TECHNISCHE
UNIVERSITAT
DRESDEN

Artificial Intelligence, Computational Logic

PROBLEM SOLVING AND SEARCH
IN ARTIFICIAL INTELLIGENCE

Lecture 7 ASP Il *siides adapted from Torsten Schaub [Gebser et al.(2012)]

Sarah Gaggl

Dresden

Agenda

@ Introduction

@ Uninformed Search versus Informed Search (Best First Search, A*
Search, Heuristics)

e Local Search, Stochastic Hill Climbing, Simulated Annealing

© Tabu Search

e Answer-set Programming (ASP)

@ Constraint Satisfaction (CSP)

0 Structural Decomposition Techniques (Tree/Hypertree Decompositions)
@ Evolutionary Algorithms/ Genetic Algorithms

TU Dresden PSSAI slide 2 of 103

Overview ASP llI

® |anguage
© Extended language
® | anguage Extensions

Two kinds of negation
Disjunctive logic programs

® Computational Aspects
© Complexity

TU Dresden PSSAI

slide 3 of 103

Language: Overview

0 Extended language

TU Dresden PSSAI slide 4 of 103

Outline

0 Extended language

TU Dresden PSSAI slide 5 of 103

Outline

G Extended language
@ Conditional literal

TU Dresden PSSAI slide 6 of 103

Conditional literals

® Syntax A conditional literal is of the form
00y, ...
where £ and ¢; are literals for 0 <i <n

® [nformal meaning A conditional literal can be regarded as the list of
elementsinthe set {¢ | ¢;,...,4,}

TU Dresden PSSAI slide 7 of 103

Conditional literals

® Syntax A conditional literal is of the form

0y,

where £ and ¢; are literals for 0 <i <n

® [nformal meaning A conditional literal can be regarded as the list of
elementsinthe set {¢ | ¢;,...,4,}

® Note The expansion of conditional literals is context dependent

TU Dresden PSSAI slide 8 of 103

Conditional literals

® Syntax A conditional literal is of the form
00y, ...

where £ and ¢; are literals for 0 <i <n

® [nformal meaning A conditional literal can be regarded as the list of
elementsinthe set {¢ | ¢;,...,4,}

® Note The expansion of conditional literals is context dependent
® Example Given ‘p(1..3). g(2).’

r(X) :p(X), notg(X) :—- r(X) :p(X), notg(X); 1{r(X):p(X), notg(X) }.
is instantiated to

r(l); r(3) = r(l), r(3), 1 { £(1); r(3) }.

TU Dresden PSSAI slide 9 of 103

Conditional literals

® Syntax A conditional literal is of the form
00y, ...

where £ and ¢; are literals for 0 <i <n

® [nformal meaning A conditional literal can be regarded as the list of
elementsinthe set {¢ | ¢;,...,4,}

® Note The expansion of conditional literals is context dependent
® Example Given ‘p(1..3). g(2).’

r(X) :p(X), notg(X) :— r(X) :p(X),notg(X); 1{r(X) :p(X), notg(X) }.

is instantiated to

r(l); r(3) = r(l), r(3), 1 { £(1); r(3) }.

TU Dresden PSSAI slide 10 of 103

Conditional literals

® Syntax A conditional literal is of the form
00y, ...

where £ and ¢; are literals for 0 <i <n

® [nformal meaning A conditional literal can be regarded as the list of
elementsinthe set {¢ | ¢;,...,4,}

® Note The expansion of conditional literals is context dependent
® Example Given ‘p(1..3). g(2).’

r(X) :p(X), notg(X) :— r(X) :p(X), notg(X); 1{r(X) :p(X), notg(X) }.

is instantiated to

r(l); r(3) = r(l), r(3), 1 { £(1); r(3) }.

TU Dresden PSSAI slide 11 of 103

Conditional literals

® Syntax A conditional literal is of the form
00y, ...

where £ and ¢; are literals for 0 <i <n

® [nformal meaning A conditional literal can be regarded as the list of
elementsinthe set {¢ | ¢;,...,4,}

® Note The expansion of conditional literals is context dependent
® Example Given ‘p(1..3). g(2).’

r(X) :p(X), notg(X) :- r(X):p(X), notg(X); 1{r(X):p(X), notqg(X)}.
is instantiated to

r(l); r(3) = r(l), r(3), 1 { £(1); r(3) }.

TU Dresden PSSAI slide 12 of 103

Conditional literals

® Syntax A conditional literal is of the form
00y, ...

where £ and ¢; are literals for 0 <i <n

® [nformal meaning A conditional literal can be regarded as the list of
elementsinthe set {¢ | ¢;,...,4,}

® Note The expansion of conditional literals is context dependent
® Example Given ‘p(1..3). g(2).’

r(X) :p(X), notg(X) :—- r(X) :p(X), notg(X); 1{r(X):p(X), notg(X) }.
is instantiated to

r(l); r(3) = r(l), r(3), 1 { £(1); r(3) }.

TU Dresden PSSAI slide 13 of 103

Outline

G Extended language

@ Optimization statement

TU Dresden PSSAI slide 14 of 103

Optimization statement

® |dea Express (multiple) cost functions subject to minimization
and/or maximization

® Syntax A minimize statement is of the form
minimize { w1Qpy : £y, ..., w,Qp, : £, }.

where each ¢; is a literal; and w; and p; are integers for 1 <i <n

TU Dresden PSSAI slide 15 of 103

Optimization statement

® |dea Express (multiple) cost functions subject to minimization
and/or maximization

® Syntax A minimize statement is of the form
minimize { w1Qpy : £y, ..., w,Qp, : £, }.

where each ¢; is a literal; and w; and p; are integers for 1 <i <n

Priority levels, p;, allow for representing lexicographically ordered
minimization objectives

TU Dresden PSSAI slide 16 of 103

Optimization statement

® |dea Express (multiple) cost functions subject to minimization
and/or maximization

® Syntax A minimize statement is of the form
minimize { w1Qpy : £y, ..., w,Qp, : £, }.

where each ¢; is a literal; and w; and p; are integers for 1 <i <n

Priority levels, p;, allow for representing lexicographically ordered
minimization objectives

® \Meaning A minimize statement is a directive that instructs the ASP solver
to compute optimal stable models by minimizing a weighted sum of
elements

TU Dresden PSSAI slide 17 of 103

Optimization statement

® A maximize statement of the form
maximize { wi@Qpy : €y, ..., w,Qpy, : £, }

stands for minimize { —w,@py : £y, ..., —w,@Qpy, : £, }

TU Dresden PSSAI slide 18 of 103

Optimization statement

® A maximize statement of the form
maximize { wi@Qpy : €y, ..., w,Qpy, : £, }
stands for minimize { —wQpy : £y, ..., —w,Qp, : £, }

® [Example When configuring a computer, we may want to maximize hard
disk capacity, while minimizing price

#maximize { 250@1:hd(1), 500@1l:hd(2), 750@1:hd(3), 1000@1:hd(4) }.
#minimize { 30@2:hd (1), 40@2:hd(2), 60€2:hd(3), 80@2:hd(4) }.

The priority levels indicate that (minimizing) price is more important than
(maximizing) capacity

TU Dresden PSSAI slide 19 of 103

Language Extensions: Overview

e Two kinds of negation

e Disjunctive logic programs

TU Dresden PSSAI slide 20 of 103

Outline

e Two kinds of negation

TU Dresden PSSAI slide 21 of 103

Motivation

® (Classical versus default negation

— Symbol — and not

TU Dresden PSSAI slide 22 of 103

Motivation

® (Classical versus default negation

TU Dresden

— Symbol — and not

— Idea
® —g
® nota

~
~
~
~

—a € X
ad¢ X

PSSAI

slide 23 of 103

Motivation

® (Classical versus default negation

— Symbol — and not
— Idea

e —¢ —a X

® nwota = a¢X
— Example

® cross <— —train
® cross <— not train

TU Dresden PSSAI

slide 24 of 103

Classical negation

® We consider logic programs in negation normal form
— That is, classical negation is applied to atoms only

TU Dresden PSSAI slide 25 of 103

Classical negation

® We consider logic programs in negation normal form
— That is, classical negation is applied to atoms only
e Given an alphabet A of atoms, let A = {—a | a« € A} such that AN A =0

TU Dresden PSSAI slide 26 of 103

Classical negation

® We consider logic programs in negation normal form

— That is, classical negation is applied to atoms only
e Given an alphabet .A of atoms, let A = {-a | a € A} suchthat AN A =0
® Given a program P over A, classical negation is encoded by adding

P ={a+b,~blac (AUA),bec A}

TU Dresden PSSAI slide 27 of 103

Classical negation

e Given an alphabet .A of atoms, let A = {-a | a € A} suchthat AN A =0
® Given a program P over A, classical negation is encoded by adding

P ={a+b,~blac (AUA),bec A}

® Aset X of atoms is a stable model of a program P over AU A,
if X is a stable model of PU P~

TU Dresden PSSAI slide 28 of 103

An example

® The program

P = {a<+notb, b+ nota} U{c <+ b, =c + b}

TU Dresden PSSAI slide 29 of 103

An example

® The program

P = {a<+notb, b+ nota} U{c <+ b, =c + b}

induces
a
—a
. b

P =
—b
c
-
TU Dresden

T

a,a
a,—a
a,a
a,na
a,—a
a,a

PSSAI

I N

b, b
b, —b
b, b
b, —b
b, —b
b, —b

a < c¢,7c

-a <+ ¢, c

b <+ ¢ ¢

-b c,C

c 4 ¢,

-c < c,7¢
slide 30 of 103

An example

® The program

P = {a<+notb, b+ nota} U{c <+ b, =c + b}

induces
a <+ a,ma a <« b,-b a <+ ¢, ¢
-a <+ a,—a —a <+ b,—b —a <+ c¢,c
. b <+ a,—a b <+ b,—b b <+ ¢ ¢

P =

-b <+ a,—a -b <+ b,—b -b <+ c¢,c
c <+ a,a ¢ << b,-b c 4 ¢,
-c 4 a,7a —c < b,—b -c 4 ¢,c

® The stable models of P are given by the ones of P U P, viz {a}

TU Dresden PSSAI slide 31 of 103

Properties

® The only inconsistent stable “model” is X = AU A

TU Dresden PSSAI slide 32 of 103

Properties

® The only inconsistent stable “model” is X = AU A
e Note Strictly speaking, an inconsistent set like A U A is not a model

TU Dresden PSSAI slide 33 of 103

Properties

® The only inconsistent stable “model” is X = AU A
e Note Strictly speaking, an inconsistent set like A U A is not a model

® For a logic program P over A U A, exactly one of the following two cases
applies:

All stable models of P are consistent or
X = AU Ais the only stable model of P

TU Dresden PSSAI slide 34 of 103

Train spotting

® P, = {cross < not train}

® P, = {cross < —train}

® P35 = {cross < —train, —train <}

® P, = {cross < —train, —train <, —cross <}
® Ps = {cross < —train, —train < not train}

® Pg = {cross < —train, —train < not train, —cross <—}

TU Dresden PSSAI slide 35 of 103

Train spotting

® P, = {cross < not train}
— stable model: {cross}

TU Dresden PSSAI slide 36 of 103

Train spotting

® P, = {cross < —train}

TU Dresden PSSAI slide 37 of 103

Train spotting

® P, = {cross < —train}
— stable model: 0

TU Dresden PSSAI slide 38 of 103

Train spotting

® Py = {cross < —train, —train <}

TU Dresden PSSAI slide 39 of 103

Train spotting

® Py = {cross < —train, —train <}
— stable model: {cross, —train}

TU Dresden PSSAI slide 40 of 103

Train spotting

® P, = {cross < —train, —train <—, —cross <}

TU Dresden PSSAI slide 41 of 103

Train spotting

® P, = {cross < —itrain, —train <, —cross <}
— stable model: {cross, —cross, train, —~train} inconsistent as A U A

TU Dresden PSSAI slide 42 of 103

Train spotting

® Ps = {cross < —train, —train < not train}

TU Dresden PSSAI slide 43 of 103

Train spotting

® Ps = {cross < —train, —train < not train}
— stable model: {cross, —train}

TU Dresden PSSAI slide 44 of 103

Train spotting

® Pg = {cross < —train, —train < not train, —cross <}

TU Dresden PSSAI slide 45 of 103

Train spotting

® Pg = {cross < —train, —train < not train, —cross <}
— no stable model

TU Dresden PSSAI slide 46 of 103

Train spotting

® P, = {cross < not train}
stable model: {cross}

® P, = {cross < —train}
stable model: ¢

® P35 = {cross < —train, —train <}
— stable model: {cross, —train}

® P, = {cross < —itrain, —train <—, —cross <}
— stable model: {cross, ~cross, train, —train} inconsistent as A U A

® Ps = {cross < —train, —train < not train}
— stable model: {cross, —train}

® Pg = {cross < —train, —train < not train, —cross <}
— no stable model

TU Dresden PSSAI slide 47 of 103

Default negation in rule heads

® We consider logic programs with default negation in rule heads

TU Dresden PSSAI slide 48 of 103

Default negation in rule heads

® We consider logic programs with default negation in rule heads
® Given an alphabet .4 of atoms, let A = {@ | a € A} suchthat AN A = 0

TU Dresden PSSAI slide 49 of 103

Default negation in rule heads

® We consider logic programs with default negation in rule heads
® Given an alphabet .4 of atoms, let A = {@ | a € A} suchthat AN A = 0
® Given a program P over A, consider the program

P = {r € P | head(r) # not a}
U {4 body(r) U {nota} | r € P and head(r) = not a}
U{d <+ nota|r e Pand head(r) = not a}

TU Dresden PSSAI slide 50 of 103

Default negation in rule heads

® Given an alphabet .4 of atoms, let A = {@ | a € A} suchthat AN A = 0
® Given a program P over A, consider the program

P = {r € P | head(r) # not a}
U {4 body(r) U {nota} | r € P and head(r) = not a}
U{a@ <« nota|re Pand head(r) = not a}

® A set X of atoms is a stable model of a program P (with default negation in
rule heads) over A, ~ _
if X = Y N A for some stable model Y of P over AU A

TU Dresden PSSAI slide 51 of 103

Outline

e Disjunctive logic programs

TU Dresden PSSAI slide 52 of 103

Disjunctive logic programs

® A disjunctive rule, r, is of the form
apy... 3am <= 41y ,0n, ROt Ayt 1, ..., NOt g

where 0 < m <n <oandeachag;isanatomfor0 <i<o
® A disjunctive logic program is a finite set of disjunctive rules

TU Dresden PSSAI slide 53 of 103

Disjunctive logic programs

® A disjunctive rule, r, is of the form
aps... 3Am < Aug1y -5 Any, NOL Ay, . .. ROt Ay

where 0 < m <n <oandeachag;isanatomfor0 <i<o
® A disjunctive logic program is a finite set of disjunctive rules
® Notation

head(r) = A{ai,...,am}
body(r) = A{aw+1,...,an,n0t ayyy,...,n0tay}
body(Nt = {any1,.. . an}
body(r)” = Aapt1,...,a0}
atom(P) = U,cp (head(r) U body(r)* U body(r)_)
body(P) = {body(r)|r € P}

TU Dresden PSSAI slide 54 of 103

Disjunctive logic programs

® A disjunctive rule, r, is of the form
aps... 3Am < Aug1y -5 Any, NOL Ay, . .. ROt Ay

where 0 < m <n <o andeach g; is an atomfor0 <i <o
® A disjunctive logic program is a finite set of disjunctive rules
® Notation

head(r) = A{ai,...,am}
body(r) = A{aw+1,...,an,n0t ayyy,...,n0tay}
body(r)+ = Aamt1s--. an}
body(r)” = Aapt1,...,a0}
atom(P) = UreP (head(r) U body(r)+ U body(r)_)
body(P) = {body(r)|r € P}

® A program is called positive if body(r)~ = 0 for all its rules

TU Dresden PSSAI slide 55 of 103

Stable models

® Positive programs
— A set X of atoms is closed under a positive program P iff
for any r € P, head(r) N X # 0 whenever body(r)™ C X
® X corresponds to a model of P (seen as a formula)
— The set of all C-minimal sets of atoms being closed under a
positive program P is denoted by minc (P)
® minc (P) corresponds to the C-minimal models of P (ditto)

TU Dresden PSSAI slide 56 of 103

Stable models

® Positive programs
— A set X of atoms is closed under a positive program P iff
for any r € P, head(r) N X # 0 whenever body(r)™ C X
® X corresponds to a model of P (seen as a formula)
— The set of all C-minimal sets of atoms being closed under a
positive program P is denoted by minc (P)
® minc (P) corresponds to the C-minimal models of P (ditto)
® Disjunctive programs
— The reduct, PX, of a disjunctive program P relative to a set X of
atoms is defined by

PX = {head(r) < body(r)" | r € P and body(r)” N X = 0}

TU Dresden PSSAI slide 57 of 103

Stable models

® Positive programs
— A set X of atoms is closed under a positive program P iff
for any r € P, head(r) N X # 0 whenever body(r)™ C X
® X corresponds to a model of P (seen as a formula)
— The set of all C-minimal sets of atoms being closed under a
positive program P is denoted by minc (P)
® minc (P) corresponds to the C-minimal models of P (ditto)
® Disjunctive programs
— The reduct, PX, of a disjunctive program P relative to a set X of
atoms is defined by

PX = {head(r) < body(r)" | r € P and body(r)” N X = 0}

— Aset X of atoms is a stable model of a disjunctive program P,
if X € minc (PX)

TU Dresden PSSAI slide 58 of 103

A “positive” example

a —
P_{b;c «— a}

TU Dresden PSSAI slide 59 of 103

A “positive” example

a —
P_{b;c — a}

® The sets {a, b}, {a,c}, and {a, b, c} are closed under P

TU Dresden PSSAI slide 60 of 103

A “positive” example

a —
P_{b;c — a}

® The sets {a, b}, {a,c}, and {a, b, c} are closed under P
® We have minc (P) = {{a, b}, {a,c}}

TU Dresden PSSAI slide 61 of 103

Graph coloring (reloaded)

node (1..6).

edge (1, (2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge (4, (1;2)) . edge (5, (3;4;6)). edge(6,(2;3;5)).
color(X,r) ; color(X,b) ; color(X,g) :- node(X).

:— edge(X,Y), color(X,C), color(Y,C).

TU Dresden PSSAI slide 62 of 103

Graph coloring (reloaded)

node (1..6) .

edge (1, (2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge (4, (1;2)) . edge (5, (3;4;6)). edge(6,(2;3;5)).
col(r). col(b). col(g) .

color(X,C) : col(C) :- node(X).

:— edge (X,Y), color(X,C), color(Y,C).

TU Dresden PSSAI slide 63 of 103

More Examples

® Pp={a;b;c+}

TU Dresden PSSAI slide 64 of 103

More Examples

® Pp={a;b;c+}
— stable models {a}, {b}, and {c}

TU Dresden PSSAI slide 65 of 103

More Examples

o Py={a;b;c+, «a}

TU Dresden PSSAI slide 66 of 103

More Examples

o Py={a;b;c+, «a}
— stable models {»} and {c}

TU Dresden PSSAI slide 67 of 103

More Examples

® Ps={a;b;c+ ,+a,b+c,c< b}

TU Dresden PSSAI slide 68 of 103

More Examples

® Py={a;bjc+,<a,b<+c,c<+ b}
— stable model {b, c}

TU Dresden PSSAI slide 69 of 103

More Examples

® Py={a;b<c,b<notaynotc, a;c< notb}

TU Dresden PSSAI slide 70 of 103

More Examples

® Py={a;b<c,b<notaynotc, a;c< notb}
— stable models {a} and {b}

TU Dresden PSSAI slide 71 of 103

More Examples

o Py={a;b;c+}
— stable models {a}, {b}, and {c}

Py={a;b;c+, < a}
— stable models {»} and {c}

Ps={a;b;c<+,+a,b<+c,c<+ b}
— stable model {b, c}

® Py={a;b<c,b<notaynotc, a;c< notb}
— stable models {a} and {b}

TU Dresden PSSAI slide 72 of 103

Some properties

® A disjunctive logic program may have zero, one, or multiple stable models

® |f X is a stable model of a disjunctive logic program P,
then X is a model of P (seen as a formula)

® [f X and Y are stable models of a disjunctive logic program P,
thenX ¢ Y

TU Dresden PSSAI slide 73 of 103

Some properties

® A disjunctive logic program may have zero, one, or multiple stable models
® |f X is a stable model of a disjunctive logic program P,

then X is a model of P (seen as a formula)
® [f X and Y are stable models of a disjunctive logic program P,

thenX ¢ Y

® |f A € X for some stable model X of a disjunctive logic program P, then

there is a rule r € P such that
body(r)™ C X, body(r)” N X = 0, and head(r) N X = {A}

TU Dresden PSSAI slide 74 of 103

An example with variables

_ a(1,2) —
o= {b(X);c(Y) - a(X,Y),notc(Y)}

TU Dresden PSSAI slide 75 of 103

An example with variables

_ a(1,2) «
P { b(X) ic(Y) <« a(X,Y),not c(Y) }
a(l,2) —
b(1);¢(1) <« a(l,1),notc(1)
ground(P) = b(1);¢(2) <+ a(1,2),not c(2)
b(2);¢(1) <« a(2,1),notc(1)
b(2);¢(2) <« a(2,2),notc(2)

TU Dresden PSSAI slide 76 of 103

An example with variables

a(1,2) —
P { b(X) ic(Y) <« a(X,Y),not c(Y) }
a(l,2) —
b(1);¢(1) <« a(l,1),notc(1)
ground(P) = b(1);¢(2) <+ a(1,2),not c(2)
b(2);¢(1) <« a(2,1),notc(1)
b(2);¢(2) <« a(2,2),notc(2)

For every stable model X of P, we have
® 4(1,2) € X and
o (a(1,1),a(2,1),a(2,2)}NX =0

TU Dresden PSSAI slide 77 of 103

An example with variables

«
b(1);¢(l) <« a(l,1),notc(1)
ground(P) = b(1);¢(2) <« a(l,2),no0t c(2)
b(2);¢(l) <« a(2,1),notc(1)
b(2);¢(2) <« a(2,2),notc(2)

TU Dresden PSSAI slide 78 of 103

An example with variables

«
b(1);¢(l) <« a(l,1),notc(1)
ground(P) = b(1);¢(2) <« a(l,2),no0t c(2)
b(2);¢(l) <« a(2,1),notc(1)
b(2);¢(2) <« a(2,2),notc(2)

e Consider X = {a(1,2), (1)}

TU Dresden PSSAI slide 79 of 103

An example with variables

b(1) 5¢(1) : a(l,1)
ground(P)X = b(1);¢(2) <« a(l,2)
b(2)5¢(l) <« a(2,1)
b(2);¢(2) <« a(2,2)

e Consider X = {a(1,2), (1)}

TU Dresden PSSAI slide 80 of 103

An example with variables

b(1) 5¢(1) : a(l,1)
ground(P)X = b(1);¢(2) <« a(l,2)
b(2);¢(1) « a(2,1)
b(2);¢(2) <« a(2,2)

® Consider X = {a(1,2),b(1)}
® We get ming(ground(P)X) ={{a(1,2),b(1)}, {a(1,2),c(2)} }

TU Dresden PSSAI slide 81 of 103

An example with variables

b(1) 5¢(1) : a(l,1)
gmund(P)X = b(1);¢(2) <« a(l,2)
b(2);¢(1) « a(2,1)
b(2);¢(2) <« a(2,2)

® Consider X = {a(1,2),b(1)}
® We get minc (ground(P)X) = { {a(1,2),b(1)}, {a(1,2),c(2)} }
® X is a stable model of P because X € minc (ground(P)¥)

TU Dresden PSSAI slide 82 of 103

An example with variables

a(l,2) —

b(1);¢(1) <+ a(l,1),norc(1)
ground(P) = b(1);¢(2) < a(1,2),not c(2)

b(2);¢(l) <+ a(2,1),notc(1)

b(2);¢(2) <« a(2,2),n0tc(2)

TU Dresden PSSAI slide 83 of 103

An example with variables

a(l, —

b(1);¢(1) <+ a(l,1),norc(1)
ground(P) = b(1);¢(2) < a(1,2),not c(2)

b(2);¢(l) <+ a(2,1),notc(1)

b(2);¢(2) <« a(2,2),n0tc(2)

e Consider X = {a(1,2),c¢(2)}

TU Dresden PSSAI slide 84 of 103

An example with variables

ground(P)X =

e Consider X = {a(1,2),¢(2)}

TU Dresden PSSAI slide 85 of 103

An example with variables

ground(P)X =

® Consider X = {a(1,2),¢(2)}
® We get minc (ground(P)*) = { {a(1,2)} }

TU Dresden PSSAI

slide 86 of 103

An example with variables

ground(P)X =

e Consider X = {a(1,2),¢(2)}
® We get minc (ground(P)*) = { {a(1,2)} }
® X is no stable model of P because X ¢ minc (ground(P)X)

TU Dresden PSSAI slide 87 of 103

Default negation in rule heads

® Consider disjunctive rules of the form
Aap ... 3Am sNOt Ayt 5. SN0 Ay <= Ayt]y -« Aoy NOL Aot 1, - .., NOL dp

where 0 <m <n<o<pandeachg;isanatomfor0 <i<p

TU Dresden PSSAI slide 88 of 103

Default negation in rule heads

® Consider disjunctive rules of the form
ap y... ;Qm N0t Ayt 5. .. RO Ay <— Ap41, ... ,00,NOt Ayt 1, ..., RO Ap

where 0 <m <n<o<pandeachg;isanatomfor0 <i<p
® Given a program P over A, consider the program

P = {head(r)* < body(r) U {not @ | a € head(r)”} | r € P}
U{d <+ nota|re Panda € head(r)™ }

TU Dresden PSSAI slide 89 of 103

Default negation in rule heads

® Consider disjunctive rules of the form
apy... ;Am N0t Ay 5. 3NOF Ay < Ay 1y ..., 0o, NOE Ayt 1, ..., NOL Ay

where 0 <m <n<o<pandeachg;isanatomfor0 <i<p
® Given a program P over A, consider the program

P = {head(r)* < body(r) U {not @ | a € head(r)”} | r € P}
U{a <+ nota|rePanda € head(r)™ }
® A set X of atoms is a stable model of a disjunctive program P

(with default negation in rule heads) over A, B
if X = Y N A for some stable model Y of P over AU A

TU Dresden PSSAI slide 90 of 103

An example

® The program
P={a;nota<+}

TU Dresden PSSAI slide 91 of 103

An example

® The program

yields

TU Dresden

P={a;nota<+}

P = {a « not @} U {a + not a}

PSSAI

slide 92 of 103

An example

® The program
P={a;nota<+}

yields _
P = {a < nota} U{a < not a}

® P has two stable models, {a} and {a}

TU Dresden PSSAI

slide 93 of 103

An example

® The program
P={a;nota<+}

yields _
P = {a < nota} U{a < not a}

® P has two stable models, {a} and {a}
® This induces the stable models {a} and () of P

TU Dresden PSSAI slide 94 of 103

Computational Aspects: Overview

o Complexity

TU Dresden PSSAI slide 95 of 103

Outline

o Complexity

TU Dresden PSSAI slide 96 of 103

Complexity

Let a be an atom and X be a set of atoms

TU Dresden PSSAI slide 97 of 103

Complexity

Let a be an atom and X be a set of atoms

® For a positive normal logic program P:

— Deciding whether X is the stable model of P is P-complete
— Deciding whether a is in the stable model of P is P-complete

TU Dresden PSSAI slide 98 of 103

Complexity

Let a be an atom and X be a set of atoms

® For a positive normal logic program P:
— Deciding whether X is the stable model of P is P-complete
— Deciding whether a is in the stable model of P is P-complete
® For a normal logic program P:

— Deciding whether X is a stable model of P is P-complete
— Deciding whether a is in a stable model of P is NP-complete

TU Dresden PSSAI slide 99 of 103

Complexity

Let a be an atom and X be a set of atoms

® For a positive normal logic program P:

— Deciding whether X is the stable model of P is P-complete

— Deciding whether a is in the stable model of P is P-complete
® For a normal logic program P:

— Deciding whether X is a stable model of P is P-complete

— Deciding whether a is in a stable model of P is NP-complete
® For a normal logic program P with optimization statements:

— Deciding whether X is an optimal stable model of P is
co-NP-complete

— Deciding whether « is in an optimal stable model of P is
Af-complete

TU Dresden PSSAI slide 100 of 103

Complexity

Let a be an atom and X be a set of atoms

® For a positive disjunctive logic program P:
— Deciding whether X is a stable model of P is co-NP-complete
— Deciding whether a is in a stable model of P is NP"’-complete
® For a disjunctive logic program P:
— Deciding whether X is a stable model of P is co-NP-complete
— Deciding whether a is in a stable model of P is NP"’-complete
® [or a disjunctive logic program P with optimization statements:

— Deciding whether X is an optimal stable model of P is
co-NPM-complete

— Deciding whether « is in an optimal stable model of P is
Af-complete

TU Dresden PSSAI slide 101 of 103

Complexity

Let a be an atom and X be a set of atoms

® For a positive disjunctive logic program P:
— Deciding whether X is a stable model of P is co-NP-complete
— Deciding whether a is in a stable model of P is NP"’-complete
® For a disjunctive logic program P:
— Deciding whether X is a stable model of P is co-NP-complete
— Deciding whether a is in a stable model of P is NP"’-complete
® [or a disjunctive logic program P with optimization statements:
— Deciding whether X is an optimal stable model of P is
co-NPM-complete
— Deciding whether « is in an optimal stable model of P is
Af-complete
® For a propositional theory ®:
— Deciding whether X is a stable model of ® is co-NP-complete
— Deciding whether a is in a stable model of ® is NP¥’-complete

TU Dresden PSSAI slide 102 of 103

References

@ Martin Gebser, Benjamin Kaufmann Roland Kaminski, and Torsten
Schaub.
Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012.
doi=10.2200/S00457ED1V01Y201211AIMO19.

® See also: http://potassco.sourceforge.net

TU Dresden PSSAI slide 103 of 103

http://potassco.sourceforge.net

	Language
	Extended language
	Conditional literal
	Optimization statement

	Language Extensions
	Two kinds of negation
	Disjunctive logic programs

	Computational Aspects
	Complexity

