
IEEE TRANSACTIONS ON BIG DATA, VOL.X, NO.X, 201X 1

Scale-Out Processing of Large RDF Datasets
Long Cheng and Spyros Kotoulas

Abstract—Distributed RDF data management systems become increasingly important with the growth of the Semantic Web.
Regardless, current methods meet performance bottlenecks either on data loading or querying when processing large amounts of
data. In this work, we propose efficient methods for processing RDF using dynamic data re-partitioning to enable rapid analysis of large
datasets. Our approach adopts a two-tier index architecture on each computation node: (1) a lightweight primary index, to keep loading
times low, and (2) a series of dynamic, multi-level secondary indexes, calculated as a by-product of query execution, to decrease or
remove inter-machine data movement for subsequent queries that contain the same graph patterns. In addition, we propose methods
to replace some secondary indexes with distributed filters, so as to decrease memory consumption. Experimental results on a
commodity cluster with 16 nodes show that the method presents good scale-out characteristics and can indeed vastly improve loading
speeds while remaining competitive in terms of performance. Specifically, our approach can load a dataset of 1.1 billion triples at a rate
of 2.48 million triples per second and provide competitive performance to RDF-3X and 4store for expensive queries.

Index Terms—RDF data; dictionary encoding; hybrid index; index building; distributed filter; big data

F

1 INTRODUCTION

GOvernments and enterprises are increasingly seeing the
benefits of RDF regarding interoperability and flexi-

bility for data representation and processing (e.g., [1]). In
addition, the exploding availability of RDF datasets from
multiple domains such as Linked Data [2] is challenging
today’s processing techniques.

RDF. The Resource Description Framework (RDF) [3] is
a schema-less, graph-based data representation. It en-
tails subject-predicate-object (SPO) expressions describing
resources and their relationships. These expressions are
known as RDF triples. For instance, the statement from DB-
pedia (<dbpedia:IBM>, <dbpedia-owl:foundation-Place>,
<dbpedia:New-York>) conveys the information that the
corporation IBM was founded in New York. The Semantic
Web already contains tens of billions of such statements and
this number is growing rapidly.

In RDF, a set of triples can be represented as a directed la-
beled graph termed as an RDF graph. For example, Figure 1
illustrates an RDF graph with four triples. In such an RDF
graph, each subject and object of a triple is represented as a
vertex, and the predicate is described as a labeled directed
edge from the responsible subject to the object. Note that,
all the vertexes in a graph are unique regardless of the
number of appearances for a subject, predicate or object in
the underlying triples. Namely, the same subject or object
from different RDF triples is represented by the same vertex.
It should be noted that the RDF representation allows edges
between predicates technically, but this is beyond the scope
of this paper, and the experiments presented herein.

SPARQL. SPARQL is the standard RDF query language that
facilitates the extraction of information from stored RDF

• L. Cheng is with the Faculty of Computer Science, TU Dresden, Germany.
E-mail: long.cheng@tu-dresden.de

• S. Kotoulas is with IBM Research, Dublin, Ireland.
E-mail: spyros.kotoulas@ie.ibm.com

data. The core component of SPARQL queries is a conjunc-
tive set of triple patterns, termed a Basic Graph Pattern (BGP).
Similar to an RDF triple, a basic triple pattern is also in the
form of subject-predicate-object, the difference is that any
component of the pattern could be a variable. A basic triple
pattern could match a subset of the underlying RDF data,
where the terms in the triple pattern respond to the ones
in the RDF data [4]. Consequently, a solution mapping is
defined as the mapping from the variables to the respective
RDF terms in the data.

In addition, a SPARQL query can also be thought of as a
graph called a query graph pattern. For example, Figure 2
shows two queries in the form of graph patterns, which
contain two and three basic triple patterns respectively. In
this scenario, the implementation of a SPARQL query can
be also considered as a subgraph matching process.

Challenge. RDF stores are the backbone of the Semantic
Web, allowing storage and retrieval of semi-structured in-
formation. Research and engineering on RDF stores is a very
active area with many standalone systems such as Jena [5],
Sesame [6], Hexastore [7], SW-Store [8] and RDF-3X [9]
being introduced in the past years. However, as the size of
RDF data increases, such single-machine approaches meet
performance bottlenecks, in terms of both data loading and
querying. Such bottlenecks are mainly due to (1) limited par-
allelism on symmetric multi-threaded systems, (2) limited
system I/O, and (3) large volumes of intermediate query re-
sults producing memory pressure. Therefore, a system with
efficient parallelization of data loading and querying based
on distributed architectures becomes increasingly desirable.

Several approaches for distributed RDF data process-
ing have been proposed [10], [11], [12], [13], along with
clustered versions of more traditional approaches [14], [15],
[16]. These systems have already achieved significant per-
formance improvements on either data querying or loading,
however, not both aspects, as we will explain in the follow-
ing section.

In fact, fast loading speed and query interactivity are

IEEE TRANSACTIONS ON BIG DATA, VOL.X, NO.X, 201X 2

A1 B2 C1
p1 p2

A2

p3

C1

p2
A1 p2 A2

A1 p1 B2

B2 p2 C1

A1 p3 C1

Fig. 1. An RDF graph and the responsible triples.

?a ?b ?c
p1 p2 ?a ?b

p1

A2

p3

?c

p2

Query (a) Query (b)

Fig. 2. Two queries in the form of graph patterns.

important for exploration and analysis of RDF data at Web
scale. For example, in a large-scale distributed scenario ex-
ploiting Cloud infrastructure, vast computational resources
could be tapped for a short amount of time. This would
require very fast data loading of the target dataset(s) so as
to decrease cost. In addition, to shorten the data processing
life-cycle for each query, exploration and analysis should be
done in an interactive manner.

Our approach. To meet these challenges, we are proposing
a hybrid method for processing RDF using dynamic data re-
partitioning to enable rapid analysis of large datasets. Our
approach combines the two most commonly used methods
applied in current systems: similar-size partitioning and
graph-based partitioning, where the former approach can
fast load data while the latter is efficient on query pro-
cessing. We adopt a two-tier index architecture on each
computation node for our implementation: (1) a lightweight
primary index, to keep loading times low, and (2) a series
of dynamic, multi-level secondary indexes, calculated dur-
ing query execution, to decrease or remove inter-machine
data movement for subsequent queries that contain the
same graph patterns. In the meantime, we also investigate
approaches to reduce the sizes of multi-level secondary
indexes, as they grow in size.

This method is straightforward, in terms of system
complexity, yet not trivial, and complementary to caching
techniques. Whereas our approach aims at re-using the
re-organisation of data that happens during query execu-
tion, caching techniques store results of queries or parts of
queries.

We focus on the following research questions:

• Hybrid index: Can we combine the loading speed of
similar-size partitioning with the execution speed of
graph-based partitioning, and achieve competitive
performance with current solutions?

• Dynamic index construction: What does the dynamic
construction of secondary indexes cost, in terms of
computation and memory? When is it worth build-
ing such indexes, in terms of cost and query execu-
tion speedup?

• Scalability: Does the runtime of queries over the
secondary indexes scale well with increasing the
number of computation nodes (scale-out properties)?

We aspire that the answers to these questions will inform
readers developing systems that balance loading speed to
query execution speed for processing large RDF datasets.

Contribution. This manuscript is an extension of our previ-
ous work [17]. Specifically, we have introduced significant
extension for our previous approach - distributed filters,
as an optional replacement for secondary indexes, so as to
reduce memory consumption. We believe that this extension
constitutes an important addition, in terms of improving
memory consumption, which could be a key criticism to
our approach otherwise. Moreover, we also present more
detailed experimental results and analysis in this work.

We summarize the contribution of this paper as follows:
(a) We present a dynamic distributed RDF indexing ap-
proach that can both load data and compute queries quickly
on large RDF data, with a focus on analytical queries. (b) We
implement a fully parallel version of our approach and eval-
uate its performance on a cluster using the LUBM bench-
mark [18]. (c) Experimental results show that constructing
only a primary index results in very fast loading speeds: It
takes only 7.4 minutes to load 1.1 billion triples on 16 nodes,
for a throughput of 2.48 million triples per second, notably
outperforming other systems (e.g., 4store [19]). (d) In the
meantime, our secondary indexes show their scalability
and can significantly speed up computation, bringing the
performance of our approach close to that of RDF-3X and
4store: It takes about 9 seconds, 4 seconds and 0.4 seconds
to execute the two most complex LUBM queries over our
primary, 2nd level and 3rd level indexes respectively. This
performance is better than a state-of-the-art RDF store (RDF-
3X) operating on a single machine in main memory for both
queries. It is also faster than a clustered RDF store operating
in memory (4store) when using the 2nd level and 3rd level
indexes. For the other queries and indexes, our approach
still stays within an interactive response time, although most
are slower than the other systems. (e) In addition, our tests
also show that, by using an additional optimisation, namely
filters, we can achieve 1.14 - 3.45x execution speedup, with
minimal storage overhead (up to 1.2% of index size).

The rest of this paper is organized as follows: In the
following Section, we describe current approaches and dis-
cuss about their possible performance issues. In Section 3,
we present the design rationale and algorithms for our
approach. In Section 4, we evaluate a prototype implementa-
tion and compare its performance to RDF-3X and 4store. In
Section 5, we reported on related work. Finally, in Section 6,
we conclude the paper and point to directions for future
work.

2 CURRENT APPROACHES

Depending on the data partitioning and placement patterns,
current distributed RDF systems can be divided into the
following four categories. To better understand the basic
idea of each approach, in the following descriptions, we take
a simple example consisting of four triples and two queries
as shown in Figure 1 and Figure 2 respectively. We present

IEEE TRANSACTIONS ON BIG DATA, VOL.X, NO.X, 201X 3

A1 p2 A2
A1 p1 B2

B2 p2 C1
A1 p3 C1

Node 1 Node 2

(a) similar-size partitioning

Node 1 Node 2

A1 p2 A2
A1 p1 B2
A1 p3 C1

B2 p2 C1

(b) hash-based partitioning

Node 1 Node 2

A1 p2 A2
A1 p1 B2
B2 p2 C1
A1 p3 C1

(c) graph-based partitioning

Fig. 3. Different kinds of RDF data partitioning over a two-node system.

the detailed implementation of each method over a two-
node system and assume that terms with an odd number
are hashed to the first node and constants with an even
number are hashed to the second node (e.g., B1 hashes to
node 1, B2 hashes to node 2).

Similar-size Partitioning. Systems based on similar-size
partitioning place similar volumes of raw triples on each
computation node without a global index. During query
processing, nodes provide bindings for each triple pattern
can be implemented in parallel, and the intermediate (or fi-
nal) results can be then formulated by parallel joins [10], [13].
Figure 3(a) shows the details of the partitioning that each
node will hold two triples. Then, during query execution,
the solution mapping of each triple pattern will be located
to a same node to implement local joins and consequently
formulate the intermediate or final results. For example, for
the Query(a) in Figure 2, the result of the first triple pattern
<?a p1 ?b> at the first node <A1 B2> will be transferred
to the second node, based on the hash value of the join key
B2, to join with the <B2 C1> at the second node, and then
output of the query result <A1 B2 C1>.

It can be seen that this scheme has obvious performance
advantages on data loading, as similar-size is very easy
to achieve and each computing node can simply load its
local data in parallel without inter-node communication.
For example, in [13], no discrete loading phase is necessary,
as the approach relies on the distribution of data on a
distributed filesystem. Regardless, for any query including
join operations, there will always be data movements in the
specific implementations, which can consequently decrease
the query performance, because network communication is
always considered as the slowest operator in distributed
data management systems deployed for large-scale analyt-
ics [20].

Hash-based Partitioning. This method exploits the fact that
SPARQL queries often contain star graph patterns. Triples
under this scheme are commonly hash partitioned (by sub-
ject) across multiple machines and accessed in parallel at
query time. As shown in Figure 3(b), the three triples with
subject A1 are assigned to the first node while the other is
assigned to the second node. Clearly, this kind of assignment
will be more time costly than similar-size partitioning, and
there still exists some data movement when implementing
the Query(a). However, for a query containing a star pattern,
for instance the Query(b) in the figure, the included join op-
erations will be computed locally, which can vastly reduce
costly network communication and consequently improve
query performance. As an example, in [12], it is reported
that hash-partitioning takes 30 minutes for a 270 million-
triple dataset (8 times faster than the graph partitioning
presented in the same work).

Sharded/Partitioned Indexes. This approach is very similar
to how centralized stores operate. Triple indexes in the form
of SPO, OPS, etc. are distributed across all the computing
nodes and stored locally as a B-Tree. Most of the existing
parallel systems such as YARS2 [14], Clustered-TDB [21],
Virtuoso-cluster [15] and 4store [19] use such a scheme.
Their operations are more similar to single-node RDF stores,
usually offering lower loading speeds but achieving persis-
tence and space-efficient indexing. Meanwhile, system I/O
and join throughput of queries can be improved as well
on that basis. In our evaluation, a partitioned index-based
approach is around 5 times slower per node, compared to a
centralized store, although much faster across all nodes.

Graph-based Partitioning. Graph partitioning algorithms
are used to partition RDF data in a manner that triples
close to each other can be assigned to the same computation
node. SPARQL queries generally take the form of graph
pattern matching so that sub-graphs on each computation
node can be matched independently and in parallel, as
much as possible. Using such methods, all the previous four
triples will be placed on the same node based on a 2-hop
graph (namely distance between two node is 2 maximum)
as shown as Figure 3(c). Compared to the three approaches
above, it can be seen that there will be no network commu-
nication for such a method during query execution, for both
the queries in Figure 2. However, as graph partitioning is
always complex, especially for large graphs, loading time
can be very significant, and the partitioning approach can
result in excessive memory consumption (since triples will
usually belong to multiple partitions). In one system [12],
graph partitioning and loading on a 20-node cluster was
slower than loading data without partitioning on a single
machine.

Discussion. In general, the techniques outlined above op-
erate on a trade-off between loading complexity and query
efficiency, with the earlier ones in the list offering superior
loading performance at the cost of more complex/slower
querying and the latter ones requiring significant compu-
tational effort for loading and/or partitioning. More im-
portantly, the cost of advanced partitioning methods is
amortized over the anticipated query workloads, compared
with partitioning the entire dataset. As shown in [22], only
a small fraction of the whole underlying data is actually ac-
cessed by typical real query workloads. For instance, a real
workload consisting of thousands of queries executed over
DBpedia [23] touches only 0.003% of the entire dataset [24],
although this work focuses on analytical workloads, rather
that queries posed on Web endpoints. In any case, a dy-
namic and adaptive partitioning method based on query
workloads seems more attractive. In Section 5, we compare
against specific approaches.

IEEE TRANSACTIONS ON BIG DATA, VOL.X, NO.X, 201X 4

3 OUR APPROACH

We are proposing a set of parallel techniques that com-
bine the loading speed of similar-size partitioning with
the execution speed of graph-based partitioning. The main
elements of our approach are as follows:

• We use fixed-length integer encoding for RDF terms
and constant-time operations for indexing (i.e., in-
dexes are based on hash-tables), to increase access
speed.

• During indexing, we do not use network communi-
cation, to increase loading speed.

• We maintain a local lightweight primary index sup-
porting very fast retrieval, so avoid costly scans.

• We use secondary indexes supporting non-trivial ac-
cess patterns that are built dynamically, as a byprod-
uct of query execution, to amortize costs for common
access patterns.

• We optionally reduce secondary indexes into filters,
to reclaim memory.

We describe our approach in two parts: data loading and
querying. The former includes primary index building while
the latter focuses on secondary index building. For concise-
ness, we refer to the primary index as (l1) and secondary
indexes as 2nd-level (l2), 3rd-level (l3), etc. in the following.

3.1 Loading
3.1.1 Statement Encoding
As terms in RDF are represented by long strings, operating
directly on them will result in (1) unnecessarily high space,
memory and bandwidth consumption and (2) poor query
performance, since computing on strings is computation-
ally intensive. For converting the long strings to IDs (i.e.,
integers), we take a similar approach as we have described
in [25], [26].

Consider the four RDF statements described in Figure 1.
We utilise a distributed dictionary encoding method for
the input data, transforming RDF terms into integers and
representing statements using this encoding. Same as the
similar-size partitioning methods, the data is first divided
into a number of equal-size chunks and then assigned as
input for processing on separate computation nodes (i.e.,
Figure 1(a)). Then, the overall implementation strategy for
each node can be divided into three steps as follows.

Step 1. Each statement is firstly parsed and split into
individual terms, namely, subject, predicate and object. In
this process, the duplicated terms are locally eliminated
by a filter operation, and the extracted set of unique terms
is divided into individual groups according to their hash
values1. The number of groups is set to be the same as the
number of nodes, and terms with the same hash are placed
in the same group. After that, according to the hash values,
each group will be sent to the corresponding remote node
for the following dictionary encoding. In this process, we
use the hash value modulo the rank of the node to assign
keys to nodes. For example, the terms in the first group
(namely A1,p1) will be sent to the first node itself and others

1. The hash value of each term is assigned by the common used RS
hash algorithm [27].

are send to the second node. The detailed operations of this
step on the first node is shown as below.

parsing [A1,p2,A2,A1,p1,B2]⇒
filter (A1,p1,p2,A2,B2)⇒
hash-groups {A1,p1} + {p2,A2,B2}

Step 2. The term encoding process can commence once
the grouped unique terms have been transferred to the
appropriate remote nodes. The detailed encoding imple-
mentations at each node is very similar to a sequential
approach. Namely, each received term access the local dic-
tionary sequentially to get its numerical ID. In this process,
if the mapping of a term already exists, then its ID is
retrieved directly. Otherwise, a new ID will be created for
the term, and the new mapping will be added into the
local dictionary. In both cases, the ID of the encoded term
will be kept in memory in groups. Once all the received
terms have been encoded, all the ids will be sent back to
the requester(s). To guarantee that there is no clash between
term IDs assigned at different nodes, the value of a new
ID is determined by the summation of the largest ID in the
dictionary and the number of nodes n and the initial ID for
each node is set as its rank. Moreover, each ID is formatted
as an unsigned 64-bit integer in order to remove limitations
regarding maximum dictionary size2. In this case, the first
node will receive the IDs as following.

send {A1,p1} + {p2,A2,B2}
receive {1,3} + {2,4,6}

Step 3. The statements at each node can be encoded after
all the IDs of the pushed terms have been pushed back.
Since the terms and their respective IDs are held in order
inside arrays in our approach, we can easily insert these
mappings into a local dictionary to encode the parsed triples
kept in the first step. Each of the three steps is implemented
in parallel at each node, and the whole encoding process
terminates when all individual nodes terminate. Namely,
we will get the encoded triples shown as below at the first
node.

parsed [A1,p2,A2,A1,p1,B2] ⇒
encoded <1 2 4>, <1 3 6>

During the entire encoding process, a filter structure (we
used a HashSet in our experiments) is employed to process
the terms and to extract the unique terms that need to be
transferred to the remote node. This is done for all terms
irrespective of their popularity. Using the filter guarantees
that any given term can possibly move to a remote place just
once per node, which will be very effective when handling
the data skew for RDF terms. For example, although the
term type appears highly frequent, each node will transfer
only one such term maximally to remote node using our
approach, which can drastically reduce inter-machine com-
munication and local computation. Moreover, we use an ad-
vanced two-sided communication pattern that we only send
terms and retrieve their IDs (instead of retrieving <term,
id>), vastly reducing network cost when transferring a large
number of strings (note again that RDF terms are always

2. Note that it is possible to use arbitrary- or variable-length IDs in
order to further optimize space utilization, but this is beyond the scope
of this paper.

IEEE TRANSACTIONS ON BIG DATA, VOL.X, NO.X, 201X 5

long strings). The reason is that we can always keep the
transferred strings and retrieved IDs in the same sequence
(e.g., by array indexes) so that the <term, ID> pair can be
easily used to build the local dictionary as described in the
Step 3.

This method is easy to implement and experimental
results presented in [25] have shown that it has achieved
higher throughput than current methods in the literature
(e.g., [28] and [29]). Moreover, such method is more flexible
for various semantic application scenarios, such as transac-
tional data processing and incremental updates, etc.

3.1.2 Primary Index
After encoding, we build the primary index l1 for the en-
coded triples at each node. Similar to many triple stores, the
index itself contains all the data. We use a modified vertical
partitioning approach [30] to decompose the local data into
multiple parts. Triples in [30] are placed into n two-column
vertical tables (n is number of unique properties), which has
been shown to be faster for querying than a single table.
However, in [30], to efficiently locate data, all the subjects in
each table are sorted, which is costly (Nlog(N)) in terms of
data loading, especially when the tables are huge.

We only use linear-time operations for indexing, insert-
ing each tuple in an unordered list in a corresponding
vertical table. To support multiple access patterns, we build
additional tables. By default, we build P → SO, PS → O
and PO → S, corresponding to the most common access
patterns. Each of these table uses the part before ‘→’ as the
key, and the part after ‘→’ as a set of values. For example,
the upper segment of Figure 4 shows the vertical tables of
the primary index l1, which is based on partitioning on the
predicate and the predicate-subject of each encoded triple at
each node (note that the triples are in the form of integers in
this step, we use the string format in our examples only for
readability). As each node builds their tables independently,
there is no communication over the network for this step.
Local indexing is very fast, so we could support additional
indexes, e.g., to support more efficient joins on the predicate
position, with minimal impact on performance.

An alternative implementation where data would be
to locally partition by subject. In practice, this would be
problematic, since we would either need to have some
bound subjects in the query (which is not true at least for
our benchmark queries), or perform a lookup on all tables,
which would be costly. That said, a partitioning based on
subject would be superior for SPARQL DESCRIBE queries,
although they are not relevant for our system.

Our work relies on being able to retrieve bindings for sin-
gle triple patterns very quickly. For most SPARQL queries
(and at least all queries in our benchmark), triple patterns
have bound predicates and, in most cases, unbound sub-
jects and objects. Following the indexing scheme mentioned
above, our system is able to very quickly (in constant time)
retrieve binding when the predicate is known, or when the
subject and predicate is known, or when the object and
predicate in known. This does not limit the generality of
the approach, since any other index combination could be
chosen.

As in all RDF stores, there is an element of redundancy
in terms of data replication. Our index could consume more

A1 B2 A1 A2

p2p1

1st-level B2 A2

p2A1p1A1

B2 C1

p3p2

C1 C1

p3A1p2B2

local join A1 B2 B2 C1

2nd-level

p1

A1 C1

A1 B2

p2

B2 C1

p2

A1 A2

Node 1 Node 2

Fig. 4. Query execution and the secondary index building.

space than the vertical partitioning approach in [30], or a
compressed index approach such as the one found in [9].
Nevertheless, our focus is on speed and horizontal scala-
bility, which increases total available memory. In addition,
based on the fast encoding method described above, the
build process of the primary index is very lightweight: (1)
triples are encoded and indexed completely in-memory and
all accesses are memory-aligned, reducing CPU cost; (2) there
is no global index as we only build an index for local data on
each computation node, reducing the need for communication;
(3) we avoid sorting, or any non-constant time operation,
meaning that the complexity of our approach is O(N), where
N is the number of local statements; and (4) the encoding
algorithm achieves good load balancing, which translates
to good load balancing for the (local) indexing. The above
factors contribute to very fast indexing, as we will show in
our evaluation.

3.2 Querying
3.2.1 Parallel Hash Joins
Once we have built the primary index, we can implement
SPARQL queries through a sequence of lookups and joins.
With the primary index l1, we can easily look up the results
for a statement pattern at each node. For example, for the
two triple patterns of Query(a) in Figure 2, the same as
the similar-size partitioning method, through looking up the
vertical tables with the predicates p1 and p2, we can easily
get the bindings for the variables (?a,?b) and (?b,?c) at each
node:

node 1 node 2
(?a, ?b) (A1, B2) /
(?b, ?c) (A1, A2) (B1, C1)

This lookup process can be implemented in parallel and
independently for each node. Nevertheless, a join between
any two sub-queries can not be executed independently at
each node since we have no guarantee that join keys will be
located on the same node. We adopt the parallel hash-join
approach in our implementation. Namely, results of each
subquery are redistributed among computation nodes by
hashing the values of their join keys, so as to ensure that the
appropriate results for the join are co-located [10]. Based on
that, we redistribute the results of the two triple patterns by
hashing bindings for the variable ?b, and then implement
the local joins for the received terms at each node. This
process is shown in the first two segments of Figure 4.

3.2.2 Secondary Indexes
The local lookup for each triple pattern at each node is
very fast, in terms of runtime. The reason is that we only

IEEE TRANSACTIONS ON BIG DATA, VOL.X, NO.X, 201X 6

need to locate the corresponding index table in l1, and
then retrieve all the elements. For example, for the pattern
<?b p2 ?c>, we can find the vertical table p2 and return its
results in constant time (since we use hashtables to index in
the partitioned tables).

For join operations, as we have to redistribute all results
for each triple pattern as well as the intermediate results,
data transfers across nodes become costly, in terms of band-
width and coordination overhead. To minimize data move-
ment and improve query performance, we build secondary
indexes (l2 ... ln), based on the redistribution of data during
query execution.

The build process of such indexes is closely related to
the execution plan of a query. As SPARQL allows syntactic
shortcuts to simplify query formulation, each (conjunctive)
query can be parsed and expanded into a set of triple
patterns [31]. If a query contains multiple triple patterns,
then we will have to perform a join on the common variables
(for each pattern). In this case, an query execution plan
represented as a tree of triple patterns will be constructed.
This tree can be evaluated in multiple ways, but, in our case,
we consider (parallel) bottom up evaluation3.

Based on that, the detailed process on building our
secondary indexes is presented in Algorithm 1. We have a
queue of queries Q. For each query Q, we assume that we
have a planning method (which is beyond the scope of this
paper) and it has generated an execution tree with root r
already. We assume that queries in the queue are processed
sequentially and each node keeps a set of indexes of various
levels l1..n. All nodes start with index l1 built and all other
indexes empty.

We evaluate the expressions in the tree bottom-up,
in parallel (lines 9 and 14), redistributing results as re-
quired (line 12). The function isIndexable() determines
whether nodes should retain the (indexed) data from remote
nodes. The construct parallel do implies synchroniza-
tion at end for. Results from existing indexes are re-used
when possible (lines 6 and 7). Once the results of all children
of a node become available, a join is executed. Note that this
process implies a high degree of parallelism since individual
joins are executed in parallel and multiple join expressions
are calculated in parallel, when possible. From example,
as demonstrated in the third segment of Figure 4, a set of
new tables is built on l2: for ∗p1∗ and ∗p2∗, when we first
implement the query.

It can be seen that the building process is fast: the index
is constructed by a simple copy of the redistributed data
resulting from a join of a query. Namely, it is a byproduct
of query execution. Regardless, this index is effective in
improving query performance, especially in an iterative
analysis environment, because it can be re-used by other
queries that contain patterns in common. We are using the
term indexing instead of caching because the data is re-
partitioned on demand and is fully indexed in a sharded
manner, as opposed to storing intermediate results and
re-using them, such as the cache used in centralised RDF
stores [32]. This means that indexes can be re-used for any

3. Various strategies, based on statistics, heuristics or sampled execu-
tion, can be applied for optimizing the join order, but this goes beyond
the scope of this paper. In our evaluation in Section 4, we use the query
plans generated by RDF-3X [9].

Algorithm 1 Query Execution and Secondary Index Build-
ing

The primary index l1 has been built, let Q be a query
queue to be processed, l the secondary indexes initial-
ized as ∅ at each node, r the intermediate results to be
joined initialized as ∅.

Main procedure:
1: for each Q ∈ Q do
2: r=plan(Q) //Plan query with root r
3: compute(r)
4: end for

Procedure compute(n):
5: ri = l.lookup(n)
6: if ri 6= null then
7: return ri // If an index already has the result
8: else
9: for each child c in n parallel do

10: if c is a triple pattern then
11: lri=l1.lookup(n)
12: rc=redistribute(lri)
13: else
14: rc=compute(c)
15: end if
16: r.add(rc)
17: if isIndexable(rc) then
18: l.index(c,rc)
19: end if
20: end for
21: return join(r)
22: end if

query containing them and the consequent cost is arises only
from local join re-computation.

3.2.3 Index Levels

According to Algorithm 1, the k-th level index lk is built
based on the redistribution of the data stored in the level
k − 1. In the meantime, if a query is indexed by the index
lk, then the execution of joins in this query will be cost-free
in terms of network communication. This means that, there
will be only local joins for the query then.

In the process of building the k-th level index lk, if we
run all possible queries, what will the data on each node
look like? In fact, according to the terminology regarding
graph partitioning used in [12], the 2nd-level index in our
method on each node will construct a 2-hop subgraph, the
3rd-level one will be a 3-hop subgraph, and lk will be a
k-hop subgraph. For example, the two triple <A1 p1 B2>
and <B2 p2 C1> at the second node of Figure 4 construct
an instance of the 2-hop subgraph. This means that our
method essentially does dynamic graph-based partitioning
starting from an initial similar-size partitioning, based on
the query loads. Therefore, our approach can combine the
advantages of fast data loading and efficient querying. We
will show that this design is indeed efficient in our eval-
uation presented in Section 4. In addition, the theoretical
results from [12] can be applied for our approach as well.

IEEE TRANSACTIONS ON BIG DATA, VOL.X, NO.X, 201X 7

?a ?b ?c ?d
p1 p2 p3

o1
p4

o2
p5

o3
p6

(a)

?a ?b ?c
p1 p2

o1
p4

o2
p5

?c ?d
p3

o3
p6

(b)

?a ?b ?c
p1 p2

?c ?d
p3

(c)

Fig. 5. A complex SPARQL query graph and the join in its full and main path.

3.3 Distributed Filters
Secondary indexes lk reduce the network communication
for a query. As k increases, the transferred data between
nodes decreases, resulting in improved performance. How-
ever, the space for the entire index l also increases, consti-
tuting a trade-off between space and performance. In the
meantime, the higher level an index is, the larger its size
could be. There are two main reasons for this: (1) lk+1 has
more tables than lk, as its properties are constructed by
combining the properties of lk with other indexes’; and (2)
the size of a table in lk+1 could be larger than that in lk, for
example lk+1 could include the cartesian product of elements
in lk.

Various strategies can be applied to reduce the size of l,
such as reuse of repeated parts between each index, building
indexes for frequent graph patterns, etc. [33]. Orthogonally
to these approaches, we introduce distributed filters as a
compact alternative to secondary indexes.

Because some elements taking part in a join could not
possibly have a contribution to the output, if we know
their join results (for example as intermediate results from
a previous query), we can remove such elements before
performing the join. Filters operate by filtering out inter-
mediate results at the source, based on aggregate results
stored during previous query executions and are focused on
a join point (e.g., the join on ?c in Figure 5(a)), or, otherwise
expressed, an operator on the query plan.

For a join on v between two graph patterns of a query si
and sj , we propose one of the following: (1) full path filters,
which contain all values of v after the join of si and sj , and
(2) main path filters, containing the results of v over the join
between the main path graph of si and sj . The main path
graph is defined as the graph consisting only of the triples
with a single constant (most commonly the predicate). For
example, the query graph in Figure 5(a), can be evaluated
by a join over a l3 and l2 index on the variable ?c. In this
case, the join results of ?c in Figure 5(b) can be used instead
of an l4 table, constituting a 4th-level filter f4. Bindings for c
are filtered at source according to this filter, for this particular
query or any query that subsumes this query. Figure 5(c) shows
the structure of a main path filter for the same query.

These two filters have their own advantages and short-
comings: (1) the full path filter can remove more redundant
elements. It is also a byproduct of query execution and can
be applied to our approach by projecting out the desired
variables and eliminating duplicates. However, the usage

of such filter is limited on queries that subsume the entire
pattern; (2) the main path filter can be used in more queries,
especially since it corresponds to the less selective part of the
query, essentially capturing the structure of the graph. Re-
gardless, like many other path filters [34], it can only remove
part of the redundant elements, since it is less selective than
the query. In addition, it needs pre-computation (or a less
efficient query plan starting from the non-selective part).

For a specified query, obviously, the size of a filter will
be much smaller than that of the corresponding indexes,
because we only store the (discrete) results for the join vari-
able. In the meantime, we note that a filter is less efficient
than an index, as it only reduces the network communica-
tion, while the index can remove such communication. In
addition, the filtering operation bears some, relatively small,
computational cost. We will compare the performance of
both techniques in our evaluation in Section 4. In fact, we
can adopt a hybrid construction for the high-level index,
e.g., using index architectures for some join patterns while
applying filter architectures for others, so as to achieve the
best balancing between performance and space. In addition,
for full path filters, it is easy and computationally inexpen-
sive to reduce an index to a filter. Finally, we should note that
filters are partitioned in the same way as secondary indexes
across the network, placing an equal space burden on all
nodes.

4 EVALUATION

We present an experimental evaluation of our approach
to determine the performance of our lightweight indexing,
the secondary indexes and the distributed filters. We run
the LUBM [18] benchmark over a commodity cluster and
compare loading speed and performance of query execution
with a top-performing RDF store running on a single node
as well as a cluster RDF store.

4.1 Platform
Each computation unit of our cluster is an iDataPlex node
with 2 Intel Xeon X5679 processors each with 6 hardware
cores running at 2.93 GHz, resulting in a total of 12 cores per
physical node. Each node has 128GB of RAM and a single
1TB SATA hard-drive. Nodes are connected by Gigabit Eth-
ernet switch. The operating system is Linux kernel version
2.6.32-220 and the software stack consists of X10 version 2.3
and gcc version 4.4.6.

IEEE TRANSACTIONS ON BIG DATA, VOL.X, NO.X, 201X 8

4.2 Setup
Although in this paper we are focusing on an indexing
method, as opposed to a full clustered RDF store, we have
performed comparisons on query execution with RDF-3X [9]
and 4store [19]. The former represents the state-of-the-art in
terms of single machine stores while the latter is a clustered
RDF store designed to operate mainly in memory4. We have
modified the setup so as to isolate the BGP processing costs
and nullify, to the extent possible, the advantage of our
approach and 4store regarding I/O performance. Specifi-
cally, we do not count the time spent on query parsing, plan
generation, dictionary lookup or result output, so as to focus on
analyzing the core performance of query execution. More
exactly, we only report times for the operations of index
location, index scanning and the relative joins in the execution
phase. To achieve this:

• For RDF-3X, we deployed version 0.3.7 on a single
node5. We add profiling counters to the source code.

• For 4store, we installed the latest version 1.1.5 on 16
nodes. We use the default indexes and set the value
of the system parameter segment to 256, which is the
recommended value. In the meantime, we also set
soft-limit to -1, so that we can retrieve all the results.
As 4store provides the desired profiling tools6, we
can directly get the time taken to locate the results
and perform the joins on the backend system (storage
layer) through examining the bind time. We have
confirmed this with the 4store community.

We do not compare with MapReduce-based approaches
since, due to platform overhead, they do not execute inter-
active queries in reasonable time. For example, SHARD [11]
and, recently, H2RDF+ [35], has runtimes for LUBM (e.g.,
Q2 and Q9 described below) in the hundreds of seconds.

4.3 Benchmark
Our experiments are based on LUBM benchmark [18]. This
benchmark features an ontology for the university domain,
synthetic OWL and RDF data scalable to an arbitrary size,
by controlling the number of university entities. Meanwhile,
it also contains fourteen extensional queries representing a
variety of properties [12]. This benchmark has been widely
used by RDF stores to compare their performance, especially
when large datasets, that can be scaled to arbitrary size, are
required (e.g., [12], [35], [36]).

We load LUBM(8000), containing about 1.1 billion triples
(about 190GB) and run all 14 queries on this data. As
our implementation does not support RDF inference, we
use a modified query set to get results for most queries7.
For example, since the basic graph pattern <?x type
Student> returns no results in Query 10, we use <?x type
GraduateStudent> instead.

4. Refer to http://4store.org/trac/wiki/Tuning
5. Note that we use single-node RDF-3X as this open-source triple

store is commonly used as a performance reference for RDF stores,
including clustered solutions, such as [12], [35], etc.

6. Other commercial clustered RDF stores have licensing restrictions
and/or do not provide the required profiling functions, such as Virtu-
oso [15], etc.

7. The rewritten queries can be found at: https://github.com/
longcheng11/rdf framework.

TABLE 1
Time to load 1.1 billion triples

System Loading time (s)
Throughput Throughput
triples /sec per node

RDF-3X 23296 47.2K 47.2K

4store 7078 155.4K 9.7K

Read from disk: 103

2483.1K 155.2K
Our Triple encoding: 254

approach Building l1: (P, PO, PS) 86
Total: 443

To conduct a fair performance comparison, we load and
query data in memory, so as to reduce the effect of I/O.
Therefore, we set the index locations of RDF-3X and 4store
to a tmpfs file system resident in memory at each node,
so that queries can be fully implemented over distributed
memory. For data loading, because our tmpfs file system at
each node can not hold all 1.1 billion triples, we load data
from hard disk to memory for the two stores. Although our
implementation can operate completely in the distributed
memory, in the interest of a fair comparison, we read data
from disks as well during the data loading process.

4.4 Loading
We load 1.1 billion triples and build three primary indexes
(on P, PO and PS). For RDF-3X and 4store, we report the time
to bulk load data from disk into the memory partition(s). For
both systems, we are using the default indexes.

As shown in Table 1, our implementation takes 103
seconds to read the data into memory, 254 seconds to encode
triples and 86 seconds to build the primary index l1, for an
average throughput of 429MB or 2.48M triples per second.
In comparison, 4store takes 7078 seconds8, for an average
throughput of 155K triples per second. The reason is that
our loading process is fully parallel and our indexes are
very lightweight, while 4store needs to do global sorts and
uses a master node for coordination.

We also see that RDF-3X takes about 6.5 hours, for an
average throughput of 47K triples per second, performing
much worse than the other two implementations (presum-
ably because we are running on one node and because of
the heavier indexing scheme of RDF-3X). From the results
reported in [12], the graph-based partitioning method (used
for parallel solutions) is even slower than RDF-3X, which
highlight the advantage of our approach again, in terms of
loading speed.

4.5 General Performance
We execute all LUBM queries using l1 and l2, since the
number of joins in most queries is small. Although our
approach does not use a cache as such, one could consider
executions with secondary indexes as warm runs and l1 as a
cold run (we explain further regarding the costs and benefits
of additional index levels later in this section).

8. Though 4store is a quad-store and has to index graphs IDs, our
method will still be much faster even when we consider an ideally
linear condition, in which case 4store will take 7078*3/4=5309 secs.
In fact, there is only one graph in the dataset and the consequently
overhead is very small.

IEEE TRANSACTIONS ON BIG DATA, VOL.X, NO.X, 201X 9

TABLE 2
Execution times for the LUBM queries over RDF-3X and 4store with cold and warm runs, as well as our implementation with the primary index l1

and second-level index l2 (ms)

Q.
RDF-3X 4store Our approach #

cold warm cold warm l1 l2 Results

1 0.19 0.17 9 8 500 14 4
2 11303 11217 4635 4510 8244 3917 2528
3 0.26 0.25 24 22 1635 20 6
4 0.34 0.28 0.45 0.32 10597 445 10
5 0.22 0.18 4.08 3.57 1012 13 146
6 409 382 6.49 5.71 12 12 20 mil.
7 0.64 0.54 0.19 0.15 8129 731 0

Q.
RDF-3X 4store Our approach #

cold warm cold warm l1 l2 Results

8 1.73 1.55 0.69 0.64 5145 564 1874
9 10253 9803 18148 17972 9533 4173 0
10 0.21 0.17 5.76 4.79 986 15 4
11 0.21 0.17 1.24 1.20 505 13 0
12 125 124 0.24 0.20 1285 384 125
13 202 199 18.49 16.01 1141 18 19905
14 1147 1055 21.19 20.45 16 16 63 mil.

Table 2 shows the execution time for each query. Both
RDF-3X and 4store are very fast for most queries, staying
under 1ms, since many queries in LUBM are very simple.
There is only a marginal difference between cold and warm
runs, since we are operating in memory. In our imple-
mentation, the execution over l2 is generally much faster
than over l1, which shows that query performance can be
vastly improved by building a secondary index. The lowest
speedup is achieved on Q2, Q9, Q6 and Q14, the reasons
being that (1) Q2 and Q9 contain the L3 operation (as
defined previously), hence intermediate results still need
redistribution over l2 index; and (2) Q6 and Q14 contain
only a single triple pattern, thus l2 is not built.

Comparing the warm run of RDF-3X and our implemen-
tation with the 2nd-level index: (1) our approach is slower
than RDF-3X for simple and selective queries such as Q1
and Q3. RDF-3X uses some hundreds of µs to finish the
operations of lookup and joins for candidate results while
our approach (and 4store) has to do synchronization over
a distributed architecture, which has an overhead of about
10 ms; (2) our method is much faster at complex queries, for
example Q2 and Q9, as we can implement joins in parallel;
and queries having low selectivity, for example Q6 and Q14,
since it has higher aggregate I/O; or possibly both reasons,
such as Q13.

Meanwhile, compared to 4store, we are slower on some
queries, such as for the Q1, Q5, Q6, Q10, Q11 and Q13.
Regardless, the difference of the time cost is very small,
only in the order of ms. The possible reason could be the
overhead of our implementation, because we only adopt
hash join as local joins in our method and we have to build
hash tables firstly which are then probes. We are also slower
on Q4, Q7, Q8 and Q12, in the order of 100 ms, which
could be because 4store optimizes the coordination between
each node, while our approach currently involves all nodes
in each query. However, the much faster loading time, in
combination with the fact that our approach always stay in
the interactive range, makes our approach better suited for
some applications.

For the more complex queries Q2 and Q9, our approach
is obviously much faster9, in the order of sec. Moreover, we
can further improve the performance of our implementation
by employing higher level indexes. On the other hand, our

9. For 4store: (i) for Q2, the entire query time is 335 seconds; and
(ii) for Q9, we only provide results when running without system
parameter soft-limit. If set this parameter to -1, the execution time is
more than 7 hours.

method is also faster than 4store for the simple queries Q3
and Q14. The reason could be that we can quickly locate
required indexes and then organize scans for large number
of tuples (for Q14) or the used local hash join demonstrates
its advantages on small-large table joins (for Q3).

Most important, it should be highlighted that we have
parallelised all operations10, including data loading (also for
triple encoding) and data querying (also for index building
and filtering). For LUBM, our approach is at least an order
of magnitude faster at loading data while still keeping query
response time within an interactive range.

In practical terms, whether the decreased performance
is worth the penalty in executing cheap queries depends
on the workload. When the ratio of the volume of data
loaded to the volume of data read over the lifetime of the
deployment is not very low, the faster loading speed is
probably the most important performance metric. Example
workloads where this would happen would be interactive,
ad-hoc analysis of large datasets and Extract-Transform-
Load (ETL) workflows. On the other hand, for deployments
service many small requests on an ongoing basis, such as
Web endpoints or database backends dominated by reads,
our approach would not be ideal.

4.6 Indexes and Filters

We examine the time cost to build indexes and filters, and
examine query performance on executing Q2 and Q9, which
are the most complex queries. We first build the second-level
and third-level index for these two queries and then replace
the third-level index by either the main path or the full path
filter.

Figure 6 shows that building a high-level index takes
only hundreds of ms, which is extremely small compared to
the query execution time. This operation is very fast, since
it only involves indexing using in-memory hashtables. We
can also see that, the higher the level of index is, the lower
the execution time. For example, with l3, Q2 and Q9 can
be executed in 0.45 seconds, which is orders of magnitude
faster than with l2, RDF-3X and 4store. The reason is that, for
l3, there is no data movement between nodes for joins and
we only need to perform local joins. Figure 6 also demon-
strates that, with a filter, query execution time is higher than
with l3 (because we still have to redistribute elements over

10. Note that our method can be implemented in many programming
languages, such as MPI or C++ (we have implemented our approach
using X10 language [37] and complied it into C++ in this work).

IEEE TRANSACTIONS ON BIG DATA, VOL.X, NO.X, 201X 10

11
.30

3

10
.25

3

11
.21

7

9.8
02

8.2
44 9.5

33

0.3
76

0.4
21

3.9
17

4.1
73

0.5
1

0.3
04

0.4
46

0.4
4

2.7
3 3.6

48

2.7
3

1.2
07

4 . 6 3 5

1 8 . 1 4 8

4.5
1

17
.97

2

0
2
4
6
8

1 0
1 2
1 4
1 6
1 8
2 0

Ru
nti

me
 (s

ec
)

 R D F - 3 X c o l d
 R D F - 3 X w a r m
 4 s t o r e c o l d
 4 s t o r e w a r m
 q u e r y o v e r p r i m a r y i n d e x
 b u i l d 2 n d - l e v e l i n d e x i n g
 q u e r y o v e r 2 n d - l e v e l i n d e x
 b u i l d 3 r d - l e v e l i n d e x
 q u e r y o v e r 3 r d - l e v e l i n d e x
 q u e r y w i t h 3 r d - l e v e l m a i n p a t h f i l t e r
 q u e r y w i t h 3 r d - l e v e l f u l l p a t h f i l t e r

Q 2 Q 9
Fig. 6. Runtime for RDF-3X and 4store, and detailed runtime of each implementation for our approach (over Q2 and Q9 using 192 cores).

1 0 2 . 0 5

2 7 . 6 8 2 7 . 6 8

7 1 . 9 6

1 1 . 6 4
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0

3 r d - l e v e l I n d e x
F u l l P a t h F i l t e r

M a i n P a t h F i l t e r # R
ed

istr
ibu

ted
 Tu

ple
s (

mi
llio

ns
) Q 2

 Q 9

0 0 0

N o F i l t e r

(a) Number of redistributed tuples

1 0 0
1 0 1
1 0 2
1 0 3
1 0 4
1 0 5
1 0 6
1 0 7
1 0 8
1 0 9

3 r d - l e v e l I n d e x
F u l l P a t h F i l t e r

M a i n P a t h F i l t e r

S
tor

ed
 El

em
en

ts

 Q 2
 Q 9

00 0
N o F i l t e r

9 1 2 9 1 2

1 . 9 8 M

2 8 6 M 1 7 6 M

(b) Number of elements in a filter (index)

Fig. 7. Network communication over the index l2 and the number of elements in a 3rd-level filter on the basis of the 2nd-level index.

the network), but faster than with l2 (speedups from 1.14
to 3.45) and the other systems, showing a trade-off between
space and performance.

To further investigate the effect of filters, we record
the total number of received elements and compare to l2
without a filter. The results are presented in Figure 7(a),
showing that network communication can be greatly re-
duced through filters - a finding further supported by the
performance improvement evident in Figure 6. With a main
path filter, about 70% of data movement associated with Q2
is eliminated. However, we observe that the transfer time is
reduced by only 37%, the reason being the communication
overhead and the computational cost of filtering. Figure 7
shows that a full path filter can sometimes be better than a
main path filter. For example, network communication is 0
when Q9 is using a full path filter, much less than that of
the main path filter. In contrast, both filters perform the same
for Q2. For a full l3 index, network communication is zero.
In Figure 7(b), we show the space overhead for each option
(expressed as elements, represented by long integers). We
see that, for either method, the cost is much smaller than the
number of tuples transferred without a filter (a maximum
of 2 million elements stored compared to a minimum of 72
million triples transferred). For comparison, we also include
the space cost for l3 (it can be seen that the size of a filter is
up to 1.2% of the index size).

TABLE 3
Number of received tuples at each core (millions) for 192 cores

received elements
L1 L2

Max. Avg. Max. Avg.

Q2 0.987 0.871 0.801 0.532
Q9 1.595 1.593 0.377 0.375

TABLE 4
Runtime by varying the number of cores over 2nd-level index

nodes 12 24 48 96 192

Q2 20.804 15.613 13.027 6.827 3.917
Q9 11.453 9.516 7.908 5.272 4.173

4.7 Load Balancing and Scalability

Because data skew is very common in RDF data [38], we
measure load distribution across nodes on Q2 and Q9. We
execute both queries over the primary index using 192 cores
by recording the number of received elements on each core.
As shown in Figure 3, for the two redistributed operations
in each query, there is nearly no skew in Q9. In contrast,
there exists obvious skew in Q2, which indicates that skew-
handling techniques such as the ones in [13], [39] can be

IEEE TRANSACTIONS ON BIG DATA, VOL.X, NO.X, 201X 11

applied in our approach to further improve the performance
for such queries.

We also test the scalability of our implementation by
varying the number of processing cores. We run Q2 and
Q9 over the second-level index and double the number
of cores from 12 (a single node) till 192. The results are
presented in Figure 4. It can be seen that the execution
time of both queries decreases with increasing the num-
ber of cores. Nevertheless, both queries reach a plateau
at around 4 seconds. The reason for this is that overhead
starts dominating the runtime. With 192 cores, for each core,
there will be approximately 191 (one from each other node)
messages, with the associated coordination overhead, for a
total of 532K and 375K tuples transferred for Q2 and Q9
respectively. As future work, we will work on methods to
reduce the distribution for small indexes, so as to avoid this
messaging and coordination overhead.

5 RELATED WORK

We position our work against related work in batch process-
ing oriented RDF systems, (clustered) triple stores, graph
partitioning based systems and other literature from the
database community.

RDF processing systems geared towards batch process-
ing [10], [13], [35] are based on architectures developed for
a similar-size data partitioning model. In this respect, these
systems are similar to the one proposed here in terms of fast
data loading and minimal or no pre-processing. However,
they execute queries directly over the raw data without
any encoding process or additional index, resulting in a
heavy network communication costs for complex queries
and significant startup overhead. For example, while [13]
can process massive datasets with zero loading time, its
minimum runtime is in minutes, not seconds.

Systems such as SHARD [11] and the one in [40] gener-
ally adopt hash-based partitioning techniques. This leads
to slower loading of RDF data, e.g., around 30 minutes
to load 270 million triples is reported in [12]. These sys-
tems are similar to our system using the 2nd-level index.
Therefore, they can avoid communication for simple queries
containing only L1 operations. For complex queries with
higher-level operations, our system is much faster, because
large amounts of data in these systems still needs to be
redistributed across the network to perform joins.

Clustered RDF stores such as Virtuoso Cluster [15],
BigData [41], YARS2 [14] and 4store [19] distribute indexes
(typically SPO, POS, etc.) over nodes in a cluster to improve
I/O and join throughput. They are more similar in operation
to single-node RDF stores than to our approach, offering
lower loading speeds but also persistence and more space-
efficient indexing. As shown in our tests, we are much
faster than 4store in data loading and also outperform it
for complex queries.

Systems using graph-based partitioning such as the ones
in [12], [42], [43], [44], [36], are similar to the ones using
high-level indexes proposed here, which impacts positively
on query performance. However, graph partitioning and
triple placement in these systems happens at indexing time,
hampering loading throughput. For example, the system
described in [12] takes 4 hours to assign 270 million triples

according to a 2-hop construction. Although [43] stores
data as a graph, time spent on graph partitioning will
still increase exponentially with increasing either the size
of a graph or the parameter hop, because the connections
between vertexes becomes more complex. In contrast, our
approach has no such costly operations, but organizes the
sub-graph dynamically. Moreover, our incremental indexing
process has proven to be very lightweight, requiring only
hundreds of ms, in addition to query execution time.

Database cracking [45], [46] is an adaptive indexing
technique that incorporates continuous self-organization of
data storage based on selections in incoming queries. This
idea has influenced the design of the secondary index used
in the system described here. However, research on cracking
is concentrated on incrementally sorting the raw data on
a single machine, so as to reduce data lookup time. In
comparison, we focus on reducing network communication
and apply some concepts behind cracking to distributed sys-
tems and RDF data. Additionally, as data in our indexes is
unordered, we can also apply the existing cracking methods
to our local index, so as to further improve the final query
performance of our approach.

Result recycling refers to re-using intermediate results
from past query executions. We apply a similar approach
to [33], examining caching in a column store using an
operator-at-a-time architecture. The main differences with
our approach is that (1) we apply this on a distributed
setting, (2) we store the remote data rather than the ma-
terialization of the intermediate results (i.e., we re-execute
the joins locally) and (3) we apply this on RDF data, using
indexing structures with different characteristics. In fact, the
eviction and retention strategies in [33] could be adapted to
our implementation.

Path-based filters proposed for semi-structured data [47]
and RDF data [34] can efficiently identify and then reduce
elements participating in joins by pre-joining sub-graphs.
The two filters proposed here are similar to those in [34],
which filter only for the unique items of a join. However,
there exist four main differences: (1) the height of filters
in [34] is limited, as they pre-join all the possible sub-
graphs, which is extremely costly both in terms of time and
space. In comparison, our full path filter is a byproduct of
query processing and filters are only built for the specified
join point; (2) [34] applies filters on a single machine and
focuses on techniques to reduce the size of filters while
we use partitioned filters in a distributed system and have
much less pressure in terms of space. We can incorporate
the techniques in [34] to reduce the size of local filters; (3)
filters in [34] are mainly used to reduce the time to lookup
underlying sorted data, while we focus on reducing inter-
machine communication; and (4) the structure of filters in
[34] is similar as our main path filter, which can be less
efficient than our full path filter for some queries, as shown
in our experiments.

A family of compression techniques have been proposed
to reduce the size of RDF data [28], [29], [48], [49], [50], [51],
[52]. Some of these approaches, such as HDT [50], facilitate
loaded by pre-partitioning data, or by doing the dictionary
encoding in advance. In this work, our primary focus is
on providing very fast loading and quick retrieval (so as
to recover some of the runtime costs from a looser data

IEEE TRANSACTIONS ON BIG DATA, VOL.X, NO.X, 201X 12

organization, compared to competing systems). In this light,
we are using hash-tables, which are much faster to construct
and to perform lookups on, though much less space efficient
than approaches such as HDT. A very interesting stream of
future work remains on how a more compact representation
could be combined with our approach, especially in light of
loading data that already has some useful organisation (such
as in HDT).

6 CONCLUSION

In this work, we present a scale-out RDF data processing
method designed for fast loading and querying over large-
scale data. Based on a simple similar-size data partition-
ing infrastructure, we propose a dynamic two-tier index
architecture and introduce the design of two performance-
enhancing distributed filters. Our implementation is evalu-
ated using the LUBM benchmark [18] and the experimental
results demonstrate that our approach can load data much
faster than a clustered store operating in RAM while re-
maining within an interactive range for query processing.
In fact, our approach can even outperform current systems
for some types of queries.

We will investigate further extensions to our design
through the application of methods for skew handling
(e.g., [39], [53]), index size reduction (or index manage-
ment) and sort-based local joins which should further im-
prove performance. In addition, we will include additional
functionality, such as aggregates, so as to be able to run
more complex benchmarks. Although our prototype has
much lower coordination overhead than systems based on
Hadoop, we can reduce it further by limiting the number of
nodes involved in cheap operations. Our long term goal is
to develop a highly scalable distributed analysis framework
for extreme-scale RDF data.

ACKNOWLEDGMENTS

Long Cheng is supported by the DFG in projects DIA-
MOND (Emmy Noether grant KR 4381/1-1) and HAEC
(CRC 912). The computations were performed on the High-
performance Systems Research Cluster at IBM Research
Ireland.

REFERENCES

[1] G. Kobilarov, T. Scott, Y. Raimond, S. Oliver, and C. e. Sizemore,
“Media meets semantic web - how the BBC uses DBpedia and
linked data to make connections,” in Proc. 6th European Semantic
Web Conf., 2009, pp. 723–737.

[2] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data-the story so
far,” Semantic Services, Interoperability and Web Applications: Emerg-
ing Concepts, pp. 205–227, 2009.

[3] W3C, http://www.w3.org/RDF/.
[4] S. Groppe, Data Management and Query Processing in Semantic Web

Databases. Springer, 2011.
[5] B. McBride, “Jena: Implementing the RDF model and syntax

specification.” in SemWeb, 2001.
[6] J. Broekstra, A. Kampman, and F. Van Harmelen, “Sesame: A

generic architecture for storing and querying RDF and RDF
schema,” in Proc. 1st Int. Semantic Web Conf., 2002, pp. 54–68.

[7] C. Weiss, P. Karras, and A. Bernstein, “Hexastore: Sextuple index-
ing for semantic web data management,” Proc. VLDB Endowment,
vol. 1, no. 1, pp. 1008–1019, Aug. 2008.

[8] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach, “Sw-
store: A vertically partitioned dbms for semantic web data man-
agement,” The VLDB Journal, vol. 18, no. 2, pp. 385–406, Apr. 2009.

[9] T. Neumann and G. Weikum, “The RDF-3X engine for scalable
management of RDF data,” The VLDB Journal, vol. 19, no. 1, pp.
91–113, 2010.

[10] J. Weaver and G. T. Williams, “Scalable RDF query processing on
clusters and supercomputers,” in Proc. 5th Int. Workshop Scalable
Semantic Web Knowledge Base Systems, 2009.

[11] K. Rohloff and R. E. Schantz, “High-performance, massively scal-
able distributed systems using the MapReduce software frame-
work: The SHARD triple-store,” in Programming Support Innova-
tions for Emerging Distributed Applications, 2010, pp. 4:1–4:5.

[12] J. Huang, D. J. Abadi, and K. Ren, “Scalable SPARQL querying
of large RDF graphs,” Proc. VLDB Endowment, vol. 4, no. 11, pp.
1123–1134, 2011.

[13] S. Kotoulas, J. Urbani, P. Boncz, and P. Mika, “Robust runtime
optimization and skew-resistant execution of analytical SPARQL
queries on PIG,” in Proc. 11th Int. Semantic Web Conf., 2012, pp.
247–262.

[14] A. Harth, J. Umbrich, A. Hogan, and S. Decker, “YARS2: A
federated repository for querying graph structured data from the
web,” in Proc. 6th Int. Semantic Web Conf., 2007, pp. 211–224.

[15] O. Erling and I. Mikhailov, “Virtuoso: RDF support in a native
RDBMS,” in Semantic Web Information Management, 2010, pp. 501–
519.

[16] B. Bishop, A. Kiryakov, D. Ognyanoff, I. Peikov, Z. Tashev, and
R. Velkov, “OWLIM: A family of scalable semantic repositories,”
Semantic Web, vol. 2, no. 1, pp. 33–42, 2011.

[17] L. Cheng, S. Kotoulas, T. E. Ward, and G. Theodoropoulos, “High
throughput indexing for large-scale semantic web data,” in Proc.
30th Annual ACM Symp. Applied Computing, 2015, pp. 416–422.

[18] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A benchmark for OWL
knowledge base systems,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 3, no. 2, pp. 158–182, 2005.

[19] S. Harris, N. Lamb, and N. Shadbolt, “4store: The design and im-
plementation of a clustered RDF store,” in Proc. 5th Int. Workshop
Scalable Semantic Web Knowledge Base Systems, 2009, pp. 94–109.

[20] O. Polychroniou, R. Sen, and K. A. Ross, “Track join: distributed
joins with minimal network traffic,” in Proc. ACM SIGMOD Int.
Conf. Management of Data, 2014, pp. 1483–1494.

[21] A. Owens, A. Seaborne, N. Gibbins et al., “Clustered TDB: a
clustered triple store for Jena,” 2008.

[22] L. Rietveld, R. Hoekstra, S. Schlobach, and C. Guéret, “Structural
properties as proxy for semantic relevance in RDF graph sam-
pling,” in Proc. 13th Int. Semantic Web Conf., 2014, pp. 81–96.

[23] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak,
and S. Hellmann, “DBpedia-a crystallization point for the web of
data,” Web Semantics: science, services and agents on the world wide
web, vol. 7, no. 3, pp. 154–165, 2009.

[24] R. Harbi, I. Abdelaziz, P. Kalnis, and N. Mamoulis, “Evaluating
SPARQL queries on massive RDF datasets,” Proc. VLDB Endow-
ment, vol. 8, no. 12, pp. 1848–1851, 2015.

[25] L. Cheng, A. Malik, S. Kotoulas, T. E. Ward, and G. Theodoropou-
los, “Efficient parallel dictionary encoding for RDF data,” in Proc.
17th Int. Workshop on the Web and Databases, 2014.

[26] L. Cheng, A. Malik, S. Kotoulas, T. E. Ward, and G. Theodoropou-
los, “Fast compression of large semantic web data using X10,”
IEEE Trans. Parallel Distrib. Syst., in press, doi: 10.1109/TPDS.2015.
2496579.

[27] R. Sedgewick, Algorithms. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1988.

[28] E. L. Goodman, E. Jimenez, D. Mizell, S. Al-Saffar, B. Adolf, and
D. Haglin, “High-performance computing applied to semantic
databases,” in Proc. 8th European Semantic Web Conf., 2011, pp. 31–
45.

[29] J. Urbani, J. Maassen, N. Drost, F. Seinstra, and H. Bal, “Scalable
RDF data compression with MapReduce,” Concurrency and Com-
putation: Practice and Experience, vol. 25, no. 1, pp. 24–39, 2013.

[30] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach, “Scal-
able semantic web data management using vertical partitioning,”
in Proc. 33rd Int. Conf. Very Large Data Bases, 2007, pp. 411–422.

[31] T. Neumann and G. Weikum, “RDF-3X: a risc-style engine for
RDF,” Proc. VLDB Endowment, vol. 1, no. 1, pp. 647–659, 2008.

[32] J. Umbrich, M. Karnstedt, A. Hogan, and J. X. Parreira, “Hybrid
SPARQL queries: fresh vs. fast results,” in Proc. 11th Int. Semantic
Web Conf., 2012, pp. 608–624.

IEEE TRANSACTIONS ON BIG DATA, VOL.X, NO.X, 201X 13

[33] M. G. Ivanova, M. L. Kersten, N. J. Nes, and R. A. Gonçalves, “An
architecture for recycling intermediates in a column-store,” ACM
Trans. Database Syst., vol. 35, no. 4, p. 24, 2010.

[34] K. Kim, B. Moon, and H.-J. Kim, “R3F: RDF triple filtering method
for efficient SPARQL query processing,” World Wide Web, pp. 1–41,
2013.

[35] N. Papailiou, I. Konstantinou, D. Tsoumakos, P. Karras, and
N. Koziris, “H2RDF+: High-performance distributed joins over
large-scale RDF graphs,” in Proc. IEEE Int. Conf. Big Data, 2013,
pp. 255–263.

[36] S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald, “TriAD: A
distributed shared-nothing RDF engine based on asynchronous
message passing,” Proc. ACM SIGMOD Int. Conf. Management of
Data, pp. 289–300, 2014.

[37] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. Von Praun, and V. Sarkar, “X10: an object-oriented
approach to non-uniform cluster computing,” ACM SIGPLAN
Notices, vol. 40, no. 10, pp. 519–538, 2005.

[38] S. Kotoulas, E. Oren, and F. Van Harmelen, “Mind the data skew:
distributed inferencing by speeddating in elastic regions,” in Proc.
19th Int. Conf. World Wide Web, 2010, pp. 531–540.

[39] L. Cheng, S. Kotoulas, T. E. Ward, and G. Theodoropoulos, “Ro-
bust and skew-resistant parallel joins in shared-nothing systems,”
in Proc. 23rd ACM Int. Conf. Information and Knowledge Management,
2014, pp. 1399–1408.

[40] M. Husain, J. McGlothlin, M. M. Masud, L. Khan, and B. M.
Thuraisingham, “Heuristics-based query processing for large RDF
graphs using cloud computing,” IEEE Trans. Knowl. Data Eng.,
vol. 23, no. 9, pp. 1312–1327, 2011.

[41] B. Thompson and M. Personick, “Bigdata: the semantic web on an
open source cloud,” in Proc. Int. Semantic Web Conf., 2009.

[42] S. Yang, X. Yan, B. Zong, and A. Khan, “Towards effective partition
management for large graphs,” in Proc. ACM SIGMOD Int. Conf.
Management of Data, 2012, pp. 517–528.

[43] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang, “A distributed
graph engine for web scale RDF data,” Proc. VLDB Endowment,
vol. 6, no. 4, pp. 265–276, 2013.

[44] K. Lee and L. Liu, “Scaling queries over big RDF graphs with
semantic hash partitioning,” Proc. VLDB Endowment, vol. 6, no. 14,
pp. 1894–1905, 2013.

[45] S. Idreos, M. L. Kersten, and S. Manegold, “Database cracking,” in
Proc. Conf. Innovative Data Systems Research, 2007, pp. 68–78.

[46] S. Idreos, M. L. Kersten, and S. Manegold, “Self-organizing tuple
reconstruction in column-stores,” in Proc. ACM SIGMOD Int. Conf.
Management of Data, 2009, pp. 297–308.

[47] K.-F. Wong, J. X. Yu, and N. Tang, “Answering XML queries using
path-based indexes: a survey,” World Wide Web, vol. 9, no. 3, pp.
277–299, 2006.

[48] J. D. Fernández, C. Gutierrez, and M. A. Martı́nez-Prieto, “RDF
compression: basic approaches,” in Proc. 19th Int. Conf. World Wide
Web, 2010, pp. 1091–1092.

[49] P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, and L. Liu, “TripleBit:
a fast and compact system for large scale RDF data,” Proc. VLDB
Endowment, vol. 6, no. 7, pp. 517–528, 2013.

[50] J. D. Fernández, M. A. Martı́nez-Prieto, and C. Gutierrez, “Com-
pact representation of large RDF data sets for publishing and
exchange,” in Proc. 9th Int. Semantic Web Conf., 2010, pp. 193–208.

[51] J. M. Giménez-Garcı́a, J. D. Fernández, and M. A. Martı́nez-Prieto,
“HDT-MR: A scalable solution for RDF compression with HDT
and MapReduce,” in Proc. 12th European Semantic Web Conf., 2015,
pp. 253–268.

[52] H. R. Bazoobandi, S. de Rooij, J. Urbani, A. ten Teije, F. van
Harmelen, and H. Bal, “A compact in-memory dictionary for RDF
data,” in Proc. 12th European Semantic Web Conf., 2015, pp. 205–220.

[53] L. Cheng, S. Kotoulas, T. E. Ward, and G. Theodoropoulos,
“Robust and efficient large-large table outer joins on distributed
infrastructures,” in Proc. 20th European Conf. Parallel Processing,
2014, pp. 258–269.

Long Cheng is currently a Post-Doctoral Re-
searcher at TU Dresden, Germany. His research
interests mainly include Distributed computing,
Large-scale data processing, Data management
and Semantic web. He was at organizations
such as Huawei Technologies Germany and IBM
Research Ireland. He holds a B.E. from Harbin
Institute of Technology, China (2007), M.Sc from
Universität Duisburg-Essen, Germany (2010)
and Ph.D from National University of Ireland
Maynooth, Ireland (2014).

Spyros Kotoulas is a Research Scientist at
IBM Research Ireland. His research interests lie
in data management for semi-structured data,
parallel methods for data intensive processing,
Semantic Web, Linked Data, reasoning with Web
data, flexible data integration methods, stream
processing, peer-to-peer and other distributed
systems. He holds a BSc (2004) from the Univer-
sity of Crete as well as an MSc (2006) and a PhD
(2009), both from the VU University Amsterdam.

