

FOUNDATIONS OF COMPLEXITY THEORY

Lecture 6: Nondeterministic Polynomial Time

David Carral Knowledge-Based Systems

TU Dresden, November 12, 2020

Beyond PTime

- We have seen that the class PTime provides a useful model of "tractable" problems
- This includes 2-Sat and 2-Colourability
- But what about 3-Sat and 3-Colourability?
- No polynomial time algorithms for these problems are known
- On the other hand ...

The Class NP

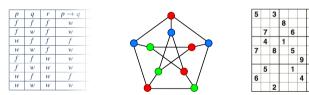
David Carral, November 12, 2020

Foundations of Complexity Theory

slide 2 of 1

Verifying Solutions

For many seemingly difficult problems, it is easy to verify the correctness of a "solution" if given.



• Satisfiability - a satisfying assignment

- *k*-Colourability a *k*-colouring
- Sudoku a completed puzzle

4

Verifiers

Definition 6.1: A Turing machine \mathcal{M} which halts on all inputs is called a verifier for a language L if

 $\mathbf{L} = \{w \mid \mathcal{M} \text{ accepts } (w \# c) \text{ for some string } c\}$

The string c is called a certificate (or witness) for w.

Notation: # is a new separator symbol not used in words or certificates.

Definition 6.2: A Turing machine \mathcal{M} is a polynomial-time verifier for **L** if \mathcal{M} is polynomially time bounded and $\mathbf{L} = \{w \mid \mathcal{M} \text{ accepts } (w \# c) \text{ for some string } c \text{ with } |c| \le p(|w|)\}$ for some fixed polynomial p.

David Carral, November 12, 2020

Foundations of Complexity Theory

slide 5 of 1

The Class NP

NP: "The class of dashed hopes and idle dreams."1

More formally:

the class of problems for which a possible solution can be verified in P

Definition 6.3: The class of languages that have polynomial-time verifiers is called NP.

In other words: NP is the class of all languages L such that:

- for every $w \in \mathbf{L}$, there is a certificate $c_w \in \Sigma^*$, where
- the length of c_w is polynomial in the length of w, and
- the language $\{(w # c_w) | w \in L\}$ is in P

¹https://complexityzoo.uwaterloo.ca/Complexity_Zoo:N#np David Carral, November 12, 2020 Foundations of Complexity Theory

slide 6 of 1

More Examples of Problems in NP

HAMILTONIAN	Ратн
Input:	An undirected graph G
Problem:	Is there a path in G that contains each vertex exactly once?

Input: An undirected graph G

Problem: Does *G* contain a fully connected graph (clique) with *k* vertices?

More Examples of Problems in NP

Input: A collection of positive integers

 $S = \{a_1, \ldots, a_k\}$ and a target integer t.

Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

TRAVELLING SALESPERSON

Input: A weighted graph G and a target number t.

Problem: Is there a simple path in *G* with weight $\geq t$?

Complements of NP are often not known to be in NP

No HAMILTONIAN PATH

Input: An undirected graph *G* Problem: Is there no path in *G* that contains each vertex exactly once?

Whereas it is easy to certify that a graph has a Hamiltonian path, there does not seem to be a polynomial certificate that it has not.

But we may just not be clever enough to find one.

David Carral, November 12, 2020

Foundations of Complexity Theory

slide 9 of 1

COMPOSITE (NON-PRIME) NUMBER Input: A positive integer n > 1

Problem: Are there integers u, v > 1 such that $u \cdot v = n$?

PRIME NUMBER

Input: A positive integer n > 1Problem: Is *n* a prime number?

Surprisingly: both are in NP (see Wikipedia "Primality certificate") In fact: Composite Number (and thus Prime Number) was shown to be in P

David Carral, November 12, 2020

More Examples

Foundations of Complexity Theory

slide 10 of 1

Reprise: Nondeterministic Turing Machines

A nondeterministic Turing Machine (NTM) $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}})$ consists of

- a finite set Q of **states**,
- an **input alphabet** Σ not containing \Box ,
- a **tape alphabet** Γ such that $\Gamma \supseteq \Sigma \cup \{ \sqcup \}$.
- a transition function $\delta: Q \times \Gamma \to 2^{Q \times \Gamma \times \{L,R\}}$
- an initial state $q_0 \in Q$,
- an accepting state $q_{\text{accept}} \in Q$.

Note

An NTM can halt in any state if there are no options to continue \rightsquigarrow no need for a special rejecting state

David Carral, November 12, 2020

Foundations of Complexity Theory

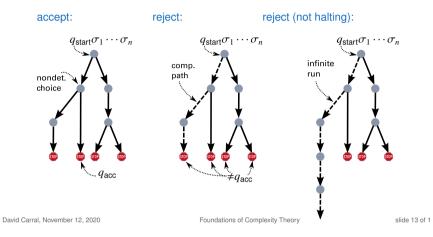
N is for Nondeterministic

avid Garral, November 12, 2020

Reprise: Runs of NTMs

An (N)TM configuration can be written as a word uqv where $q \in Q$ is a state and $uv \in \Gamma^*$ is the current tape contents.

NTMs produce configuration trees that contain all possible runs:



Example: Multi-Tape NTM

Consider the NTM $\mathcal{M} = (Q, \{0, 1\}, \{0, 1, \sqcup\}, q_0, \Delta, q_{\text{accept}})$ where

$$\Delta = \begin{cases} (q_0, {\binom{-}{-}}, q_0, {\binom{0}{0}}, {\binom{N}{R}}) \\ (q_0, {\binom{-}{-}}, q_0, {\binom{-}{1}}, {\binom{N}{R}}) \\ (q_0, {\binom{-}{-}}, q_{check}, {\binom{-}{-}}, {\binom{N}{N}}) \\ \dots \\ \text{transition rules for } \mathcal{M}_{check} \end{cases}$$

and where $\mathcal{M}_{\text{check}}$ is a deterministic TM deciding whether number on second tape is > 1 and divides the number on the first.

The machine \mathcal{M} decides if the input is a composite number:

- guess a number on the second tape
- check if it divides the number on the first tape
- accept if a suitable number exists

Example: Multi-Tape NTM

Consider the NTM $\mathcal{M} = (Q, \{0, 1\}, \{0, 1, \sqcup\}, q_0, \Delta, q_{\text{accept}})$ where

$$\Delta = \begin{cases} (q_0, (-), q_0, (-), (N_R)) \\ (q_0, (-), q_0, (-), (N_R)) \\ (q_0, (-), q_{check}, (-), (N_R)) \\ (q_0, (-), q_{check}, (-), (N_R)) \\ \cdots \\ \text{transition rules for } \mathcal{M}_{check} \end{cases}$$

and where $\mathcal{M}_{\text{check}}$ is a deterministic TM deciding whether the number on the second tape is > 1 and divides the number on the first evenly.

Time and Space Bounded NTMs

Q: Which of the nondeterministic runs do time/space bounds apply to? A: To all of them!

Definition 6.4: Let \mathcal{M} be a nondeterministic Turing machine and let $f : \mathbb{N} \to \mathbb{R}^+$ be a function.

- (1) \mathcal{M} is *f*-time bounded if it halts on every input $w \in \Sigma^*$ and on every computation path after $\leq f(|w|)$ steps.
- (2) \mathcal{M} is *f*-space bounded if it halts on every input $w \in \Sigma^*$ and on every computation path using $\leq f(|w|)$ cells on its tapes.

(Here we typically assume that Turing machines have a separate input tape that we do not count in measuring space complexity.)

All Complexity Classes Have a Nondeterministic Variant

Equivalence of NP and NPTime

Theorem 6.6: NP = NPTime.

Proof: We first show NP \supseteq NPTime:

- Suppose $L \in NPTime$.
- Then there is an NTM ${\mathcal M}$ such that

 $w \in \mathbf{L} \iff$ there is an accepting run of \mathcal{M} of length $O(n^d)$

for some *d*.

- This path can be used as a certificate for *w*.
- A DTM can check in polynomial time that a candidate certificate is a valid accepting run.

Therefore NP \supseteq NPTime.

Equivalence of NP and NPTime

Theorem 6.??: NP = NPTime.

Proof: We now show NP \subseteq NPTime:

- Assume L has a polynomial-time verifier \mathcal{M} with certificates of length at most p(n) for a polynomial p.
- Then we can construct an NTM \mathcal{M}^* deciding $\boldsymbol{\mathsf{L}}$ as follows:
 - (1) \mathcal{M}^* guesses a string of length p(n)
 - (2) \mathcal{M}^* checks in deterministic polynomial time if this is a certificate.

Therefore NP \subseteq NPTime.

NP and coNP

Note: the definition of NP is not symmetric

- there does not seem to be any polynomial certificate for Sudoku **un**solvability or propositional logic **un**satisfiability ...
- converse of an NP problem is coNP
- similar for NExpTime and N2ExpTime

Other complexity classes are symmetric:

- Deterministic classes (coP = P etc.)
- Space classes mentioned above (esp. coNL = NL)

Deterministic vs. Nondeterminsitic Time

Theorem 6.7: $P \subseteq NP$, and also $P \subseteq coNP$.

(Clear since DTMs are a special case of NTMs)

It is not known to date if the converse is true or not.

- Put differently: "If it is easy to check a candidate solution to a problem, is it also easy to find one?"
- Exaggerated: "Can creativity be automated?" (Wigderson, 2006)
- Unsolved since over 35 years of effort
- One of the major problems in computer science and math of our time
- 1,000,000 USD prize for solving it ("Millenium Problem") (might not be much money at the time it is actually solved)

David Carral, November 12, 2020	Foundations of Complexity Theory	slide 21 of 1	David Carral, November 12, 2020	Foundations of Complexity Theory	slide 22 of 1

Status of P vs. NP

Many people believe that $P \neq NP$

- Main argument: "If NP = P, someone ought to have found some polynomial algorithm for an NP-complete problem by now."
- "This is, in my opinion, a very weak argument. The space of algorithms is very large and we are only at the beginning of its exploration." (Moshe Vardi, 2002)
- Another source of intuition: Humans find it hard to solve NP-problems, and hard to imagine how to make them simpler – possibly "human chauvinistic bravado" (Zeilenberger, 2006)
- There are better arguments, but none more than an intuition

Status of P vs. NP

Many outcomes conceivable:

- P = NP could be shown with a non-constructive proof
- The question might be independent of standard mathematics (ZFC)
- Even if NP ≠ P, it is unclear if NP problems require exponential time in a strict sense – many super-polynomial functions exist . . .
- The problem might never be solved

Current status in research:

 Results of a poll among 152 experts [Gasarch 2012]: 	Clearly	$L \in P$ implies $L \in NP$
 - P ≠ NP: 126 (83%) - P = NP: 12 (9%) 	therefore	L∉NP implies L∉P
 Don't know or don't care: 7 (4%) 	hence	$\textbf{L} \in coNP implies \textbf{L} \in coP$
 Independent: 5 (3%) 	that is	$coNP \subseteq coP$
 And 1 person (0.6%) answered: "I don't want it to be equal." 	using $coP = P$	$coNP \subseteq P$
 Experts have guessed wrongly in other major questions before 	and hence	$NP \subseteq P$
 Over 100 "proofs" show P = NP to be true/false/both/neither: https://www.win.tue.nl/~gwoegi/P-versus-NP.htm 	so by $P \subseteq NP$	NP = P

q.e.d.?

David Carral, November 12, 2020	Foundations of Complexity Theory	slide 25 of 1	David Carral, November 12, 2020	Foundations of Complexity Theory	slide 26 of 1

Summary and Outlook

NP can be defined using polynomial-time verifiers or polynomial-time nondeterministic Turing machines

Many problems are easily seen to be in NP

NTM acceptance is not symmetric: coNP as complement class, which is assumed to be unequal to NP

What's next?

- NP hardness and completeness
- More examples of problems
- Space complexities