 sij that have no equivalence in the

Strict and Non-Strict Gap Translations of that formula. Each sum variable sij
is also subject to the constraints expressed by SC . It is a reasonable hypothesis
that this will have a detrimental effect on the performance of a solver. On the
other hand, for #[c1,∞)α both Gap Translations contain an eventuality formula
gapU(α ∧ ¬gap) that is not present in the Time Difference Translations of this
formula. Here, the hypothesis is that the Time Difference Translations lead to
better behaviour of solvers.

13

To test our two hypotheses, we consider the unsatisfiable parameterised
formulae θ1b1 := ♦[0,b1]p ∧ 2[0,∞)¬p for values of b1 between 0 and 10, and
θ2b2 := #[10,∞)p ∧ #[b2,∞)¬p for values of b2 between 10 and 110 in steps of 10.
After transformation to Flat Normal Form, we apply one of the four translations,
and run a solver five times on the resulting LTL formula (with a timeout of
1000 CPU seconds), and then determine the median CPU time over those five
runs. We refer to that median CPU time as the runtime. The repeated runs are
necessary to moderate the fluctuations shown by all provers in the CPU time
used to solve a particular formula. The experiments were conducted on a PC
with Intel i7-2600 CPU @ 3.40GHz and 16GB main memory.

Figure 3 shows the runtimes in the form of a heat map. Figure 3(a) confirms
our hypothesis that for (αU[c1,c2]β) the Gap Translations, independent of the
semantics, lead to better performance than the Time Difference Translations.
Figure 3(b) confirms that the Time Difference Translations lead to better per-
formance on #[c1,∞)α for LS4 and TRP++, but not for NuSMV and pltl. The reason
are the background theories SC and S′C that form part of the Time Difference
Translations, most of which turn out not to be relevant to the (un)satisfiability
of (θ2b2)]. LS4 and TRP++ appear to be able to derive a contradiction without
too many inferences involving SC or S′C , while NuSMV and pltl do not. If one
restricts SC and S′C by hand to smaller sets strictly necessary to establish the
(un)satisfiability of (θ2b2)], then NuSMV and pltl also perform better with the
Time Difference Translations than with the Gap Translations.

6 An Example: Multiprocessor Job-Shop Scheduling

We consider a generalisation of the classic job-shop scheduling problem, called the
Multiprocessor Job-shop Scheduling (MJS) problem [14,8]. The representation
provided is based on that in [9]. Here a set of jobs have to be processed on a set
of machines running in parallel. Each job requires a number of processor steps to
complete (this number may also depend on the machine, i.e., job i may run faster
in machine j than in machine l). The question is whether there is a scheduling
such that after t time units all jobs will have been processed by the machines.

We first show how one can encode the problem in MTL with the strict
semantics and then we show the encoding with the non-strict semantics. Our
encodings have the property that: there is a scheduling if and only if there is
a model for the resulting MTL formulae. One can use any model of the MTL
formulae to create a scheduling satisfying the constraints of the problem.

Strict Semantics Assume we have n jobs j1, j2, . . . , jn and k machines m1,
m2, . . . ,mk. Let

– start runji , runji and has runji denote the start, the execution and the end
of the execution of job ji on some machine, respectively;

– start runjiml
and runjiml

denote the start and the execution of job ji on
machine ml, respectively; and

– tjiml
to denote the time taken to run job ji on machine ml.

14

The following equations state that (1) once a job starts running it must start
running on one of the machines and that (2) once a job starts running on a
machine it must run on that machine (where

∧
1≤i≤n and

∧
1≤i≤n,1≤l≤k in front

of the formulas is omitted for brevity)

2(start runji →
∨k
l=1 start runjiml

) (1)

2(start runjiml
→ runjiml

) (2)

Equation (3) states that: if a job is running on one machine then it cannot be
running on another (integrity of jobs); and another job cannot be running on the
same machine (integrity of machines). By Equation (4), once a job has started it
cannot be started again.

2(runjiml
→ (

∧k
p=1,p6=l ¬runjimp ∧

∧n
q=1,q 6=i ¬runjqml

)) (3)

2(start runji → #2¬start runji) (4)

We write ¬runji as a short hand for
∧k
l=1 ¬runjiml

. We can use (5) to denote
that once job ji is started to run on machine ml it takes time tjiml

and (6) to
denote that once job ji has finished running on machine ml it will not run again.
Further, Equation (7) denotes that job ji cannot be run until it has started.

2(start runjiml
→ 2[0,tjiml

−1]runjiml
∧ ¬has runji) (5)

2(start runjiml
→ 2[tjiml

,∞)(¬runji ∧ has runji)) (6)

2(¬runjiUstart runji) (7)

We assume initially that no jobs have run, i.e.,
∧n
i=1 ¬has runji ; and that (8) if

a job has not run and is currently not running then it has not run in the next
moment.

2((¬has runji ∧ ¬runji)→ #¬has runji) (8)

We can now check whether we can achieve a schedule after at most t time points
by adding ♦[0,t]

∧n
i=1 has runji . We can also specify constraints on jobs such as

– 2(runji ↔ runji,ml
): job ji must run on machine ml;

– ♦(start runji → ♦[1,∞)start runjm): job ji must start before job jm;
– ♦[c,d]start runji : job ji must start at a point within the interval [c, d].

Non-Strict Semantics We again assume we have n jobs j1, j2, . . . , jn and k
machines m1,m2, . . . ,mk. Let
– start runji and has runji denote the start and the end of job ji on some

machine, respectively;
– ml denote a state of machine ml;
– runji denote that job ji is running on some machine; and
– tjiml

denote the time taken to run job ji on machine ml.

In each state exactly one of the variables of the form ml is true. Also, in
each state at most one job is running, but now we may have multiple states
at the same time. Let Πm = {m1, . . . ,mk} and Πj = {runj1 , . . . , runjn}. The
following states the constraints mentioned above (the meaning of ⊕=1 and ⊕≤1
is as described in Section 3):

2(⊕=1Πm ∧ ⊕≤1Πj) (9)

15

Equation (10) specifies that if a job is running on one machine then it cannot be
running on another. Equation (11) states that once a job is started it cannot be
started again (where

∧
1≤i≤n,1≤l≤k and

∧
1≤i≤n is again omitted).

2((ml ∧ runji)→
∧
l′ 6=l 2¬(ml′ ∧ runji)) (10)

2(start runji → #2¬start runji) (11)

We use the following

2((start runji ∧ml)→ (2[0,tjiml
−1](¬has runji ∧ (ml → runji))

∧ ♦[0,tjiml
]has runji))

(12)

to denote that once job ji started to run on machine ml it takes time tjiml

and (13) to denote that once job ji has finished running on machine ml it will not
run again. Further, we use 2(¬runjiUstart runji) to state a job ji cannot be
run until it is started and 2(¬has runjiUstart runji) to state that a job cannot
have run before it starts (another rule above will make sure that has runji will
hold after the run has finished).

2((start runji ∧ml)→ 2[tjiml
+1,∞)(¬runji ∧ has runji)) (13)

We assume initially that no jobs have run, i.e.,
∧n
i=1 ¬has runji . We can now

check whether we can achieve a schedule after at most t time points by adding
♦[0,t]

∧n
i=1 has runji .

7 Experiments with MJS Problems

We have performed an experimental evaluation of the combination of our trans-
lations with LS4, NuSMV, pltl and TRP++. Regarding the MJS problems used in
the evaluation we made the simplifying assumption that a job ji, for each i,
1 ≤ i ≤ n, takes the same amount of time ti on whichever machine it is processed
on. We can then characterise a MJS problem by stating (i) a job list J consisting
of a list of durations (t′1, . . . , t

′
n), (ii) the number k of machines available, and

(iii) the time bound t. In equations 5, 6, 12 and 13, for every i, 1 ≤ i ≤ n, and
every l, 1 ≤ l ≤ k, tjiml

will be given by t′ji . The time bound t is used in the

formula ♦[0,t]

∧n
i=1 has runji that expresses the requirement for a schedule that

completes all n jobs on k machines in at most t time points.
For our experiments we created 35 MJS problems with number n of jobs

between 1 and 4, a duration t′i of a job between 1 and 4, a number k of machines
between 1 and 3 and finally a time bound t between 0 and 4. We then constructed
corresponding MTL formulae for both the strict and the non-strict semantics.
Each formula was transformed to FNF, translated to LTL using one of the
encodings, and each solver run five times on the resulting LTL formula (with a
timeout of 1000 CPU seconds), and the median CPU time over those five runs
determined. We refer to that median CPU time as the runtime. Figure 4 shows
the runtimes in the form of a heat map.

Regarding the formalisation of MJS problems in the strict semantics, we see
in Figure 4 that for every prover the Gap Translation results in equal or better
performance than the Time Difference Translation on every single problem. The

16

Strict Semantics Non-Strict Semantics

TD + LS4
Gap + LS4
TD + NuSMV
Gap + NuSMV
TD + pltl
Gap + pltl
TD + TRP++

Gap + TRP++

Figure 4: Heat map for the performance of LTL provers on MJS problems. Each
rectangle represents the runtime of a prover on an encoding of the MJS problem,
with runtimes given in colours as follows:

< 0.01 sec > 0.01 sec, ≤ 0.25 sec > 0.25 sec, ≤ 0.50 sec > 0.50 sec, ≤ 1 sec
> 1 sec, ≤ 2 sec > 2 sec, ≤ 4 sec > 4 sec, ≤ 8 sec > 8 sec, ≤ 16 sec
> 16 sec, ≤ 32 sec > 32 sec, ≤ 64 sec > 64 sec, ≤ 125 sec > 125 sec, ≤ 250 sec
> 250 sec, ≤ 500 sec > 500 sec, ≤ 1000 sec Timout exceeded

Gap Translation together with LS4 offers the best performance for every instance
but does not provide models for satisfiable problems. NuSMV is the only prover
that returns models of satisfiable problems and its combination with the Gap
Translation provides the second best performance overall.

Regarding the formalisation of MJS problems in the non-strict semantics,
the most striking observation we can make from Figure 4 is how much more
challenging the corresponding LTL satisfiability problems are for all the provers,
as indicated by the very high number of timeouts. Overall, the Non-Strict Gap
Translation still results in better performance than the Non-Strict Time Difference
Translation. The combination of the Non-Strict Gap Translation and LS4 is again
the best performing single approach, but exceeds the timeout for most of the
unsatisfiable MJS problems. NuSMV is again the second best prover. It is able to
solve and return a model for all satisfiable problems. With the Non-Strict Gap
Translation it typically does so an order of magnitude faster than with the Non-
Strict Time Difference Translation. On unsatisfiable problems, NuSMV with the
Non-Strict Time Difference Translation exceeds the timeout on all unsatisfiable
problems and with the Non-Strict Gap Translation it does so on 18 out of 20
unsatisfiable problems. In summary, the experimental results presented in this
section provide further evidence of the significant performance improvements
that can be gained from the use of the Gap over Time Difference Translations.

8 Conclusion

We presented and evaluated experimentally four translations from MTL to LTL.
The translations using time difference are based on the MTL decision procedure
presented in [3] and use the bounded model property. Note that the translations
using ‘gap’ are proved independently of this property. Our translations provide
a route to practical reasoning about MTL over the naturals via LTL solvers.
As future work, we intend to investigate whether we can translate PDDL3.0
statements [12] into MTL and apply our translations to the planning domain.

17

References

1. Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Probabil-
istic temporal logic falsification of cyber-physical systems. ACM Transactions on
Embedded Computing Systems (TECS) 12(2s), 95:1–95:30 (2013)

2. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM
43(1), 116–146 (1996)

3. Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Inf.
Comput. 104(1), 35–77 (1993)

4. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–204 (1994)

5. Bersani, M.M., Rossi, M., San Pietro, P.: A tool for deciding the satisfiability of
continuous-time metric temporal logic. Acta Informatica 53(2), 171–206 (2016)

6. Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The cost of punctuality. In: Proc.
LICS 2007. pp. 109–120. IEEE (2007)

7. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource tool for symbolic model
checking. In: Proc. CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer (2002)

8. Dauzère-Pérès, S., Paulli, J.: An integrated approach for modeling and solving the
general multiprocessor job-shop scheduling problem using tabu search. Annals of
Operations Research 70, 281–306 (1997)

9. Dixon, C., Fisher, M., Konev, B.: Temporal Logic with Capacity Constraints. In:
Proc. FroCoS 2007. LNCS, vol. 4720, pp. 163–177. Springer (2007)

10. Fisher, M.: A normal form for temporal logics and its applications in theorem-
proving and execution. Journal of Logic and Computation 7(4), 429–456 (1997)

11. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness.
In: Proc. POPL ’80. pp. 163–173. ACM (1980)

12. Gerevini, A., Haslum, P., Long, D., Saetti, A., Dimopoulos, Y.: Deterministic
planning in the fifth international planning competition: PDDL3 and experimental
evaluation of the planners. Artificial Intelligence 173(5-6) (2009)

13. Goré, R.: And-or tableaux for fixpoint logics with converse: LTL, CTL, PDL and
CPDL. In: Proc. IJCAR 2014. LNCS, vol. 8562, pp. 26–45. Springer (2014)

14. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Labs Technical
Journal 45(9), 1563–1581 (1966)

15. Gunadi, H., Tiu, A.: Efficient runtime monitoring with metric temporal logic: A
case study in the Android operating system. In: Proc. FM 2014. LNCS, vol. 8442,
pp. 296–311. Springer (2014)

16. Hustadt, U., Konev, B.: TRP++2.0: A temporal resolution prover. In: Proc. CADE-
19. LNCS, vol. 2741, pp. 274–278. Springer (2003)

17. Karaman, S., Frazzoli, E.: Vehicle routing problem with metric temporal logic
specifications. In: Proc. CDC 2008. pp. 3953–3958. IEEE (2008)

18. LS4, https://github.com/quickbeam123/ls4

19. NuSMV, http://nusmv.fbk.eu/

20. Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In: Proc.
FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer (2008)

21. pltl, http://users.cecs.anu.edu.au/~rpg/PLTLProvers/

22. Pnueli, A.: The temporal logic of programs. In: Proc. SFCS ’77. pp. 46–57. IEEE
(1977)

23. Schuppan, V., Darmawan, L.: Evaluating LTL satisfiability solvers. In: Proc. ATVA
2011. LNCS, vol. 6996, pp. 397–413. Springer (2011)

https://github.com/quickbeam123/ls4
http://nusmv.fbk.eu/
http://users.cecs.anu.edu.au/~rpg/PLTLProvers/

18

24. Schwendimann, S.: A new one-pass tableau calculus for PLTL. In: Proceedings of
the International Conference on Automated Reasoning with Analytic Tableaux and
Related Methods, TABLEAUX ’98. Lecture Notes in Computer Science, vol. 1397,
pp. 277–292. Springer (1998)

25. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
J. ACM 32(3), 733–749 (1985)

26. Suda, M., Weidenbach, C.: A PLTL-prover based on labelled superposition with
partial model guidance. In: Proc. IJCAR. LNCS, vol. 7364, pp. 537–543. Springer
(2012)

27. Thati, P., Roşu, G.: Monitoring algorithms for metric temporal logic specifications.
Electronic Notes in Theoretical Computer Science 113, 145–162 (2005)

28. TRP++, http://cgi.csc.liv.ac.uk/~konev/software/trp++/
29. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Auto-

mation of reasoning, pp. 466–483. Springer (1983)

http://cgi.csc.liv.ac.uk/~konev/software/trp++/

	Theorem Proving for Metric Temporal Logic over the Naturals

