EXERCISE 2

Science of Computational Logic

Steffen Hölldobler, Marcos Cramer

International Masters Programme in Computational Logic — winter semester 2018/2019

Problem 2.1

In the lectures, $\approx_{\mathcal{E}}$ was defined to be the *least congruence relation generated by* \mathcal{E} . What does it mean?

Problem 2.2

Consider the set of clauses

$$\mathcal{F} = \{ [p(f(Y)), q(Y), r(b)], [\neg p(b)], [\neg q(a)], [\neg r(a)] \}$$

and the equational system

$$\mathcal{E} = \{ (\forall X) f(X) \approx X, a \approx b \}.$$

Show by paramodulation, resolution and factoring that $\mathcal{F} \cup \mathcal{E} \cup \mathcal{E}_{\approx}$ is unsatisfiable. Also give the mgu θ used in every step.

Problem 2.3

Let \mathcal{R} be a term rewriting system and let s and t be terms. Prove that:

- 1. $s \to_{\mathcal{R}} t$ implies $s \approx_{\mathcal{E}_{\mathcal{R}}} t$.
- 2. $s \leftrightarrow_{\mathcal{R}}^* t$ implies $s \approx_{\mathcal{E}_{\mathcal{R}}} t$.

Problem 2.4

A non terminating term rewriting system can be confluent. True or false? Prove it.

Problem 2.5

Prove that a term rewriting system \mathcal{R} is Church-Rosser if and only if it is confluent.

Problem 2.6

Consider the following term rewriting system:

$$f(f(X,Y),Z) \to f(X,f(Y,Z));$$

$$f(X,1) \to X.$$

- 1. Is it terminating? Justify your answer.
- 2. Compute all the critical pairs, and show how you got them.
- 3. Can you orientate the critical pairs, i.e., add a rule $s \to t$ or $t \to s$ for each critical pair $\langle s, t \rangle$, such that termination is preserved? (If it is possible, do it . . .)

Note: When executing the completion algorithm you have to go on trying to build critical pairs with the iteratively added rules.

Problem 2.7

Let \mathcal{R} be a term rewriting system and >/2 a termination ordering.

If for all rules $l \to r \in \mathcal{R}$ the relation l > r holds, then \mathcal{R} is terminating.

Problem 2.8

Consider the term rewriting system

$$\mathcal{R} = \{ f(g(X)) \to g(X), \tag{1}$$

$$g(h(X)) \to g(X)$$
 (2)

Show that \mathcal{R} is canonical.