PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE

Lecture 7 ASP III *slides adapted from Torsten Schaub [Gebser et al.(2012)]

Sarah Gaggl

Dresden

Agenda

(1) Introduction
(2) Uninformed Search versus Informed Search (Best First Search, A* Search, Heuristics)
(3) Local Search, Stochastic Hill Climbing, Simulated Annealing
(4) Tabu Search
(5) Answer-set Programming (ASP)
(6) Constraint Satisfaction (CSP)
(7) Structural Decomposition Techniques (Tree/Hypertree Decompositions)
(8) Evolutionary Algorithms/ Genetic Algorithms

Overview ASP III

- Language
(5) Extended language
- Language Extensions

6 Two kinds of negation
(7) Disjunctive logic programs

- Computational Aspects
(8) Complexity

Language: Overview

(1) Extended language

Outline

Outline

(1) Extended language
- Conditional literal
- Optimization statement

Conditional literals

- Syntax A conditional literal is of the form

$$
\ell: \ell_{1}, \ldots, \ell_{n}
$$

where ℓ and ℓ_{i} are literals for $0 \leq i \leq n$

- Informal meaning A conditional literal can be regarded as the list of elements in the set $\left\{\ell \mid \ell_{1}, \ldots, \ell_{n}\right\}$

Conditional literals

- Syntax A conditional literal is of the form

$$
\ell: \ell_{1}, \ldots, \ell_{n}
$$

where ℓ and ℓ_{i} are literals for $0 \leq i \leq n$

- Informal meaning A conditional literal can be regarded as the list of elements in the set $\left\{\ell \mid \ell_{1}, \ldots, \ell_{n}\right\}$
- Note The expansion of conditional literals is context dependent

Conditional literals

- Syntax A conditional literal is of the form

$$
\ell: \ell_{1}, \ldots, \ell_{n}
$$

where ℓ and ℓ_{i} are literals for $0 \leq i \leq n$

- Informal meaning A conditional literal can be regarded as the list of elements in the set $\left\{\ell \mid \ell_{1}, \ldots, \ell_{n}\right\}$
- Note The expansion of conditional literals is context dependent
- Example Given 'p(1..3). q(2).'

```
r(X):p(X), notq(X) :- r(X):p(X), notq(X); 1{r(X):p(X), notq(X)}.
```

is instantiated to

```
r(1); r(3) :- r(1),r(3), 1 {r(1); r(3)}.
```


Conditional literals

- Syntax A conditional literal is of the form

$$
\ell: \ell_{1}, \ldots, \ell_{n}
$$

where ℓ and ℓ_{i} are literals for $0 \leq i \leq n$

- Informal meaning A conditional literal can be regarded as the list of elements in the set $\left\{\ell \mid \ell_{1}, \ldots, \ell_{n}\right\}$
- Note The expansion of conditional literals is context dependent
- Example Given 'p(1..3). q(2).'

```
r(X):p(X), notq(X) :- r(X):p(X), notq(X); 1{r(X):p(X), notq(X)}.
```

is instantiated to

```
r(1); r(3) :- r(1),r(3), 1 {r(1); r(3)}.
```


Conditional literals

- Syntax A conditional literal is of the form

$$
\ell: \ell_{1}, \ldots, \ell_{n}
$$

where ℓ and ℓ_{i} are literals for $0 \leq i \leq n$

- Informal meaning A conditional literal can be regarded as the list of elements in the set $\left\{\ell \mid \ell_{1}, \ldots, \ell_{n}\right\}$
- Note The expansion of conditional literals is context dependent
- Example Given 'p(1..3). q(2).'

```
r(x):p(X), notq(X) :- r(x):p(x), notq(X); 1{r(x):p(x), notq(X)}.
```

is instantiated to

```
r(1); r(3) :- r(1),r(3), 1 {r(1); r(3)}.
```


Conditional literals

- Syntax A conditional literal is of the form

$$
\ell: \ell_{1}, \ldots, \ell_{n}
$$

where ℓ and ℓ_{i} are literals for $0 \leq i \leq n$

- Informal meaning A conditional literal can be regarded as the list of elements in the set $\left\{\ell \mid \ell_{1}, \ldots, \ell_{n}\right\}$
- Note The expansion of conditional literals is context dependent
- Example Given 'p(1..3). q(2).'

```
r(X):p(X), notq(X) :- r(X):p(X), notq(X); 1{r(X):p(X), notq(X)}.
```

is instantiated to

```
r(1); r(3) :- r(1),r(3), 1 {r(1); r(3)}.
```


Conditional literals

- Syntax A conditional literal is of the form

$$
\ell: \ell_{1}, \ldots, \ell_{n}
$$

where ℓ and ℓ_{i} are literals for $0 \leq i \leq n$

- Informal meaning A conditional literal can be regarded as the list of elements in the set $\left\{\ell \mid \ell_{1}, \ldots, \ell_{n}\right\}$
- Note The expansion of conditional literals is context dependent
- Example Given 'p(1..3). q(2).'

```
r(x):p(x), notq(X) :- r(x):p(x), notq(X); 1{r(x):p(x), notq(X)}.
```

is instantiated to

```
r(1); r(3) :- r(1),r(3), 1 {r(1); r(3)}.
```


Outline

- Conditional literal
- Optimization statement

Optimization statement

- Idea Express (multiple) cost functions subject to minimization and/or maximization
- Syntax A minimize statement is of the form

$$
\text { minimize }\left\{w_{1} @ p_{1}: \ell_{1}, \ldots, w_{n} @ p_{n}: \ell_{n}\right\} .
$$

where each ℓ_{i} is a literal; and w_{i} and p_{i} are integers for $1 \leq i \leq n$

Optimization statement

- Idea Express (multiple) cost functions subject to minimization and/or maximization
- Syntax A minimize statement is of the form

$$
\text { minimize }\left\{w_{1} @ p_{1}: \ell_{1}, \ldots, w_{n} @ p_{n}: \ell_{n}\right\} .
$$

where each ℓ_{i} is a literal; and w_{i} and p_{i} are integers for $1 \leq i \leq n$
Priority levels, p_{i}, allow for representing lexicographically ordered minimization objectives

Optimization statement

- Idea Express (multiple) cost functions subject to minimization and/or maximization
- Syntax A minimize statement is of the form

$$
\text { minimize }\left\{w_{1} @ p_{1}: \ell_{1}, \ldots, w_{n} @ p_{n}: \ell_{n}\right\} .
$$

where each ℓ_{i} is a literal; and w_{i} and p_{i} are integers for $1 \leq i \leq n$
Priority levels, p_{i}, allow for representing lexicographically ordered minimization objectives

- Meaning A minimize statement is a directive that instructs the ASP solver to compute optimal stable models by minimizing a weighted sum of elements

Optimization statement

- A maximize statement of the form

$$
\begin{aligned}
& \qquad \operatorname{maximize}\left\{w_{1} @ p_{1}: \ell_{1}, \ldots, w_{n} @ p_{n}: \ell_{n}\right\} \\
& \text { stands for minimize }\left\{-w_{1} @ p_{1}: \ell_{1}, \ldots,-w_{n} @ p_{n}: \ell_{n}\right\}
\end{aligned}
$$

Optimization statement

- A maximize statement of the form

$$
\begin{aligned}
& \qquad \operatorname{maximize}\left\{w_{1} @ p_{1}: \ell_{1}, \ldots, w_{n} @ p_{n}: \ell_{n}\right\} \\
& \text { stands for minimize }\left\{-w_{1} @ p_{1}: \ell_{1}, \ldots,-w_{n} @ p_{n}: \ell_{n}\right\}
\end{aligned}
$$

- Example When configuring a computer, we may want to maximize hard disk capacity, while minimizing price

```
#maximize { 250@1:hd(1), 500@1:hd(2), 750@1:hd(3), 1000@1:hd(4) }.
#minimize { 30@2:hd(1), 40@2:hd(2), 60@2:hd(3), 80@2:hd(4) }.
```

The priority levels indicate that (minimizing) price is more important than (maximizing) capacity

Language Extensions: Overview

Outline

3 Disjunctive logic programs

Motivation

- Classical versus default negation
- Symbol \neg and not

Motivation

- Classical versus default negation
- Symbol \neg and not
- Idea
- $\neg a \approx \neg a \in X$
- not $a \approx a \notin X$

Motivation

- Classical versus default negation
- Symbol \neg and not
- Idea
- $\neg a \approx \neg a \in X$
- not $a \approx a \notin X$
- Example
- cross $\leftarrow \neg$ train
- cross \leftarrow not train

Classical negation

- We consider logic programs in negation normal form
- That is, classical negation is applied to atoms only

Classical negation

- We consider logic programs in negation normal form
- That is, classical negation is applied to atoms only
- Given an alphabet \mathcal{A} of atoms, let $\overline{\mathcal{A}}=\{\neg a \mid a \in \mathcal{A}\}$ such that $\mathcal{A} \cap \overline{\mathcal{A}}=\emptyset$

Classical negation

- We consider logic programs in negation normal form
- That is, classical negation is applied to atoms only
- Given an alphabet \mathcal{A} of atoms, let $\overline{\mathcal{A}}=\{\neg a \mid a \in \mathcal{A}\}$ such that $\mathcal{A} \cap \overline{\mathcal{A}}=\emptyset$
- Given a program P over \mathcal{A}, classical negation is encoded by adding

$$
P^{\urcorner}=\{a \leftarrow b, \neg b \mid a \in(\mathcal{A} \cup \overline{\mathcal{A}}), b \in \mathcal{A}\}
$$

Classical negation

- Given an alphabet \mathcal{A} of atoms, let $\overline{\mathcal{A}}=\{\neg a \mid a \in \mathcal{A}\}$ such that $\mathcal{A} \cap \overline{\mathcal{A}}=\emptyset$
- Given a program P over \mathcal{A}, classical negation is encoded by adding

$$
P^{\urcorner}=\{a \leftarrow b, \neg b \mid a \in(\mathcal{A} \cup \overline{\mathcal{A}}), b \in \mathcal{A}\}
$$

- A set X of atoms is a stable model of a program P over $\mathcal{A} \cup \overline{\mathcal{A}}$, if X is a stable model of $P \cup P^{\urcorner}$

An example

- The program

$$
P=\{a \leftarrow \text { not } b, b \leftarrow \text { not } a\} \cup\{c \leftarrow b, \neg c \leftarrow b\}
$$

An example

- The program

$$
P=\{a \leftarrow \text { not } b, b \leftarrow \text { not } a\} \cup\{c \leftarrow b, \neg c \leftarrow b\}
$$

induces

$$
P^{\urcorner}=\left\{\begin{array}{rrrrrrrrr}
a & \leftarrow & a, \neg a & a & \leftarrow & b, \neg b & a & \leftarrow & c, \neg c \\
\neg a & \leftarrow & a, \neg a & \neg a & \leftarrow & b, \neg b & \neg a & \leftarrow & c, \neg c \\
b & \leftarrow & a, \neg a & b & \leftarrow & b, \neg b & b & \leftarrow & c, \neg c \\
\neg b & \leftarrow & a, \neg a & \neg b & \leftarrow & b, \neg b & \neg b & \leftarrow & c, \neg c \\
c & \leftarrow & a, \neg a & c & \leftarrow & b, \neg b & c & \leftarrow & c, \neg c \\
\neg c & \leftarrow & a, \neg a & \neg c & \leftarrow & b, \neg b & \neg c & \leftarrow & c, \neg c
\end{array}\right\}
$$

An example

- The program

$$
P=\{a \leftarrow \text { not } b, b \leftarrow \text { not } a\} \cup\{c \leftarrow b, \neg c \leftarrow b\}
$$

induces

$$
P^{\urcorner}=\left\{\begin{array}{rrrrrrrrr}
a & \leftarrow & a, \neg a & a & \leftarrow & b, \neg b & a & \leftarrow & c, \neg c \\
\neg a & \leftarrow & a, \neg a & \neg a & \leftarrow & b, \neg b & \neg a & \leftarrow & c, \neg c \\
b & \leftarrow & a, \neg a & b & \leftarrow & b, \neg b & b & \leftarrow & c, \neg c \\
\neg b & \leftarrow & a, \neg a & \neg b & \leftarrow & b, \neg b & \neg b & \leftarrow & c, \neg c \\
c & \leftarrow & a, \neg a & c & \leftarrow & b, \neg b & c & \leftarrow & c, \neg c \\
\neg c & \leftarrow & a, \neg a & \neg c & \leftarrow & b, \neg b & \neg c & \leftarrow & c, \neg c
\end{array}\right\}
$$

- The stable models of P are given by the ones of $P \cup P\urcorner$, viz $\{a\}$

Properties

- The only inconsistent stable "model" is $X=\mathcal{A} \cup \overline{\mathcal{A}}$

Properties

- The only inconsistent stable "model" is $X=\mathcal{A} \cup \overline{\mathcal{A}}$
- Note Strictly speaking, an inconsistent set like $\mathcal{A} \cup \overline{\mathcal{A}}$ is not a model

Properties

- The only inconsistent stable "model" is $X=\mathcal{A} \cup \overline{\mathcal{A}}$
- Note Strictly speaking, an inconsistent set like $\mathcal{A} \cup \overline{\mathcal{A}}$ is not a model
- For a logic program P over $\mathcal{A} \cup \overline{\mathcal{A}}$, exactly one of the following two cases applies:
(1) All stable models of P are consistent or
(2) $X=\mathcal{A} \cup \overline{\mathcal{A}}$ is the only stable model of P

Train spotting

- $P_{1}=\{$ cross \leftarrow not train $\}$
- $P_{2}=\{$ cross $\leftarrow \neg$ train $\}$
- $P_{3}=\{$ cross $\leftarrow \neg$ train, \neg train $\leftarrow\}$
- $P_{4}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow, \neg cross $\leftarrow\}$
- $P_{5}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow not train $\}$
- $P_{6}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow not train, \neg cross $\leftarrow\}$

Train spotting

- $P_{1}=\{$ cross \leftarrow not train $\}$
- stable model: $\{$ cross $\}$

Train spotting

- $P_{2}=\{$ cross $\leftarrow \neg$ train $\}$

Train spotting

- $P_{2}=\{$ cross $\leftarrow \neg$ train $\}$
- stable model: \emptyset

Train spotting

- $P_{3}=\{$ cross $\leftarrow \neg$ train, \neg train $\leftarrow\}$

Train spotting

- $P_{3}=\{$ cross $\leftarrow \neg$ train, \neg train $\leftarrow\}$
- stable model: $\{$ cross, \neg train $\}$

Train spotting

- $P_{4}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow, \neg cross $\leftarrow\}$

Train spotting

- $P_{4}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow, \neg cross $\leftarrow\}$
- stable model: $\{$ cross, \neg cross, train,\neg train $\}$ inconsistent as $\mathcal{A} \cup \overline{\mathcal{A}}$

Train spotting

- $P_{5}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow not train $\}$

Train spotting

- $P_{5}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow not train $\}$
- stable model: \{cross, \neg train $\}$

Train spotting

- $P_{6}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow not train, \neg cross $\leftarrow\}$

Train spotting

- $P_{6}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow not train, \neg cross $\leftarrow\}$
- no stable model

Train spotting

- $P_{1}=\{$ cross \leftarrow not train $\}$
- stable model: $\{$ cross $\}$
- $P_{2}=\{$ cross $\leftarrow \neg$ train $\}$
- stable model: \emptyset
- $P_{3}=\{$ cross $\leftarrow \neg$ train, \neg train $\leftarrow\}$
- stable model: \{cross, \neg train $\}$
- $P_{4}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow, \neg cross $\leftarrow\}$
- stable model: $\{$ cross, \neg cross, train, \neg train $\}$ inconsistent as $\mathcal{A} \cup \overline{\mathcal{A}}$
- $P_{5}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow not train $\}$
- stable model: \{cross, \neg train $\}$
- $P_{6}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow not train, \neg cross $\leftarrow\}$
- no stable model

Default negation in rule heads

- We consider logic programs with default negation in rule heads

Default negation in rule heads

- We consider logic programs with default negation in rule heads
- Given an alphabet \mathcal{A} of atoms, let $\widetilde{\mathcal{A}}=\{\widetilde{a} \mid a \in \mathcal{A}\}$ such that $\mathcal{A} \cap \widetilde{\mathcal{A}}=\emptyset$

Default negation in rule heads

- We consider logic programs with default negation in rule heads
- Given an alphabet \mathcal{A} of atoms, let $\widetilde{\mathcal{A}}=\{\widetilde{a} \mid a \in \mathcal{A}\}$ such that $\mathcal{A} \cap \widetilde{\mathcal{A}}=\emptyset$
- Given a program P over \mathcal{A}, consider the program

$$
\begin{aligned}
& \widetilde{P}=\{r \in P \mid \operatorname{head}(r) \neq \text { not } a\} \\
& \cup\{\leftarrow \operatorname{body}(r) \cup\{\operatorname{not} \widetilde{a}\} \mid r \in P \text { and } \operatorname{head}(r)=\operatorname{not} a\} \\
& \cup\{\widetilde{a} \leftarrow \operatorname{not} a \mid r \in P \text { and } \operatorname{head}(r)=\text { not } a\}
\end{aligned}
$$

Default negation in rule heads

- Given an alphabet \mathcal{A} of atoms, let $\widetilde{\mathcal{A}}=\{\widetilde{a} \mid a \in \mathcal{A}\}$ such that $\mathcal{A} \cap \widetilde{\mathcal{A}}=\emptyset$
- Given a program P over \mathcal{A}, consider the program

$$
\begin{aligned}
& \widetilde{P}=\{r \in P \mid \operatorname{head}(r) \neq \text { not } a\} \\
& \cup \cup\{\leftarrow \operatorname{body}(r) \cup\{\operatorname{not} \widetilde{a}\} \mid r \in P \text { and } \operatorname{head}(r)=\operatorname{not} a\} \\
& \cup\{\widetilde{a} \leftarrow \operatorname{not} a \mid r \in P \text { and } \operatorname{head}(r)=\operatorname{not} a\}
\end{aligned}
$$

- A set X of atoms is a stable model of a program P (with default negation in rule heads) over \mathcal{A}, if $X=Y \cap \mathcal{A}$ for some stable model Y of \widetilde{P} over $\mathcal{A} \cup \widetilde{\mathcal{A}}$

Outline

2) Two kinds of negation
(3) Disjunctive logic programs

Disjunctive logic programs

- A disjunctive rule, r, is of the form

$$
a_{1} ; \ldots ; a_{m} \leftarrow a_{m+1}, \ldots, a_{n}, \text { not } a_{n+1}, \ldots, \text { not } a_{o}
$$

where $0 \leq m \leq n \leq o$ and each a_{i} is an atom for $0 \leq i \leq o$

- A disjunctive logic program is a finite set of disjunctive rules

Disjunctive logic programs

- A disjunctive rule, r, is of the form

$$
a_{1} ; \ldots ; a_{m} \leftarrow a_{m+1}, \ldots, a_{n}, \text { not } a_{n+1}, \ldots, \text { not } a_{o}
$$

where $0 \leq m \leq n \leq o$ and each a_{i} is an atom for $0 \leq i \leq o$

- A disjunctive logic program is a finite set of disjunctive rules
- Notation

$$
\begin{aligned}
\operatorname{head}(r) & =\left\{a_{1}, \ldots, a_{m}\right\} \\
\operatorname{body}(r) & =\left\{a_{m+1}, \ldots, a_{n}, \operatorname{not} a_{n+1}, \ldots, \operatorname{not} a_{o}\right\} \\
\operatorname{body}(r)^{+} & =\left\{a_{m+1}, \ldots, a_{n}\right\} \\
\operatorname{body}(r)^{-} & =\left\{a_{n+1}, \ldots, a_{o}\right\} \\
\operatorname{atom}(P) & =\bigcup_{r \in P}\left(\operatorname{head}(r) \cup \operatorname{body}(r)^{+} \cup \operatorname{body}(r)^{-}\right) \\
\operatorname{body}(P) & =\{\operatorname{body}(r) \mid r \in P\}
\end{aligned}
$$

Disjunctive logic programs

- A disjunctive rule, r, is of the form

$$
a_{1} ; \ldots ; a_{m} \leftarrow a_{m+1}, \ldots, a_{n}, \text { not } a_{n+1}, \ldots, \text { not } a_{o}
$$

where $0 \leq m \leq n \leq o$ and each a_{i} is an atom for $0 \leq i \leq o$

- A disjunctive logic program is a finite set of disjunctive rules
- Notation

$$
\begin{aligned}
\operatorname{head}(r) & =\left\{a_{1}, \ldots, a_{m}\right\} \\
\operatorname{body}(r) & =\left\{a_{m+1}, \ldots, a_{n}, \operatorname{not} a_{n+1}, \ldots, \operatorname{not} a_{o}\right\} \\
\operatorname{body}(r)^{+} & =\left\{a_{m+1}, \ldots, a_{n}\right\} \\
\operatorname{body}(r)^{-} & =\left\{a_{n+1}, \ldots, a_{o}\right\} \\
\operatorname{atom}(P) & =\bigcup_{r \in P}\left(\operatorname{head}(r) \cup \operatorname{body}(r)^{+} \cup \operatorname{body}(r)^{-}\right) \\
\operatorname{body}(P) & =\{\operatorname{body}(r) \mid r \in P\}
\end{aligned}
$$

- A program is called positive if $\operatorname{body}(r)^{-}=\emptyset$ for all its rules

Stable models

- Positive programs
- A set X of atoms is closed under a positive program P iff for any $r \in P$, head $(r) \cap X \neq \emptyset$ whenever body $(r)^{+} \subseteq X$
- X corresponds to a model of P (seen as a formula)
- The set of all \subseteq-minimal sets of atoms being closed under a positive program P is denoted by $\min _{\subseteq}(P)$
- $\min _{\subseteq} \subseteq(P)$ corresponds to the \subseteq-minimal models of P (ditto)

Stable models

- Positive programs
- A set X of atoms is closed under a positive program P iff for any $r \in P$, head $(r) \cap X \neq \emptyset$ whenever $\operatorname{body}(r)^{+} \subseteq X$
- X corresponds to a model of P (seen as a formula)
- The set of all \subseteq-minimal sets of atoms being closed under a positive program P is denoted by $\min _{\subseteq}(P)$
- $\min _{\subseteq}(P)$ corresponds to the \subseteq-minimal models of P (ditto)
- Disjunctive programs
- The reduct, P^{X}, of a disjunctive program P relative to a set X of atoms is defined by

$$
P^{X}=\left\{\operatorname{head}(r) \leftarrow \operatorname{body}(r)^{+} \mid r \in P \text { and } \operatorname{body}(r)^{-} \cap X=\emptyset\right\}
$$

Stable models

- Positive programs
- A set X of atoms is closed under a positive program P iff for any $r \in P$, head $(r) \cap X \neq \emptyset$ whenever $\operatorname{body}(r)^{+} \subseteq X$
- X corresponds to a model of P (seen as a formula)
- The set of all \subseteq-minimal sets of atoms being closed under a positive program P is denoted by $\min _{\subseteq}(P)$
- $\min _{\subseteq}(P)$ corresponds to the \subseteq-minimal models of P (ditto)
- Disjunctive programs
- The reduct, P^{X}, of a disjunctive program P relative to a set X of atoms is defined by

$$
P^{X}=\left\{\operatorname{head}(r) \leftarrow \operatorname{body}(r)^{+} \mid r \in P \text { and } \operatorname{body}(r)^{-} \cap X=\emptyset\right\}
$$

- A set X of atoms is a stable model of a disjunctive program P, if $X \in \min _{\subseteq}\left(P^{X}\right)$

A "positive" example

$$
P=\left\{\begin{array}{lll}
a & \leftarrow & \\
b ; c & \leftarrow & a
\end{array}\right\}
$$

A "positive" example

$$
P=\left\{\begin{array}{lll}
a & \leftarrow & \\
b ; c & \leftarrow & a
\end{array}\right\}
$$

- The sets $\{a, b\},\{a, c\}$, and $\{a, b, c\}$ are closed under P

A "positive" example

$$
P=\left\{\begin{array}{lll}
a & \leftarrow & \\
b ; c & \leftarrow & a
\end{array}\right\}
$$

- The sets $\{a, b\},\{a, c\}$, and $\{a, b, c\}$ are closed under P
- We have $\min _{\subseteq}(P)=\{\{a, b\},\{a, c\}\}$

Graph coloring (reloaded)

```
node(1..6).
edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4;(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).
color(X,r) ; color(X,b) ; color(X,g) :- node(X).
:- edge(X,Y), color(X,C), color(Y,C).
```


Graph coloring (reloaded)

```
node (1..6).
edge(1, (2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).
col(r). col(b). col(g).
color(X,C) : col(C) :- node(X).
:- edge(X,Y), color(X,C), color(Y,C).
```


More Examples

- $P_{1}=\{a ; b ; c \leftarrow\}$

More Examples

- $P_{1}=\{a ; b ; c \leftarrow\}$
- stable models $\{a\},\{b\}$, and $\{c\}$

More Examples

- $P_{2}=\{a ; b ; c \leftarrow, \leftarrow a\}$

More Examples

- $P_{2}=\{a ; b ; c \leftarrow, \leftarrow a\}$
- stable models $\{b\}$ and $\{c\}$

More Examples

- $P_{3}=\{a ; b ; c \leftarrow, \leftarrow a, b \leftarrow c, c \leftarrow b\}$

More Examples

- $P_{3}=\{a ; b ; c \leftarrow, \leftarrow a, b \leftarrow c, c \leftarrow b\}$
- stable model $\{b, c\}$

More Examples

- $P_{4}=\{a ; b \leftarrow c, b \leftarrow$ not a, not $c, a ; c \leftarrow$ not $b\}$

More Examples

- $P_{4}=\{a ; b \leftarrow c, b \leftarrow$ not a, not $c, a ; c \leftarrow$ not $b\}$
- stable models $\{a\}$ and $\{b\}$

More Examples

- $P_{1}=\{a ; b ; c \leftarrow\}$
- stable models $\{a\},\{b\}$, and $\{c\}$
- $P_{2}=\{a ; b ; c \leftarrow, \leftarrow a\}$
- stable models $\{b\}$ and $\{c\}$
- $P_{3}=\{a ; b ; c \leftarrow, \leftarrow a, b \leftarrow c, c \leftarrow b\}$
- stable model $\{b, c\}$
- $P_{4}=\{a ; b \leftarrow c, b \leftarrow$ not a, not $c, a ; c \leftarrow$ not $b\}$
- stable models $\{a\}$ and $\{b\}$

Some properties

- A disjunctive logic program may have zero, one, or multiple stable models
- If X is a stable model of a disjunctive logic program P, then X is a model of P (seen as a formula)
- If X and Y are stable models of a disjunctive logic program P, then $X \not \subset Y$

Some properties

- A disjunctive logic program may have zero, one, or multiple stable models
- If X is a stable model of a disjunctive logic program P, then X is a model of P (seen as a formula)
- If X and Y are stable models of a disjunctive logic program P, then $X \not \subset Y$
- If $A \in X$ for some stable model X of a disjunctive logic program P, then there is a rule $r \in P$ such that $\operatorname{body}(r)^{+} \subseteq X, \operatorname{body}(r)^{-} \cap X=\emptyset$, and $\operatorname{head}(r) \cap X=\{A\}$

An example with variables

$$
P=\left\{\begin{array}{lll}
a(1,2) & \leftarrow \\
b(X) ; c(Y) & \leftarrow a(X, Y), \operatorname{not} c(Y)
\end{array}\right\}
$$

An example with variables

$$
\begin{aligned}
P & =\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(X) ; c(Y) & \leftarrow & a(X, Y), \text { not } c(Y)
\end{array}\right\} \\
\operatorname{ground}(P) & =\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1), \text { not } c(1) \\
b(1) ; c(2) & \leftarrow & a(1,2), \text { not } c(2) \\
b(2) ; c(1) & \leftarrow & a(2,1), \text { not } c(1) \\
b(2) ; c(2) & \leftarrow & a(2,2), \text { not } c(2)
\end{array}\right\}
\end{aligned}
$$

An example with variables

$$
\begin{aligned}
P & =\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(X) ; c(Y) & \leftarrow & a(X, Y), \text { not } c(Y)
\end{array}\right\} \\
\operatorname{ground}(P) & =\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1), \text { not } c(1) \\
b(1) ; c(2) & \leftarrow & a(1,2), \text { not } c(2) \\
b(2) ; c(1) & \leftarrow & a(2,1), \text { not } c(1) \\
b(2) ; c(2) & \leftarrow & a(2,2), \text { not } c(2)
\end{array}\right\}
\end{aligned}
$$

For every stable model X of P, we have

- $a(1,2) \in X$ and
- $\{a(1,1), a(2,1), a(2,2)\} \cap X=\emptyset$

An example with variables

$$
\operatorname{ground}(P)=\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1), \text { not } c(1) \\
b(1) ; c(2) & \leftarrow & a(1,2), \text { not } c(2) \\
b(2) ; c(1) & \leftarrow & a(2,1), \text { not } c(1) \\
b(2) ; c(2) & \leftarrow a(2,2), \text { not } c(2)
\end{array}\right\}
$$

An example with variables

$$
\operatorname{ground}(P)=\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1), \text { not } c(1) \\
b(1) ; c(2) & \leftarrow & a(1,2), \text { not } c(2) \\
b(2) ; c(1) & \leftarrow & a(2,1), \text { not } c(1) \\
b(2) ; c(2) & \leftarrow a(2,2), \text { not } c(2)
\end{array}\right\}
$$

- Consider $X=\{a(1,2), b(1)\}$

An example with variables

$$
\operatorname{ground}(P)^{X}=\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1) \\
b(1) ; c(2) & \leftarrow a(1,2) \\
b(2) ; c(1) & \leftarrow a(2,1) \\
b(2) ; c(2) & \leftarrow a(2,2)
\end{array}\right\}
$$

- Consider $X=\{a(1,2), b(1)\}$

An example with variables

$$
\operatorname{ground}(P)^{X}=\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1) \\
b(1) ; c(2) & \leftarrow a(1,2) \\
b(2) ; c(1) & \leftarrow a(2,1) \\
b(2) ; c(2) & \leftarrow a(2,2)
\end{array}\right\}
$$

- Consider $X=\{a(1,2), b(1)\}$
- We get $\min _{\subseteq}\left(\operatorname{ground}(P)^{X}\right)=\{\{a(1,2), b(1)\},\{a(1,2), c(2)\}\}$

An example with variables

$$
\operatorname{ground}(P)^{X}=\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1) \\
b(1) ; c(2) & \leftarrow & a(1,2) \\
b(2) ; c(1) & \leftarrow a(2,1) \\
b(2) ; c(2) & \leftarrow a(2,2)
\end{array}\right\}
$$

- Consider $X=\{a(1,2), b(1)\}$
- We get $\min _{\subseteq}\left(\operatorname{ground}(P)^{X}\right)=\{\{a(1,2), b(1)\},\{a(1,2), c(2)\}\}$
- X is a stable model of P because $X \in \min _{\subseteq}\left(\operatorname{ground}(P)^{X}\right)$

An example with variables

$$
\operatorname{ground}(P)=\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1), \text { not } c(1) \\
b(1) ; c(2) & \leftarrow & a(1,2), \text { not } c(2) \\
b(2) ; c(1) & \leftarrow & a(2,1), \text { not } c(1) \\
b(2) ; c(2) & \leftarrow & a(2,2), \text { not } c(2)
\end{array}\right\}
$$

An example with variables

$$
\operatorname{ground}(P)=\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1), \text { not } c(1) \\
b(1) ; c(2) & \leftarrow & a(1,2), \text { not } c(2) \\
b(2) ; c(1) & \leftarrow & a(2,1), \text { not } c(1) \\
b(2) ; c(2) & \leftarrow & a(2,2), \text { not } c(2)
\end{array}\right\}
$$

- Consider $X=\{a(1,2), c(2)\}$

An example with variables

$$
\operatorname{ground}(P)^{X}=\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1) \\
b(2) ; c(1) & \leftarrow & a(2,1)
\end{array}\right\}
$$

- Consider $X=\{a(1,2), c(2)\}$

An example with variables

$$
\operatorname{ground}(P)^{X}=\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1) \\
b(2) ; c(1) & \leftarrow & a(2,1)
\end{array}\right\}
$$

- Consider $X=\{a(1,2), c(2)\}$
- We get $\min _{\subseteq}\left(\operatorname{ground}(P)^{X}\right)=\{\{a(1,2)\}\}$

An example with variables

$$
\operatorname{ground}(P)^{X}=\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1) \\
b(2) ; c(1) & \leftarrow & a(2,1)
\end{array}\right\}
$$

- Consider $X=\{a(1,2), c(2)\}$
- We get $\min _{\subseteq}\left(\operatorname{ground}(P)^{X}\right)=\{\{a(1,2)\}\}$
- X is no stable model of P because $X \notin \min _{\subseteq}\left(\operatorname{ground}(P)^{X}\right)$

Default negation in rule heads

- Consider disjunctive rules of the form

$$
\begin{aligned}
& \qquad a_{1} ; \ldots ; a_{m} ; \text { not } a_{m+1} ; \ldots ; \text { not } a_{n} \leftarrow a_{n+1}, \ldots, a_{o}, \text { not } a_{o+1}, \ldots, \text { not } a_{p} \\
& \text { where } 0 \leq m \leq n \leq o \leq p \text { and each } a_{i} \text { is an atom for } 0 \leq i \leq p
\end{aligned}
$$

Default negation in rule heads

- Consider disjunctive rules of the form

$$
a_{1} ; \ldots ; a_{m} ; \text { not } a_{m+1} ; \ldots ; \text { not } a_{n} \leftarrow a_{n+1}, \ldots, a_{o}, \text { not } a_{o+1}, \ldots, \text { not } a_{p}
$$

where $0 \leq m \leq n \leq o \leq p$ and each a_{i} is an atom for $0 \leq i \leq p$

- Given a program P over \mathcal{A}, consider the program

$$
\begin{aligned}
\widetilde{P}= & \left\{\text { head }(r)^{+} \leftarrow \operatorname{body}(r) \cup\left\{\operatorname{not} \widetilde{a} \mid a \in \operatorname{head}(r)^{-}\right\} \mid r \in P\right\} \\
& \cup\left\{\widetilde{a} \leftarrow \text { not } a \mid r \in P \text { and } a \in \operatorname{head}(r)^{-}\right\}
\end{aligned}
$$

Default negation in rule heads

- Consider disjunctive rules of the form

$$
a_{1} ; \ldots ; a_{m} ; \text { not } a_{m+1} ; \ldots ; \text { not } a_{n} \leftarrow a_{n+1}, \ldots, a_{o}, \text { not } a_{o+1}, \ldots, \text { not } a_{p}
$$

where $0 \leq m \leq n \leq o \leq p$ and each a_{i} is an atom for $0 \leq i \leq p$

- Given a program P over \mathcal{A}, consider the program

$$
\begin{aligned}
\widetilde{P}= & \left\{\text { head }(r)^{+} \leftarrow \operatorname{body}(r) \cup\left\{\operatorname{not} \widetilde{a} \mid a \in \operatorname{head}(r)^{-}\right\} \mid r \in P\right\} \\
& \cup\left\{\widetilde{a} \leftarrow \text { not } a \mid r \in P \text { and } a \in \operatorname{head}(r)^{-}\right\}
\end{aligned}
$$

- A set X of atoms is a stable model of a disjunctive program P (with default negation in rule heads) over \mathcal{A}, if $X=Y \cap \mathcal{A}$ for some stable model Y of \widetilde{P} over $\mathcal{A} \cup \widetilde{\mathcal{A}}$

An example

- The program

$$
P=\{a ; \text { not } a \leftarrow\}
$$

An example

- The program

$$
P=\{a ; \text { not } a \leftarrow\}
$$

yields

$$
\widetilde{P}=\{a \leftarrow \operatorname{not} \widetilde{a}\} \cup\{\widetilde{a} \leftarrow \operatorname{not} a\}
$$

An example

- The program

$$
P=\{a ; \text { not } a \leftarrow\}
$$

yields

$$
\widetilde{P}=\{a \leftarrow \operatorname{not} \widetilde{a}\} \cup\{\widetilde{a} \leftarrow \text { not } a\}
$$

- \widetilde{P} has two stable models, $\{a\}$ and $\{\widetilde{a}\}$

An example

- The program

$$
P=\{a ; \text { not } a \leftarrow\}
$$

yields

$$
\widetilde{P}=\{a \leftarrow \operatorname{not} \widetilde{a}\} \cup\{\widetilde{a} \leftarrow \text { not } a\}
$$

- \widetilde{P} has two stable models, $\{a\}$ and $\{\widetilde{a}\}$
- This induces the stable models $\{a\}$ and \emptyset of P

Computational Aspects: Overview

Outline

4 Complexity

Complexity

Let a be an atom and X be a set of atoms

Complexity

Let a be an atom and X be a set of atoms

- For a positive normal logic program P :
- Deciding whether X is the stable model of P is P -complete
- Deciding whether a is in the stable model of P is P -complete

Complexity

Let a be an atom and X be a set of atoms

- For a positive normal logic program P :
- Deciding whether X is the stable model of P is P -complete
- Deciding whether a is in the stable model of P is P -complete
- For a normal logic program P :
- Deciding whether X is a stable model of P is P-complete
- Deciding whether a is in a stable model of P is NP-complete

Complexity

Let a be an atom and X be a set of atoms

- For a positive normal logic program P :
- Deciding whether X is the stable model of P is P -complete
- Deciding whether a is in the stable model of P is P -complete
- For a normal logic program P :
- Deciding whether X is a stable model of P is P -complete
- Deciding whether a is in a stable model of P is NP-complete
- For a normal logic program P with optimization statements:
- Deciding whether X is an optimal stable model of P is co-NP-complete
- Deciding whether a is in an optimal stable model of P is Δ_{2}^{P}-complete

Complexity

Let a be an atom and X be a set of atoms

- For a positive disjunctive logic program P :
- Deciding whether X is a stable model of P is co-NP-complete
- Deciding whether a is in a stable model of P is $\mathrm{NP}^{N P}$-complete
- For a disjunctive logic program P :
- Deciding whether X is a stable model of P is co-NP-complete
- Deciding whether a is in a stable model of P is NP ${ }^{N P}$-complete
- For a disjunctive logic program P with optimization statements:
- Deciding whether X is an optimal stable model of P is co-NP ${ }^{N P}$-complete
- Deciding whether a is in an optimal stable model of P is Δ_{3}^{P}-complete

Complexity

Let a be an atom and X be a set of atoms

- For a positive disjunctive logic program P :
- Deciding whether X is a stable model of P is co-NP-complete
- Deciding whether a is in a stable model of P is NP ${ }^{N P}$-complete
- For a disjunctive logic program P :
- Deciding whether X is a stable model of P is co-NP-complete
- Deciding whether a is in a stable model of P is NP ${ }^{N P}$-complete
- For a disjunctive logic program P with optimization statements:
- Deciding whether X is an optimal stable model of P is co-NP ${ }^{N P}$-complete
- Deciding whether a is in an optimal stable model of P is Δ_{3}^{P}-complete
- For a propositional theory Φ :
- Deciding whether X is a stable model of Φ is co-NP-complete
- Deciding whether a is in a stable model of Φ is $N P^{N P}$-complete

References

Torin Martin Gebser, Benjamin Kaufmann Roland Kaminski, and Torsten Schaub.
Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers, 2012. doi=10.2200/S00457ED1V01Y201211AIM019.

- See also: http://potassco.sourceforge.net

