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Language: Overview

1 Extended language
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1 Extended language
Conditional literal
Optimization statement
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Conditional literals

• Syntax A conditional literal is of the form

` : `1, . . . , `n

where ` and `i are literals for 0 ≤ i ≤ n

• Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}

• Note The expansion of conditional literals is context dependent
• Example Given ‘ p(1..3). q(2).’

r(X):p(X),notq(X) :- r(X):p(X),notq(X); 1{r(X):p(X),notq(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 { r(1); r(3) }.
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Outline

1 Extended language
Conditional literal
Optimization statement
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Optimization statement

• Idea Express (multiple) cost functions subject to minimization
and/or maximization

• Syntax A minimize statement is of the form

minimize { w1@p1 : `1, . . . , wn@pn : `n }.

where each `i is a literal; and wi and pi are integers for 1 ≤ i ≤ n

Priority levels, pi, allow for representing lexicographically ordered
minimization objectives

• Meaning A minimize statement is a directive that instructs the ASP solver
to compute optimal stable models by minimizing a weighted sum of
elements
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Optimization statement

• A maximize statement of the form

maximize { w1@p1 : `1, . . . , wn@pn : `n }

stands for minimize { −w1@p1 : `1, . . . ,−wn@pn : `n }

• Example When configuring a computer, we may want to maximize hard
disk capacity, while minimizing price

#maximize { 250@1:hd(1), 500@1:hd(2), 750@1:hd(3), 1000@1:hd(4) }.
#minimize { 30@2:hd(1), 40@2:hd(2), 60@2:hd(3), 80@2:hd(4) }.

The priority levels indicate that (minimizing) price is more important than
(maximizing) capacity
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Language Extensions: Overview

2 Two kinds of negation

3 Disjunctive logic programs
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Outline

2 Two kinds of negation

3 Disjunctive logic programs
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Motivation

• Classical versus default negation

– Symbol ¬ and not

– Idea
• ¬a ≈ ¬a ∈ X
• not a ≈ a /∈ X

– Example
• cross← ¬train
• cross← not train
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Classical negation

• We consider logic programs in negation normal form
– That is, classical negation is applied to atoms only

• Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that A∩A = ∅
• Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

• A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬
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An example

• The program

P = {a← not b, b← not a} ∪ {c← b, ¬c← b}

induces

P¬ =



a ← a,¬a a ← b,¬b a ← c,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c

b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c,¬c

c ← a,¬a c ← b,¬b c ← c,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c,¬c


• The stable models of P are given by the ones of P ∪ P¬, viz {a}
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Properties

• The only inconsistent stable “model” is X = A ∪A

• Note Strictly speaking, an inconsistent set like A ∪A is not a model
• For a logic program P over A ∪A, exactly one of the following two cases

applies:
1 All stable models of P are consistent or
2 X = A ∪A is the only stable model of P
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Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}

– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model
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• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model

TU Dresden PSSAI slide 39 of 103



Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}
– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā
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Default negation in rule heads

• We consider logic programs with default negation in rule heads

• Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that A ∩ Ã = ∅
• Given a program P over A, consider the program

P̃ = {r ∈ P | head(r) 6= not a}
∪ {← body(r) ∪ {not ã} | r ∈ P and head(r) = not a}
∪ {ã← not a | r ∈ P and head(r) = not a}

• A set X of atoms is a stable model of a program P (with default negation in
rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã
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• Given a program P over A, consider the program

P̃ = {r ∈ P | head(r) 6= not a}
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∪ {ã← not a | r ∈ P and head(r) = not a}

• A set X of atoms is a stable model of a program P (with default negation in
rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã
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Outline

2 Two kinds of negation

3 Disjunctive logic programs

TU Dresden PSSAI slide 52 of 103



Disjunctive logic programs

• A disjunctive rule, r, is of the form

a1 ; . . . ; am ← am+1, . . . , an, not an+1, . . . , not ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 0 ≤ i ≤ o

• A disjunctive logic program is a finite set of disjunctive rules

• Notation

head(r) = {a1, . . . , am}
body(r) = {am+1, . . . , an, not an+1, . . . , not ao}

body(r)+ = {am+1, . . . , an}
body(r)− = {an+1, . . . , ao}

atom(P) =
⋃

r∈P

(
head(r) ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

• A program is called positive if body(r)− = ∅ for all its rules
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Stable models

• Positive programs
– A set X of atoms is closed under a positive program P iff

for any r ∈ P, head(r) ∩ X 6= ∅ whenever body(r)+ ⊆ X
• X corresponds to a model of P (seen as a formula)

– The set of all ⊆-minimal sets of atoms being closed under a
positive program P is denoted by min⊆(P)

• min⊆(P) corresponds to the ⊆-minimal models of P (ditto)

• Disjunctive programs

– The reduct, PX , of a disjunctive program P relative to a set X of
atoms is defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

– A set X of atoms is a stable model of a disjunctive program P,
if X ∈ min⊆(PX)
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A “positive” example

P =

{
a ←
b ; c ← a

}

• The sets {a, b}, {a, c}, and {a, b, c} are closed under P

• We have min⊆(P) = {{a, b}, {a, c}}
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A “positive” example

P =

{
a ←
b ; c ← a

}

• The sets {a, b}, {a, c}, and {a, b, c} are closed under P
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Graph coloring (reloaded)

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

color(X,r) ; color(X,b) ; color(X,g) :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).
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Graph coloring (reloaded)

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

col(r). col(b). col(g).

color(X,C) : col(C) :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

TU Dresden PSSAI slide 63 of 103



More Examples

• P1 = {a ; b ; c←}

– stable models {a}, {b}, and {c}

• P2 = {a ; b ; c← , ← a}

– stable models {b} and {c}

• P3 = {a ; b ; c← , ← a , b← c , c← b}

– stable model {b, c}

• P4 = {a ; b← c , b← not a, not c , a ; c← not b}

– stable models {a} and {b}
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Some properties

• A disjunctive logic program may have zero, one, or multiple stable models
• If X is a stable model of a disjunctive logic program P,

then X is a model of P (seen as a formula)
• If X and Y are stable models of a disjunctive logic program P,

then X 6⊂ Y

• If A ∈ X for some stable model X of a disjunctive logic program P, then
there is a rule r ∈ P such that
body(r)+ ⊆ X, body(r)− ∩ X = ∅, and head(r) ∩ X = {A}
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An example with variables

P =

{
a(1, 2) ←
b(X) ; c(Y) ← a(X, Y), not c(Y)

}

ground(P) =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1), not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)
b(2) ; c(1) ← a(2, 1), not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)


For every stable model X of P, we have

• a(1, 2) ∈ X and
• {a(1, 1), a(2, 1), a(2, 2)} ∩ X = ∅
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An example with variables

ground(P)

X

=


a(1, 2) ←
b(1) ; c(1) ← a(1, 1), not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)
b(2) ; c(1) ← a(2, 1), not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)



• Consider X = {a(1, 2), b(1)}
• We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
• X is a stable model of P because X ∈ min⊆(ground(P)X)
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An example with variables
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Default negation in rule heads

• Consider disjunctive rules of the form

a1 ; . . . ; am ; not am+1 ; . . . ; not an ← an+1, . . . , ao, not ao+1, . . . , not ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 0 ≤ i ≤ p

• Given a program P over A, consider the program

P̃ = {head(r)+ ← body(r) ∪ {not ã | a ∈ head(r)−} | r ∈ P}
∪ {ã← not a | r ∈ P and a ∈ head(r)−}

• A set X of atoms is a stable model of a disjunctive program P
(with default negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã
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An example

• The program
P = {a ; not a←}

yields
P̃ = {a← not ã} ∪ {ã← not a}

• P̃ has two stable models, {a} and {ã}
• This induces the stable models {a} and ∅ of P
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Computational Aspects: Overview

4 Complexity
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Outline

4 Complexity

TU Dresden PSSAI slide 96 of 103



Complexity

Let a be an atom and X be a set of atoms

• For a positive normal logic program P:
– Deciding whether X is the stable model of P is P-complete
– Deciding whether a is in the stable model of P is P-complete

• For a normal logic program P:
– Deciding whether X is a stable model of P is P-complete
– Deciding whether a is in a stable model of P is NP-complete

• For a normal logic program P with optimization statements:
– Deciding whether X is an optimal stable model of P is

co-NP-complete
– Deciding whether a is in an optimal stable model of P is

∆P
2 -complete
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Complexity

Let a be an atom and X be a set of atoms

• For a positive disjunctive logic program P:
– Deciding whether X is a stable model of P is co-NP-complete
– Deciding whether a is in a stable model of P is NPNP-complete

• For a disjunctive logic program P:
– Deciding whether X is a stable model of P is co-NP-complete
– Deciding whether a is in a stable model of P is NPNP-complete

• For a disjunctive logic program P with optimization statements:
– Deciding whether X is an optimal stable model of P is

co-NPNP-complete
– Deciding whether a is in an optimal stable model of P is

∆P
3 -complete

• For a propositional theory Φ:
– Deciding whether X is a stable model of Φ is co-NP-complete
– Deciding whether a is in a stable model of Φ is NPNP-complete
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• See also: http://potassco.sourceforge.net
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