
Artificial Intelligence, Computational Logic

PROBLEM SOLVING AND SEARCH
IN ARTIFICIAL INTELLIGENCE

Lecture 7 ASP III ∗slides adapted from Torsten Schaub [Gebser et al.(2012)]

Sarah Gaggl

Dresden

Agenda

1 Introduction
2 Uninformed Search versus Informed Search (Best First Search, A*

Search, Heuristics)
3 Local Search, Stochastic Hill Climbing, Simulated Annealing
4 Tabu Search
5 Answer-set Programming (ASP)
6 Constraint Satisfaction (CSP)
7 Structural Decomposition Techniques (Tree/Hypertree Decompositions)
8 Evolutionary Algorithms/ Genetic Algorithms

TU Dresden PSSAI slide 2 of 103

Overview ASP III

• Language
5 Extended language

• Language Extensions
6 Two kinds of negation
7 Disjunctive logic programs

• Computational Aspects
8 Complexity

TU Dresden PSSAI slide 3 of 103

Language: Overview

1 Extended language

TU Dresden PSSAI slide 4 of 103

Outline

1 Extended language

TU Dresden PSSAI slide 5 of 103

Outline

1 Extended language
Conditional literal
Optimization statement

TU Dresden PSSAI slide 6 of 103

Conditional literals

• Syntax A conditional literal is of the form

` : `1, . . . , `n

where ` and `i are literals for 0 ≤ i ≤ n

• Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}

• Note The expansion of conditional literals is context dependent
• Example Given ‘ p(1..3). q(2).’

r(X):p(X),notq(X) :- r(X):p(X),notq(X); 1{r(X):p(X),notq(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 { r(1); r(3) }.

TU Dresden PSSAI slide 7 of 103

Conditional literals

• Syntax A conditional literal is of the form

` : `1, . . . , `n

where ` and `i are literals for 0 ≤ i ≤ n

• Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}

• Note The expansion of conditional literals is context dependent

• Example Given ‘ p(1..3). q(2).’

r(X):p(X),notq(X) :- r(X):p(X),notq(X); 1{r(X):p(X),notq(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 { r(1); r(3) }.

TU Dresden PSSAI slide 8 of 103

Conditional literals

• Syntax A conditional literal is of the form

` : `1, . . . , `n

where ` and `i are literals for 0 ≤ i ≤ n

• Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}

• Note The expansion of conditional literals is context dependent
• Example Given ‘ p(1..3). q(2).’

r(X):p(X),notq(X) :- r(X):p(X),notq(X); 1{r(X):p(X),notq(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 { r(1); r(3) }.

TU Dresden PSSAI slide 9 of 103

Conditional literals

• Syntax A conditional literal is of the form

` : `1, . . . , `n

where ` and `i are literals for 0 ≤ i ≤ n

• Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}

• Note The expansion of conditional literals is context dependent
• Example Given ‘ p(1..3). q(2).’

r(X):p(X),notq(X) :- r(X):p(X),notq(X); 1{r(X):p(X),notq(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 { r(1); r(3) }.

TU Dresden PSSAI slide 10 of 103

Conditional literals

• Syntax A conditional literal is of the form

` : `1, . . . , `n

where ` and `i are literals for 0 ≤ i ≤ n

• Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}

• Note The expansion of conditional literals is context dependent
• Example Given ‘ p(1..3). q(2).’

r(X):p(X),notq(X) :- r(X):p(X),notq(X); 1{r(X):p(X),notq(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 { r(1); r(3) }.

TU Dresden PSSAI slide 11 of 103

Conditional literals

• Syntax A conditional literal is of the form

` : `1, . . . , `n

where ` and `i are literals for 0 ≤ i ≤ n

• Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}

• Note The expansion of conditional literals is context dependent
• Example Given ‘ p(1..3). q(2).’

r(X):p(X),notq(X) :- r(X):p(X),notq(X); 1{r(X):p(X),notq(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 { r(1); r(3) }.

TU Dresden PSSAI slide 12 of 103

Conditional literals

• Syntax A conditional literal is of the form

` : `1, . . . , `n

where ` and `i are literals for 0 ≤ i ≤ n

• Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}

• Note The expansion of conditional literals is context dependent
• Example Given ‘ p(1..3). q(2).’

r(X):p(X),notq(X) :- r(X):p(X),notq(X); 1{r(X):p(X),notq(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 { r(1); r(3) }.

TU Dresden PSSAI slide 13 of 103

Outline

1 Extended language
Conditional literal
Optimization statement

TU Dresden PSSAI slide 14 of 103

Optimization statement

• Idea Express (multiple) cost functions subject to minimization
and/or maximization

• Syntax A minimize statement is of the form

minimize { w1@p1 : `1, . . . , wn@pn : `n }.

where each `i is a literal; and wi and pi are integers for 1 ≤ i ≤ n

Priority levels, pi, allow for representing lexicographically ordered
minimization objectives

• Meaning A minimize statement is a directive that instructs the ASP solver
to compute optimal stable models by minimizing a weighted sum of
elements

TU Dresden PSSAI slide 15 of 103

Optimization statement

• Idea Express (multiple) cost functions subject to minimization
and/or maximization

• Syntax A minimize statement is of the form

minimize { w1@p1 : `1, . . . , wn@pn : `n }.

where each `i is a literal; and wi and pi are integers for 1 ≤ i ≤ n

Priority levels, pi, allow for representing lexicographically ordered
minimization objectives

• Meaning A minimize statement is a directive that instructs the ASP solver
to compute optimal stable models by minimizing a weighted sum of
elements

TU Dresden PSSAI slide 16 of 103

Optimization statement

• Idea Express (multiple) cost functions subject to minimization
and/or maximization

• Syntax A minimize statement is of the form

minimize { w1@p1 : `1, . . . , wn@pn : `n }.

where each `i is a literal; and wi and pi are integers for 1 ≤ i ≤ n

Priority levels, pi, allow for representing lexicographically ordered
minimization objectives

• Meaning A minimize statement is a directive that instructs the ASP solver
to compute optimal stable models by minimizing a weighted sum of
elements

TU Dresden PSSAI slide 17 of 103

Optimization statement

• A maximize statement of the form

maximize { w1@p1 : `1, . . . , wn@pn : `n }

stands for minimize { −w1@p1 : `1, . . . ,−wn@pn : `n }

• Example When configuring a computer, we may want to maximize hard
disk capacity, while minimizing price

#maximize { 250@1:hd(1), 500@1:hd(2), 750@1:hd(3), 1000@1:hd(4) }.
#minimize { 30@2:hd(1), 40@2:hd(2), 60@2:hd(3), 80@2:hd(4) }.

The priority levels indicate that (minimizing) price is more important than
(maximizing) capacity

TU Dresden PSSAI slide 18 of 103

Optimization statement

• A maximize statement of the form

maximize { w1@p1 : `1, . . . , wn@pn : `n }

stands for minimize { −w1@p1 : `1, . . . ,−wn@pn : `n }

• Example When configuring a computer, we may want to maximize hard
disk capacity, while minimizing price

#maximize { 250@1:hd(1), 500@1:hd(2), 750@1:hd(3), 1000@1:hd(4) }.
#minimize { 30@2:hd(1), 40@2:hd(2), 60@2:hd(3), 80@2:hd(4) }.

The priority levels indicate that (minimizing) price is more important than
(maximizing) capacity

TU Dresden PSSAI slide 19 of 103

Language Extensions: Overview

2 Two kinds of negation

3 Disjunctive logic programs

TU Dresden PSSAI slide 20 of 103

Outline

2 Two kinds of negation

3 Disjunctive logic programs

TU Dresden PSSAI slide 21 of 103

Motivation

• Classical versus default negation

– Symbol ¬ and not

– Idea
• ¬a ≈ ¬a ∈ X
• not a ≈ a /∈ X

– Example
• cross← ¬train
• cross← not train

TU Dresden PSSAI slide 22 of 103

Motivation

• Classical versus default negation

– Symbol ¬ and not

– Idea
• ¬a ≈ ¬a ∈ X
• not a ≈ a /∈ X

– Example
• cross← ¬train
• cross← not train

TU Dresden PSSAI slide 23 of 103

Motivation

• Classical versus default negation

– Symbol ¬ and not

– Idea
• ¬a ≈ ¬a ∈ X
• not a ≈ a /∈ X

– Example
• cross← ¬train
• cross← not train

TU Dresden PSSAI slide 24 of 103

Classical negation

• We consider logic programs in negation normal form
– That is, classical negation is applied to atoms only

• Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that A∩A = ∅
• Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

• A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

TU Dresden PSSAI slide 25 of 103

Classical negation

• We consider logic programs in negation normal form
– That is, classical negation is applied to atoms only

• Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that A∩A = ∅

• Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

• A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

TU Dresden PSSAI slide 26 of 103

Classical negation

• We consider logic programs in negation normal form
– That is, classical negation is applied to atoms only

• Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that A∩A = ∅
• Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

• A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

TU Dresden PSSAI slide 27 of 103

Classical negation

• We consider logic programs in negation normal form
– That is, classical negation is applied to atoms only

• Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that A∩A = ∅
• Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

• A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

TU Dresden PSSAI slide 28 of 103

An example

• The program

P = {a← not b, b← not a} ∪ {c← b, ¬c← b}

induces

P¬ =

a ← a,¬a a ← b,¬b a ← c,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c

b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c,¬c

c ← a,¬a c ← b,¬b c ← c,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c,¬c

• The stable models of P are given by the ones of P ∪ P¬, viz {a}

TU Dresden PSSAI slide 29 of 103

An example

• The program

P = {a← not b, b← not a} ∪ {c← b, ¬c← b}

induces

P¬ =

a ← a,¬a a ← b,¬b a ← c,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c

b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c,¬c

c ← a,¬a c ← b,¬b c ← c,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c,¬c

• The stable models of P are given by the ones of P ∪ P¬, viz {a}

TU Dresden PSSAI slide 30 of 103

An example

• The program

P = {a← not b, b← not a} ∪ {c← b, ¬c← b}

induces

P¬ =

a ← a,¬a a ← b,¬b a ← c,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c

b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c,¬c

c ← a,¬a c ← b,¬b c ← c,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c,¬c

• The stable models of P are given by the ones of P ∪ P¬, viz {a}

TU Dresden PSSAI slide 31 of 103

Properties

• The only inconsistent stable “model” is X = A ∪A

• Note Strictly speaking, an inconsistent set like A ∪A is not a model
• For a logic program P over A ∪A, exactly one of the following two cases

applies:
1 All stable models of P are consistent or
2 X = A ∪A is the only stable model of P

TU Dresden PSSAI slide 32 of 103

Properties

• The only inconsistent stable “model” is X = A ∪A
• Note Strictly speaking, an inconsistent set like A ∪A is not a model

• For a logic program P over A ∪A, exactly one of the following two cases
applies:

1 All stable models of P are consistent or
2 X = A ∪A is the only stable model of P

TU Dresden PSSAI slide 33 of 103

Properties

• The only inconsistent stable “model” is X = A ∪A
• Note Strictly speaking, an inconsistent set like A ∪A is not a model
• For a logic program P over A ∪A, exactly one of the following two cases

applies:
1 All stable models of P are consistent or
2 X = A ∪A is the only stable model of P

TU Dresden PSSAI slide 34 of 103

Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}

– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model

TU Dresden PSSAI slide 35 of 103

Train spotting

• P1 = {cross← not train}
– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}

– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model

TU Dresden PSSAI slide 36 of 103

Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}

– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model

TU Dresden PSSAI slide 37 of 103

Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}
– stable model: ∅

• P3 = {cross← ¬train, ¬train←}

– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model

TU Dresden PSSAI slide 38 of 103

Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}

– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model

TU Dresden PSSAI slide 39 of 103

Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}
– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model

TU Dresden PSSAI slide 40 of 103

Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}

– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model

TU Dresden PSSAI slide 41 of 103

Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}

– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}
– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model

TU Dresden PSSAI slide 42 of 103

Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}

– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model

TU Dresden PSSAI slide 43 of 103

Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}

– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}
– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model

TU Dresden PSSAI slide 44 of 103

Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}

– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model

TU Dresden PSSAI slide 45 of 103

Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}

– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}
– no stable model

TU Dresden PSSAI slide 46 of 103

Train spotting

• P1 = {cross← not train}
– stable model: {cross}

• P2 = {cross← ¬train}
– stable model: ∅

• P3 = {cross← ¬train, ¬train←}
– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}
– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}
– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}
– no stable model

TU Dresden PSSAI slide 47 of 103

Default negation in rule heads

• We consider logic programs with default negation in rule heads

• Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that A ∩ Ã = ∅
• Given a program P over A, consider the program

P̃ = {r ∈ P | head(r) 6= not a}
∪ {← body(r) ∪ {not ã} | r ∈ P and head(r) = not a}
∪ {ã← not a | r ∈ P and head(r) = not a}

• A set X of atoms is a stable model of a program P (with default negation in
rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

TU Dresden PSSAI slide 48 of 103

Default negation in rule heads

• We consider logic programs with default negation in rule heads

• Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that A ∩ Ã = ∅

• Given a program P over A, consider the program

P̃ = {r ∈ P | head(r) 6= not a}
∪ {← body(r) ∪ {not ã} | r ∈ P and head(r) = not a}
∪ {ã← not a | r ∈ P and head(r) = not a}

• A set X of atoms is a stable model of a program P (with default negation in
rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

TU Dresden PSSAI slide 49 of 103

Default negation in rule heads

• We consider logic programs with default negation in rule heads

• Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that A ∩ Ã = ∅
• Given a program P over A, consider the program

P̃ = {r ∈ P | head(r) 6= not a}
∪ {← body(r) ∪ {not ã} | r ∈ P and head(r) = not a}
∪ {ã← not a | r ∈ P and head(r) = not a}

• A set X of atoms is a stable model of a program P (with default negation in
rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

TU Dresden PSSAI slide 50 of 103

Default negation in rule heads

• We consider logic programs with default negation in rule heads

• Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that A ∩ Ã = ∅
• Given a program P over A, consider the program

P̃ = {r ∈ P | head(r) 6= not a}
∪ {← body(r) ∪ {not ã} | r ∈ P and head(r) = not a}
∪ {ã← not a | r ∈ P and head(r) = not a}

• A set X of atoms is a stable model of a program P (with default negation in
rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

TU Dresden PSSAI slide 51 of 103

Outline

2 Two kinds of negation

3 Disjunctive logic programs

TU Dresden PSSAI slide 52 of 103

Disjunctive logic programs

• A disjunctive rule, r, is of the form

a1 ; . . . ; am ← am+1, . . . , an, not an+1, . . . , not ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 0 ≤ i ≤ o

• A disjunctive logic program is a finite set of disjunctive rules

• Notation

head(r) = {a1, . . . , am}
body(r) = {am+1, . . . , an, not an+1, . . . , not ao}

body(r)+ = {am+1, . . . , an}
body(r)− = {an+1, . . . , ao}

atom(P) =
⋃

r∈P

(
head(r) ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

• A program is called positive if body(r)− = ∅ for all its rules

TU Dresden PSSAI slide 53 of 103

Disjunctive logic programs

• A disjunctive rule, r, is of the form

a1 ; . . . ; am ← am+1, . . . , an, not an+1, . . . , not ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 0 ≤ i ≤ o

• A disjunctive logic program is a finite set of disjunctive rules
• Notation

head(r) = {a1, . . . , am}
body(r) = {am+1, . . . , an, not an+1, . . . , not ao}

body(r)+ = {am+1, . . . , an}
body(r)− = {an+1, . . . , ao}

atom(P) =
⋃

r∈P

(
head(r) ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

• A program is called positive if body(r)− = ∅ for all its rules

TU Dresden PSSAI slide 54 of 103

Disjunctive logic programs

• A disjunctive rule, r, is of the form

a1 ; . . . ; am ← am+1, . . . , an, not an+1, . . . , not ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 0 ≤ i ≤ o

• A disjunctive logic program is a finite set of disjunctive rules
• Notation

head(r) = {a1, . . . , am}
body(r) = {am+1, . . . , an, not an+1, . . . , not ao}

body(r)+ = {am+1, . . . , an}
body(r)− = {an+1, . . . , ao}

atom(P) =
⋃

r∈P

(
head(r) ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

• A program is called positive if body(r)− = ∅ for all its rules

TU Dresden PSSAI slide 55 of 103

Stable models

• Positive programs
– A set X of atoms is closed under a positive program P iff

for any r ∈ P, head(r) ∩ X 6= ∅ whenever body(r)+ ⊆ X
• X corresponds to a model of P (seen as a formula)

– The set of all ⊆-minimal sets of atoms being closed under a
positive program P is denoted by min⊆(P)

• min⊆(P) corresponds to the ⊆-minimal models of P (ditto)

• Disjunctive programs

– The reduct, PX , of a disjunctive program P relative to a set X of
atoms is defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

– A set X of atoms is a stable model of a disjunctive program P,
if X ∈ min⊆(PX)

TU Dresden PSSAI slide 56 of 103

Stable models

• Positive programs
– A set X of atoms is closed under a positive program P iff

for any r ∈ P, head(r) ∩ X 6= ∅ whenever body(r)+ ⊆ X
• X corresponds to a model of P (seen as a formula)

– The set of all ⊆-minimal sets of atoms being closed under a
positive program P is denoted by min⊆(P)

• min⊆(P) corresponds to the ⊆-minimal models of P (ditto)
• Disjunctive programs

– The reduct, PX , of a disjunctive program P relative to a set X of
atoms is defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

– A set X of atoms is a stable model of a disjunctive program P,
if X ∈ min⊆(PX)

TU Dresden PSSAI slide 57 of 103

Stable models

• Positive programs
– A set X of atoms is closed under a positive program P iff

for any r ∈ P, head(r) ∩ X 6= ∅ whenever body(r)+ ⊆ X
• X corresponds to a model of P (seen as a formula)

– The set of all ⊆-minimal sets of atoms being closed under a
positive program P is denoted by min⊆(P)

• min⊆(P) corresponds to the ⊆-minimal models of P (ditto)
• Disjunctive programs

– The reduct, PX , of a disjunctive program P relative to a set X of
atoms is defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

– A set X of atoms is a stable model of a disjunctive program P,
if X ∈ min⊆(PX)

TU Dresden PSSAI slide 58 of 103

A “positive” example

P =

{
a ←
b ; c ← a

}

• The sets {a, b}, {a, c}, and {a, b, c} are closed under P

• We have min⊆(P) = {{a, b}, {a, c}}

TU Dresden PSSAI slide 59 of 103

A “positive” example

P =

{
a ←
b ; c ← a

}

• The sets {a, b}, {a, c}, and {a, b, c} are closed under P

• We have min⊆(P) = {{a, b}, {a, c}}

TU Dresden PSSAI slide 60 of 103

A “positive” example

P =

{
a ←
b ; c ← a

}

• The sets {a, b}, {a, c}, and {a, b, c} are closed under P

• We have min⊆(P) = {{a, b}, {a, c}}

TU Dresden PSSAI slide 61 of 103

Graph coloring (reloaded)

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

color(X,r) ; color(X,b) ; color(X,g) :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

TU Dresden PSSAI slide 62 of 103

Graph coloring (reloaded)

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

col(r). col(b). col(g).

color(X,C) : col(C) :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

TU Dresden PSSAI slide 63 of 103

More Examples

• P1 = {a ; b ; c←}

– stable models {a}, {b}, and {c}

• P2 = {a ; b ; c← , ← a}

– stable models {b} and {c}

• P3 = {a ; b ; c← , ← a , b← c , c← b}

– stable model {b, c}

• P4 = {a ; b← c , b← not a, not c , a ; c← not b}

– stable models {a} and {b}

TU Dresden PSSAI slide 64 of 103

More Examples

• P1 = {a ; b ; c←}
– stable models {a}, {b}, and {c}

• P2 = {a ; b ; c← , ← a}

– stable models {b} and {c}

• P3 = {a ; b ; c← , ← a , b← c , c← b}

– stable model {b, c}

• P4 = {a ; b← c , b← not a, not c , a ; c← not b}

– stable models {a} and {b}

TU Dresden PSSAI slide 65 of 103

More Examples

• P1 = {a ; b ; c←}

– stable models {a}, {b}, and {c}

• P2 = {a ; b ; c← , ← a}

– stable models {b} and {c}

• P3 = {a ; b ; c← , ← a , b← c , c← b}

– stable model {b, c}

• P4 = {a ; b← c , b← not a, not c , a ; c← not b}

– stable models {a} and {b}

TU Dresden PSSAI slide 66 of 103

More Examples

• P1 = {a ; b ; c←}

– stable models {a}, {b}, and {c}

• P2 = {a ; b ; c← , ← a}
– stable models {b} and {c}

• P3 = {a ; b ; c← , ← a , b← c , c← b}

– stable model {b, c}

• P4 = {a ; b← c , b← not a, not c , a ; c← not b}

– stable models {a} and {b}

TU Dresden PSSAI slide 67 of 103

More Examples

• P1 = {a ; b ; c←}

– stable models {a}, {b}, and {c}

• P2 = {a ; b ; c← , ← a}

– stable models {b} and {c}

• P3 = {a ; b ; c← , ← a , b← c , c← b}

– stable model {b, c}

• P4 = {a ; b← c , b← not a, not c , a ; c← not b}

– stable models {a} and {b}

TU Dresden PSSAI slide 68 of 103

More Examples

• P1 = {a ; b ; c←}

– stable models {a}, {b}, and {c}

• P2 = {a ; b ; c← , ← a}

– stable models {b} and {c}

• P3 = {a ; b ; c← , ← a , b← c , c← b}
– stable model {b, c}

• P4 = {a ; b← c , b← not a, not c , a ; c← not b}

– stable models {a} and {b}

TU Dresden PSSAI slide 69 of 103

More Examples

• P1 = {a ; b ; c←}

– stable models {a}, {b}, and {c}

• P2 = {a ; b ; c← , ← a}

– stable models {b} and {c}

• P3 = {a ; b ; c← , ← a , b← c , c← b}

– stable model {b, c}

• P4 = {a ; b← c , b← not a, not c , a ; c← not b}

– stable models {a} and {b}

TU Dresden PSSAI slide 70 of 103

More Examples

• P1 = {a ; b ; c←}

– stable models {a}, {b}, and {c}

• P2 = {a ; b ; c← , ← a}

– stable models {b} and {c}

• P3 = {a ; b ; c← , ← a , b← c , c← b}

– stable model {b, c}

• P4 = {a ; b← c , b← not a, not c , a ; c← not b}
– stable models {a} and {b}

TU Dresden PSSAI slide 71 of 103

More Examples

• P1 = {a ; b ; c←}
– stable models {a}, {b}, and {c}

• P2 = {a ; b ; c← , ← a}
– stable models {b} and {c}

• P3 = {a ; b ; c← , ← a , b← c , c← b}
– stable model {b, c}

• P4 = {a ; b← c , b← not a, not c , a ; c← not b}
– stable models {a} and {b}

TU Dresden PSSAI slide 72 of 103

Some properties

• A disjunctive logic program may have zero, one, or multiple stable models
• If X is a stable model of a disjunctive logic program P,

then X is a model of P (seen as a formula)
• If X and Y are stable models of a disjunctive logic program P,

then X 6⊂ Y

• If A ∈ X for some stable model X of a disjunctive logic program P, then
there is a rule r ∈ P such that
body(r)+ ⊆ X, body(r)− ∩ X = ∅, and head(r) ∩ X = {A}

TU Dresden PSSAI slide 73 of 103

Some properties

• A disjunctive logic program may have zero, one, or multiple stable models
• If X is a stable model of a disjunctive logic program P,

then X is a model of P (seen as a formula)
• If X and Y are stable models of a disjunctive logic program P,

then X 6⊂ Y

• If A ∈ X for some stable model X of a disjunctive logic program P, then
there is a rule r ∈ P such that
body(r)+ ⊆ X, body(r)− ∩ X = ∅, and head(r) ∩ X = {A}

TU Dresden PSSAI slide 74 of 103

An example with variables

P =

{
a(1, 2) ←
b(X) ; c(Y) ← a(X, Y), not c(Y)

}

ground(P) =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1), not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)
b(2) ; c(1) ← a(2, 1), not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)

For every stable model X of P, we have

• a(1, 2) ∈ X and
• {a(1, 1), a(2, 1), a(2, 2)} ∩ X = ∅

TU Dresden PSSAI slide 75 of 103

An example with variables

P =

{
a(1, 2) ←
b(X) ; c(Y) ← a(X, Y), not c(Y)

}

ground(P) =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1), not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)
b(2) ; c(1) ← a(2, 1), not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)

For every stable model X of P, we have
• a(1, 2) ∈ X and
• {a(1, 1), a(2, 1), a(2, 2)} ∩ X = ∅

TU Dresden PSSAI slide 76 of 103

An example with variables

P =

{
a(1, 2) ←
b(X) ; c(Y) ← a(X, Y), not c(Y)

}

ground(P) =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1), not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)
b(2) ; c(1) ← a(2, 1), not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)

For every stable model X of P, we have

• a(1, 2) ∈ X and
• {a(1, 1), a(2, 1), a(2, 2)} ∩ X = ∅

TU Dresden PSSAI slide 77 of 103

An example with variables

ground(P)

X

=

a(1, 2) ←
b(1) ; c(1) ← a(1, 1), not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)
b(2) ; c(1) ← a(2, 1), not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)

• Consider X = {a(1, 2), b(1)}
• We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
• X is a stable model of P because X ∈ min⊆(ground(P)X)

TU Dresden PSSAI slide 78 of 103

An example with variables

ground(P)

X

=

a(1, 2) ←
b(1) ; c(1) ← a(1, 1), not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)
b(2) ; c(1) ← a(2, 1), not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)

• Consider X = {a(1, 2), b(1)}

• We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
• X is a stable model of P because X ∈ min⊆(ground(P)X)

TU Dresden PSSAI slide 79 of 103

An example with variables

ground(P)X =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1)

, not c(1)

b(1) ; c(2) ← a(1, 2)

, not c(2)

b(2) ; c(1) ← a(2, 1)

, not c(1)

b(2) ; c(2) ← a(2, 2)

, not c(2)

• Consider X = {a(1, 2), b(1)}

• We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
• X is a stable model of P because X ∈ min⊆(ground(P)X)

TU Dresden PSSAI slide 80 of 103

An example with variables

ground(P)X =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1)

, not c(1)

b(1) ; c(2) ← a(1, 2)

, not c(2)

b(2) ; c(1) ← a(2, 1)

, not c(1)

b(2) ; c(2) ← a(2, 2)

, not c(2)

• Consider X = {a(1, 2), b(1)}
• We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }

• X is a stable model of P because X ∈ min⊆(ground(P)X)

TU Dresden PSSAI slide 81 of 103

An example with variables

ground(P)X =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1)

, not c(1)

b(1) ; c(2) ← a(1, 2)

, not c(2)

b(2) ; c(1) ← a(2, 1)

, not c(1)

b(2) ; c(2) ← a(2, 2)

, not c(2)

• Consider X = {a(1, 2), b(1)}
• We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
• X is a stable model of P because X ∈ min⊆(ground(P)X)

TU Dresden PSSAI slide 82 of 103

An example with variables

ground(P)

X

=

a(1, 2) ←
b(1) ; c(1) ← a(1, 1), not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)
b(2) ; c(1) ← a(2, 1), not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)

• Consider X = {a(1, 2), c(2)}
• We get min⊆(ground(P)X) = { {a(1, 2)} }
• X is no stable model of P because X 6∈ min⊆(ground(P)X)

TU Dresden PSSAI slide 83 of 103

An example with variables

ground(P)

X

=

a(1, 2) ←
b(1) ; c(1) ← a(1, 1), not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)
b(2) ; c(1) ← a(2, 1), not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)

• Consider X = {a(1, 2), c(2)}

• We get min⊆(ground(P)X) = { {a(1, 2)} }
• X is no stable model of P because X 6∈ min⊆(ground(P)X)

TU Dresden PSSAI slide 84 of 103

An example with variables

ground(P)X =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1)

, not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)

b(2) ; c(1) ← a(2, 1)

, not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)

• Consider X = {a(1, 2), c(2)}

• We get min⊆(ground(P)X) = { {a(1, 2)} }
• X is no stable model of P because X 6∈ min⊆(ground(P)X)

TU Dresden PSSAI slide 85 of 103

An example with variables

ground(P)X =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1)

, not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)

b(2) ; c(1) ← a(2, 1)

, not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)

• Consider X = {a(1, 2), c(2)}
• We get min⊆(ground(P)X) = { {a(1, 2)} }

• X is no stable model of P because X 6∈ min⊆(ground(P)X)

TU Dresden PSSAI slide 86 of 103

An example with variables

ground(P)X =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1)

, not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)

b(2) ; c(1) ← a(2, 1)

, not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)

• Consider X = {a(1, 2), c(2)}
• We get min⊆(ground(P)X) = { {a(1, 2)} }
• X is no stable model of P because X 6∈ min⊆(ground(P)X)

TU Dresden PSSAI slide 87 of 103

Default negation in rule heads

• Consider disjunctive rules of the form

a1 ; . . . ; am ; not am+1 ; . . . ; not an ← an+1, . . . , ao, not ao+1, . . . , not ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 0 ≤ i ≤ p

• Given a program P over A, consider the program

P̃ = {head(r)+ ← body(r) ∪ {not ã | a ∈ head(r)−} | r ∈ P}
∪ {ã← not a | r ∈ P and a ∈ head(r)−}

• A set X of atoms is a stable model of a disjunctive program P
(with default negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

TU Dresden PSSAI slide 88 of 103

Default negation in rule heads

• Consider disjunctive rules of the form

a1 ; . . . ; am ; not am+1 ; . . . ; not an ← an+1, . . . , ao, not ao+1, . . . , not ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 0 ≤ i ≤ p

• Given a program P over A, consider the program

P̃ = {head(r)+ ← body(r) ∪ {not ã | a ∈ head(r)−} | r ∈ P}
∪ {ã← not a | r ∈ P and a ∈ head(r)−}

• A set X of atoms is a stable model of a disjunctive program P
(with default negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

TU Dresden PSSAI slide 89 of 103

Default negation in rule heads

• Consider disjunctive rules of the form

a1 ; . . . ; am ; not am+1 ; . . . ; not an ← an+1, . . . , ao, not ao+1, . . . , not ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 0 ≤ i ≤ p

• Given a program P over A, consider the program

P̃ = {head(r)+ ← body(r) ∪ {not ã | a ∈ head(r)−} | r ∈ P}
∪ {ã← not a | r ∈ P and a ∈ head(r)−}

• A set X of atoms is a stable model of a disjunctive program P
(with default negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

TU Dresden PSSAI slide 90 of 103

An example

• The program
P = {a ; not a←}

yields
P̃ = {a← not ã} ∪ {ã← not a}

• P̃ has two stable models, {a} and {ã}
• This induces the stable models {a} and ∅ of P

TU Dresden PSSAI slide 91 of 103

An example

• The program
P = {a ; not a←}

yields
P̃ = {a← not ã} ∪ {ã← not a}

• P̃ has two stable models, {a} and {ã}
• This induces the stable models {a} and ∅ of P

TU Dresden PSSAI slide 92 of 103

An example

• The program
P = {a ; not a←}

yields
P̃ = {a← not ã} ∪ {ã← not a}

• P̃ has two stable models, {a} and {ã}

• This induces the stable models {a} and ∅ of P

TU Dresden PSSAI slide 93 of 103

An example

• The program
P = {a ; not a←}

yields
P̃ = {a← not ã} ∪ {ã← not a}

• P̃ has two stable models, {a} and {ã}
• This induces the stable models {a} and ∅ of P

TU Dresden PSSAI slide 94 of 103

Computational Aspects: Overview

4 Complexity

TU Dresden PSSAI slide 95 of 103

Outline

4 Complexity

TU Dresden PSSAI slide 96 of 103

Complexity

Let a be an atom and X be a set of atoms

• For a positive normal logic program P:
– Deciding whether X is the stable model of P is P-complete
– Deciding whether a is in the stable model of P is P-complete

• For a normal logic program P:
– Deciding whether X is a stable model of P is P-complete
– Deciding whether a is in a stable model of P is NP-complete

• For a normal logic program P with optimization statements:
– Deciding whether X is an optimal stable model of P is

co-NP-complete
– Deciding whether a is in an optimal stable model of P is

∆P
2 -complete

TU Dresden PSSAI slide 97 of 103

Complexity

Let a be an atom and X be a set of atoms

• For a positive normal logic program P:
– Deciding whether X is the stable model of P is P-complete
– Deciding whether a is in the stable model of P is P-complete

• For a normal logic program P:
– Deciding whether X is a stable model of P is P-complete
– Deciding whether a is in a stable model of P is NP-complete

• For a normal logic program P with optimization statements:
– Deciding whether X is an optimal stable model of P is

co-NP-complete
– Deciding whether a is in an optimal stable model of P is

∆P
2 -complete

TU Dresden PSSAI slide 98 of 103

Complexity

Let a be an atom and X be a set of atoms

• For a positive normal logic program P:
– Deciding whether X is the stable model of P is P-complete
– Deciding whether a is in the stable model of P is P-complete

• For a normal logic program P:
– Deciding whether X is a stable model of P is P-complete
– Deciding whether a is in a stable model of P is NP-complete

• For a normal logic program P with optimization statements:
– Deciding whether X is an optimal stable model of P is

co-NP-complete
– Deciding whether a is in an optimal stable model of P is

∆P
2 -complete

TU Dresden PSSAI slide 99 of 103

Complexity

Let a be an atom and X be a set of atoms

• For a positive normal logic program P:
– Deciding whether X is the stable model of P is P-complete
– Deciding whether a is in the stable model of P is P-complete

• For a normal logic program P:
– Deciding whether X is a stable model of P is P-complete
– Deciding whether a is in a stable model of P is NP-complete

• For a normal logic program P with optimization statements:
– Deciding whether X is an optimal stable model of P is

co-NP-complete
– Deciding whether a is in an optimal stable model of P is

∆P
2 -complete

TU Dresden PSSAI slide 100 of 103

Complexity

Let a be an atom and X be a set of atoms

• For a positive disjunctive logic program P:
– Deciding whether X is a stable model of P is co-NP-complete
– Deciding whether a is in a stable model of P is NPNP-complete

• For a disjunctive logic program P:
– Deciding whether X is a stable model of P is co-NP-complete
– Deciding whether a is in a stable model of P is NPNP-complete

• For a disjunctive logic program P with optimization statements:
– Deciding whether X is an optimal stable model of P is

co-NPNP-complete
– Deciding whether a is in an optimal stable model of P is

∆P
3 -complete

• For a propositional theory Φ:
– Deciding whether X is a stable model of Φ is co-NP-complete
– Deciding whether a is in a stable model of Φ is NPNP-complete

TU Dresden PSSAI slide 101 of 103

Complexity

Let a be an atom and X be a set of atoms

• For a positive disjunctive logic program P:
– Deciding whether X is a stable model of P is co-NP-complete
– Deciding whether a is in a stable model of P is NPNP-complete

• For a disjunctive logic program P:
– Deciding whether X is a stable model of P is co-NP-complete
– Deciding whether a is in a stable model of P is NPNP-complete

• For a disjunctive logic program P with optimization statements:
– Deciding whether X is an optimal stable model of P is

co-NPNP-complete
– Deciding whether a is in an optimal stable model of P is

∆P
3 -complete

• For a propositional theory Φ:
– Deciding whether X is a stable model of Φ is co-NP-complete
– Deciding whether a is in a stable model of Φ is NPNP-complete

TU Dresden PSSAI slide 102 of 103

References

Martin Gebser, Benjamin Kaufmann Roland Kaminski, and Torsten
Schaub.
Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012.
doi=10.2200/S00457ED1V01Y201211AIM019.

• See also: http://potassco.sourceforge.net

TU Dresden PSSAI slide 103 of 103

http://potassco.sourceforge.net

	Language
	Extended language
	Conditional literal
	Optimization statement

	Language Extensions
	Two kinds of negation
	Disjunctive logic programs

	Computational Aspects
	Complexity

