
Finite and Algorithmic Model Theory : Lecture 4

Ehrenfeucht - Fraissé Games
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During the i- th round :

(1) F selects a structure ( e.g. A ) and its element ai

(2) t responds in the other structure ( e.g. B) and selects bi

such that there is a partial isomorphism between 5th {a.ix.→ai} and 53L {baba , -→
bi}

iF wins if tf cannot make its move .

aj = c
" iff bj = CB

t wins if he survives on rounds . (Qj, , . . . . ay;) c- R
"
iff (bj, , . . . . by;) c- RB

has
We write 17 Em B if Bltrtra winning strategy in m- round E-F game on 37 and Po .



Why E - F games are useful ?

(1) Quantifier rank Examples :

*
qr ( ]¥y. ]IR(say, 2-1) =3
*
qr ( Ix A-G) ^µ¥R(say)) ✓ (72-0-4-11)=2
* Let chfx , y )=E( say) , yn+, := Iz yn (x,z)x ynlz , y)

yn has 2h-1 quantifiers but g. ( yn) = n .

✗
FOK * For y in prenex - normal- form qr

= #quantifiers

µµBH Theorem . A -=m Biff for all ye Fom we have 371=4 ⇐>531=4 .

Boo Proof : todo .

(2) How to use them ? E.g. we want to show that evenness /parity is not 1=010 ] - definable .

# ←By zero - one laws

By compactness , employ
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Teen = lie , -2m In c- IN} Todd =L >yin}
+ Skolem theorem to get countable models
+ 3 with E E -F games ?
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Ad absurdum
, assume that such a formula exists .

Call it y and let qr( g) = m .

Then find Am and 33m such that Am -7m Bm and Am 1=4 and531-ty.o.FIof odd size

A contradiction with the fact thot ye Form . £



(2) How to use them ? E.g. we want to show that parity is not 1=0101 ] - definable .

Ad absurdum
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Winning strategy for tf i just take a fresh element each round

( or the same if the F picks the same )

B. Lemma : If 17 and Po are sets with IAI >m and 11312m then A _=m PD .



(2) E.g. we want to show that connectivity is not FO[ { E} ] - definable .

Ad absurdum
, assume that such a formula exists .
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(3) E.g. we want to show that evenness of linear orders is not FO[ < ] - definable .

Ad absurdum
, assume that such a formula exists .

Call it y and let qr( g) =m .

Then find 37m and 33m such that Am -7m Bm and Am 1=4 and 53# y .
TE FIX

A contradiction with the fact thot ye Form . £

Take Am = 1-2- 3- . - .
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To show that A-m Em Bm
,
we show a stronger result :

Theorem : If 57 and 33 are {min , max , £ } - structures ,
where E is interpreted as

a linear order over the domain
,
min and max are constant symbols

gag interpreted as the first and the last element w- r
-
t

.

E
,
then

Bo IAI 7 2m and 113172m implies 57 Em B.



Theorem : If 57 and 33 are {min , max , £ } - structures ,
where I is interpreted as

a linear order over the domain
,
min and max are constant symbols

qaq interpreted as the first and the last element w.r.AE
,
then

Bo IAI 72m and 113172m implies 57 Em B.
Proof :

Let ñ = ( a- , , ao , ar , . . - , ai ) and b→=( b- i , too , be .bz , . . . , bi )
11 " 4 4

min
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"
mints ma×B

denote the result of the first i rounds of E-F games on A and 53
.

We will show
, inductively ,

that the duplicator ( Y ) can survive m rounds

by employing a strategy satisfying the following invariant :

for all I ,j c- [ -1
,
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We show inductively that duplicator can play st after the i - th round we have :
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In particular, every two finite structures that agree on all FO sentences
are isomorphic, and hence agree on any Boolean query (as Boolean queries
are closed under isomorphism).

The idea that is prevalent in inexpressibility proofs in finite model the-
ory is, nevertheless, very close to the original idea of finding structures A

and B that agree on all FO sentences but disagree on a given query. But
instead of two structures, A and B, we consider two families of structures,
{Ak | k ∈ N} and {Bk | k ∈ N}, and instead of all FO sentences, we consider
a certain partition of FO sentences into infinitely many classes.

In general, the methodology is as follows. Suppose we want to prove that
a property P is not expressible in a logic L. We then partition the set of all
sentences of L into countably many classes, L[0],L[1], . . . ,L[k], . . . (we shall
see in Sect. 3.3 how to do it), and find two families of structures, {Ak | k ∈ N}
and {Bk | k ∈ N}, such that

• Ak |= Φ iff Bk |= Φ for every L[k] sentence Φ; and

• Ak has property P , but Bk does not.

Clearly, this would show P "∈ L; it “only” remains to show what L[k] is,
and give techniques that help us prove that two structures agree on L[k]. We
shall do precisely that in the rest of the chapter, for the case of L = FO, and
later for other logics.

3.2 Definition and Examples of Ehrenfeucht-Fräıssé
Games

Ehrenfeucht-Fräıssé games give us a nice tool for describing expressiveness of
logics over finite models. In general, games are applicable for both finite and
infinite models (at least for FO), but we have seen that in the infinite case we
have a number of more powerful tools. In fact, in some model theory texts,
Ehrenfeucht-Fräıssé games are only briefly mentioned (or even appear only
as exercises), but in the finite case, their applicability makes them a central
notion.

The idea of the game – for FO and other logics as well – is almost invariably
the same. There are two players, called the spoiler and the duplicator (or, less
imaginatively, player I and player II). The board of the game consists of two
structures, say A and B. The goal of the spoiler is to show that these two
structures are different; the goal of the duplicator is to show that they are the
same.

In the classical Ehrenfeucht-Fräıssé game, the players play a certain num-
ber of rounds. Each round consists of the following steps:

1. The spoiler picks a structure (A or B).
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2. The spoiler makes a move by picking an element of that structure: either
a ∈ A or b ∈ B.

3. The duplicator responds by picking an element in the other structure.

An illustration is given in Fig. 3.1. The spoiler’s moves are shown as filled
circles, and the duplicator’s moves as empty circles. In the first round, the
spoiler picks B and selects b1 ∈ B; the duplicator responds by a1 ∈ A. In the
next round, the spoiler changes structures and picks a2 ∈ A; the duplicator
responds by b2 ∈ B. In the third round the spoiler plays b3 ∈ B; the response
of the duplicator is a3 ∈ A.

Since there is a game, someone must win it. To define the winning condition
we need a crucial definition of a partial isomorphism. Recall that all finite
structures have a relational vocabulary (no function symbols).

Definition 3.5 (Partial isomorphism). Let A, B be two σ-structures,
where σ is relational, and #a = (a1, . . . , an) and #b = (b1, . . . , bn) two tuples

in A and B respectively. Then (#a,#b) defines a partial isomorphism between A

and B if the following conditions hold:

• For every i, j ≤ n,
ai = aj iff bi = bj .

• For every constant symbol c from σ, and every i ≤ n,

ai = cA iff bi = cB.

• For every k-ary relation symbol P from σ and every sequence (i1, . . . , ik)
of (not necessarily distinct) numbers from [1, n],

(ai1 , . . . , aik
) ∈ PA iff (bi1 , . . . , bik

) ∈ PB.

In the absence of constant symbols, this definition says that the mapping
ai $→ bi, i ≤ n, is an isomorphism between the substructures of A and B

generated by {a1, . . . , an} and {b1, . . . , bn}, respectively.
After n rounds of an Ehrenfeucht-Fräıssé game, we have moves (a1, . . . , an)

and (b1, . . . , bn). Let c1, . . . , cl be the constant symbols in σ; then #c A denotes
(cA

1 , . . . , cA
l ) and likewise for #c B. We say that (#a,#b) is a winning position for

the duplicator if
((#a,#c A), (#b,#c B))

is a partial isomorphism between A and B. In other words, the map that
sends each ai into bi and each cA

j into cB
j is an isomorphism between

the substructures of A and B generated by {a1, . . . , an, cA
1 , . . . , cA

l } and
{b1, . . . , bn, cB

1 , . . . , cB
l } respectively.

We say that the duplicator has an n-round winning strategy in the
Ehrenfeucht-Fräıssé game on A and B if the duplicator can play in a way
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! "

! "

! "

A B
a1

a2

b1

b2

b3

!c A

!c B

a3

Fig. 3.1. Ehrenfeucht-Fräıssé game

that guarantees a winning position after n rounds, no matter how the spoiler
plays. Otherwise, the spoiler has an n-round winning strategy. If the duplica-
tor has an n-round winning strategy, we write A ≡n B.

Observe that A ≡n B implies A ≡k B for every k ≤ n.
Before we connect Ehrenfeucht-Fräıssé games and FO-definability, we give

some examples of winning strategies.

Games on Sets

In this example, the vocabulary σ is empty. That is, a structure is just a set.
Let |A|, |B| ≥ n. Then A ≡n B.

The strategy for the duplicator works as follows. Suppose i rounds have
been played, and the position is ((a1, . . . , ai), (b1, . . . , bi)). Assume the spoiler
picks an element ai+1 ∈ A. If ai+1 = aj for j ≤ i, then the duplicator
responds with bi+1 = bj; otherwise, the duplicator responds with any bj+1 ∈
B − {b1, . . . , bi} (which exists since |B |≥ n).

Games on Linear Orders

Our next example is a bit more complicated, as we add a binary relation <
to σ, to be interpreted as a linear order. Now suppose L1, L2 are two linear
orders of size at least n (i.e., structures of the form 〈{1, . . . , m}, <〉, m ≥ n).
Is it true that L1 ≡n L2?

It is very easy to see that the answer is negative even for the case of n = 2.
Let L1 contain three elements (say {1, 2, 3}), and L2 two elements ({1, 2}). In
the first move, the spoiler plays 2 in L1. The duplicator has to respond with
either 1 or 2 in L2. Suppose the duplicator responds with 1 ∈ L2; then the
spoiler plays 1 ∈ L1 and the duplicator is lost, since he has to respond with
an element less than 1 in L1, and there is no such element. If the duplicator
selects 2 ∈ L2 as his first-round move, the spoiler plays 3 ∈ L1, and the
duplicator is lost again. Hence, L1 "≡2 L2.

However, a winning strategy for the duplicator can be guaranteed if L1, L2

are much larger than the number of rounds.
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aj ai+1 al

bj bi+1 bl

! 2k−i

! 2k−(i+1) ! 2k−(i+1)

! 2k−i

! 2k−(i+1) ! 2k−(i+1)

d

d

! 2k−i

! 2k−(i+1)

! 2k−i

! 2k−(i+1)

aj ai+1 al

bj bi+1 bl

(a) d < 2k−(i+1) (b)

L1

L2

Fig. 3.2. Illustration for the proof of Theorem 3.6

Theorem 3.6. Let k > 0, and let L1, L2 be linear orders of length at least 2k.
Then L1 ≡k L2.

We shall give two different proofs of this result that illustrate two different
techniques often used in game proofs.

Theorem 3.6, Proof # 1. The idea of the first proof is as follows. We use
induction on the number of rounds of the game, and our induction hypothesis
is stronger than just the partial isomorphism claim. The reason is that if we
simply state that after i rounds we have a partial isomorphism, the induction
step will not get off the ground as there are too few assumptions. Hence, we
have to make additional assumptions. But if we try to impose too many con-
ditions, there is no guarantee that a game can proceed in a way that preserves
them. The main challenge in proofs of this type is to find the right induction
hypothesis: the one that is strong enough to imply partial isomorphism, and
that has enough conditions to make the inductive proof possible.

We now illustrate this general principle by proving Theorem 3.6. We ex-
pand the vocabulary with two new constant symbols min and max, to be
interpreted as the minimum and the maximum element of a linear ordering,
and we prove a stronger fact that L1 ≡k L2 in the expanded vocabulary.

Let L1 have the universe {1, . . . , n} and L2 have the universe {1, . . . , m}.
Assume that the lengths of L1 and L2 are at least 2k; that is, n, m ≥ 2k+1. The
distance between two elements x, y of the universe, d(x, y), is simply |x − y |.
We claim that the duplicator can play in such a way that the following holds
after each round i. Let #a = (a−1, a0, a1, . . . , ai) consist of a−1 = minL1 , a0 =
maxL1 and the i moves a1, . . . , ai in L1, and likewise let#b = (b−1, b0, b1, . . . , bi)
consist of b−1 = minL2 , b0 = maxL2 and the i moves in L2. Then, for −1 ≤
j, l ≤ i:
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1. if d(aj , al) < 2k−i, then d(bj , bl) = d(aj , al).
2. if d(aj , al) ≥ 2k−i, then d(bj , bl) ≥ 2k−i.
3. aj ≤ al ⇐⇒ bj ≤ bl.

(3.2)

We prove (3.2) by induction; notice that the third condition ensures partial
isomorphism, so we do prove an induction statement that says more than just
maintaining partial isomorphism.

And now a simple proof: the base case of i = 0 is immediate since
d(a−1, a0), d(b−1, b0) ≥ 2k by assumption. For the induction step, suppose
the spoiler is making his (i + 1)st move in L1 (the case of L2 is symmetric).
If the spoiler plays one of aj, j ≤ i, the response is bj , and all the conditions
are trivially preserved. Otherwise, the spoiler’s move falls into an interval, say
aj < ai+1 < al, such that no other previously played moves are in the same
interval. By condition 3 of (3.2), this means that the interval between bj and

bl contains no other elements of #b. There are two cases:

• d(aj , al) < 2k−i. Then d(bj , bl) = d(aj , al), and the intervals [aj , al] and
[bj , bl] are isomorphic. Then we simply find bi+1 so that d(aj , ai+1) =
d(bj , bi+1) and d(ai+1, al) = d(bi+1, bl). Clearly, this ensures that all the
conditions in (3.2) hold.

• d(aj , al) ≥ 2k−i. In this case d(bj , bl) ≥ 2k−i. We have three possibilities:

1. d(aj , ai+1) < 2k−(i+1). Then d(ai+1, al) ≥ 2k−(i+1), and we can choose
bi+1 so that d(bj , bi+1) = d(aj , ai+1) and d(bi+1, bl) ≥ 2k−(i+1). This
is illustrated in Fig. 3.2 (a), where d stands for d(aj , ai+1).

2. d(ai+1, al) < 2k−(i+1). This case is similar to the previous one.

3. d(aj , ai+1) ≥ 2k−(i+1), d(ai+1, al) ≥ 2k−(i+1). Since d(bj , bl) ≥ 2k−i,
by choosing bi+1 to be the middle of the interval [bj , bl] we ensure
that d(bj , bi+1) ≥ 2k−(i+1) and d(bi+1, bl) ≥ 2k−(i+1). This case is
illustrated in Fig. 3.2 (b).

Thus, in all the cases, (3.2) is preserved.
This completes the inductive proof; hence we have shown that the dupli-

cator can win a k-round Ehrenfeucht-Fräıssé game on L1 and L2. !

Theorem 3.6, Proof # 2. The second proof relies on the composition
method: a way of composing simpler games into more complicated ones.

Before we proceed, we make the following observation. Suppose L1 ≡k L2.
Then we can assume, without loss of generality, that the duplicator has a
winning strategy in which he responds to the minimal element of one ordering
by the minimal element of the other ordering (and likewise for the maximal
elements).

Indeed, suppose the spoiler plays minL1 , the minimal element of L1. If the
duplicator responds by b > minL2 and there is at least one round left, then
in the next round the spoiler plays minL2 and the duplicator loses. If this is
the last round of the game, then the duplicator can respond by any element
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3.3 Games and the Expressive Power of FO

And now it is time to see why games are important. For this, we need a crucial
definition of quantifier rank.

Definition 3.8 (Quantifier rank). The quantifier rank of a formula qr(ϕ)
is its depth of quantifier nesting. That is:

• If ϕ is atomic, then qr(ϕ) = 0.

• qr(ϕ1 ∨ ϕ2) = qr(ϕ1 ∧ ϕ2) = max(qr(ϕ1), qr(ϕ2)).

• qr(¬ϕ) = qr(ϕ).

• qr(∃xϕ) = qr(∀xϕ) = qr(ϕ) + 1.

We use the notation FO[k] for all FO formulae of quantifier rank up to k.

In general, quantifier rank of a formula is different from the total of num-
ber of quantifiers used. For example, we can define a family of formulae by
induction: d0(x, y) ≡ E(x, y), and dk ≡ ∃z dk−1(x, z) ∧ dk−1(z, y). The quan-
tifier rank of dk is k, but the total number of quantifiers used in dk is 2k − 1.
For formulae in the prenex form (i.e., all quantifiers are in front, followed by
a quantifier-free formula), quantifier rank is the same as the total number of
quantifiers.

Given a set S of FO sentences (over vocabulary σ), we say that two σ-
structures A and B agree on S if for every sentence Φ of S, it is the case that
A |= Φ⇔ B |= Φ.

Theorem 3.9 (Ehrenfeucht-Fräıssé). Let A and B be two structures in a
relational vocabulary. Then the following are equivalent:

1. A and B agree on FO[k].

2. A ≡k B.

We will prove this theorem shortly, but first we discuss how this is useful
for proving inexpressibility results.

Characterizing the expressive power of FO via games gives rise to the
following methodology for proving inexpressibility results.

Corollary 3.10. A property P of finite σ-structures is not expressible in FO
if for every k ∈ N, there exist two finite σ-structures, Ak and Bk, such that:

• Ak ≡k Bk, and

• Ak has property P, and Bk does not.
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Proof. Assume to the contrary that P is definable by a sentence Φ. Let k =
qr(Φ), and pick Ak and Bk as above. Then Ak ≡k Bk, and thus if Ak has
property P , then so does Bk, which contradicts the assumptions. !

We shall see in the next section that the if of Corollary 3.10 can be re-
placed by iff ; that is, Ehrenfeucht-Fräıssé games are complete for first-order
definability.

The methodology above extends from sentences to formulas with free vari-
ables.

Corollary 3.11. An m-ary query Q on σ-structures is not expressible in FO
iff for every k ∈ N, there exist two finite σ-structures, Ak and Bk, and two
m-tuples #a and #b in them such that:

• (Ak,#a) ≡k (Bk,#b), and

• #a ∈ Q(Ak) and #b "∈ Q(Bk). !

We next see some simple examples of using games; more examples will
be given in Sect. 3.6. An immediate application of the Ehrenfeucht-Fräıssé
theorem is that even is not FO-expressible when σ is empty: we take Ak

to contain k elements, and Bk to contain k + 1 elements. However, we have
already proved this by a simple compactness argument in Sect. 3.1. But we
could not prove, by the same argument, that even is not expressible over
finite linear orders. Now we get this for free:

Corollary 3.12. even is not FO-expressible over linear orders.

Proof. Pick Ak to be a linear order of length 2k, and Bk to be a linear order
of length 2k +1. By Theorem 3.6, Ak ≡k Bk. The statement now follows from
Corollary 3.10. !

3.4 Rank-k Types

We now further analyze FO[k] and introduce the concept of types (more pre-
cisely, rank-k types).

First, what is FO[0]? It contains Boolean combinations of atomic formu-
las. If we are interested in sentences in FO[0], these are precisely atomic
sentences: that is, sentences without quantifiers. In a relational vocabulary,
such sentences are Boolean combinations of formulae of the form c = c′ and
R(c1, . . . , ck), where c, c′, c1, . . . , ck are constant symbols from σ.

Next, assume that ϕ is an FO[k + 1] formula. If ϕ = ϕ1 ∨ ϕ2, then both
ϕ1,ϕ2 are FO[k + 1] formulae, and likewise for ∧; if ϕ = ¬ϕ1, then ϕ1 ∈
FO[k + 1]. However, if ϕ = ∃xψ or ϕ = ∀xψ, then ψ is an FO[k] formula.
Hence, every formula from FO[k + 1] is equivalent to a Boolean combination
of formulae of the form ∃xψ, where ψ ∈ FO[k]. Using this, we show:
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⇒

⇒

Fig. 3.3. Reduction of parity to connectivity

3.6 More Inexpressibility Results

So far we have used games to prove that even is not expressible in FO, in
both ordered and unordered settings. Next, we show inexpressibility of graph
connectivity over finite graphs. In Sect. 3.1 we used compactness to show that
connectivity of arbitrary graphs is inexpressible, leaving open the possibility
that it may be FO-definable over finite graphs. We now show that this cannot
happen. It turns out that no new game argument is needed, as the proof uses
a reduction from even over linear orders.

Assume that connectivity of finite graphs is definable by an FO sentence
Φ, in the vocabulary that consists of one binary relation symbol E. Next,
given a linear ordering, we define a directed graph from it as described below.
First, from a linear ordering < we define the successor relation

succ(x, y) ≡ (x < y) ∧ ∀z
(

(z ≤ x) ∨ (z ≥ y)
)

.

Using this, we define an FO formula γ(x, y) such that γ(x, y) is true iff one of
the following holds:

• y is the successor of the successor of x: ∃z
(

succ(x, z) ∧ succ(z, y)
)

, or

• x is the predecessor of the last element, and y is the first element:
(

∃z (succ(x, z) ∧ ∀u(u ≤ z))
)

∧ ∀u(y ≤ u), or

• x is the last element and y is the successor of the first element (the FO
formula is similar to the one above).

Thus, γ(x, y) defines a new graph on the elements of the linear ordering; the
construction is illustrated in Fig. 3.3.

Now observe that the graph defined by γ is connected iff the size of the
underlying linear ordering is odd. Hence, taking ¬Φ, and substituting γ for
every occurrence of the predicate E, we get a sentence that tests even for
linear orderings. Since this is impossible, we obtain the following.

Corollary 3.19. Connectivity of finite graphs is not FO-definable.


