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3.2 Definition and Examples of Ehrenfeucht-Fraissé
Games

Ehrenfeucht-Fraissé games give us a nice tool for describing expressiveness of
logics over finite models. In general, games are applicable for both finite and
infinite models (at least for FO), but we have seen that in the infinite case we
have a number of more powerful tools. In fact, in some model theory texts,
Ehrenfeucht-Fraissé games are only briefly mentioned (or even appear only
as exercises), but in the finite case, their applicability makes them a central
notion.

The idea of the game — for FO and other logics as well — is almost invariably
the same. There are two players, called the spoiler and the duplicator (or, less
imaginatively, player I and player II). The board of the game consists of two
structures, say 2 and 9%B. The goal of the spoiler is to show that these two
structures are different; the goal of the duplicator is to show that they are the
same.

In the classical Ehrenfeucht-Fraissé game, the players play a certain num-
ber of rounds. Each round consists of the following steps:

1. The spoiler picks a structure (2 or 9B).
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2. The spoiler makes a move by picking an element of that structure: either
acAorbeB.

3. The duplicator responds by picking an element in the other structure.

An illustration is given in Fig. 3.1. The spoiler’s moves are shown as filled
circles, and the duplicator’s moves as empty circles. In the first round, the
spoiler picks ‘B and selects b; € *B; the duplicator responds by a; € . In the
next round, the spoiler changes structures and picks as € 2; the duplicator
responds by by € B. In the third round the spoiler plays b3 € B; the response
of the duplicator is ag € 2.

Since there is a game, someone must win it. To define the winning condition
we need a crucial definition of a partial isomorphism. Recall that all finite
structures have a relational vocabulary (no function symbols).

Definition 3.5 (Partial isomorphism). Let A, B be two o-structures,
where o is relational, and @ = (a1,...,a,) and b = (by,...,by) two tuples

in A and B respectively. Then (@,b) defines a partial isomorphism between 2A
and B if the following conditions hold:

e For every i,j < n,
a; = Gy Zﬁ bl = bj.

e For every constant symbol ¢ from o, and every i < n,
a; = iff b; = 2.

o [or every k-ary relation symbol P from o and every sequence (i1, ..., i)
of (not necessarily distinct) numbers from [1,n],

(ail,...,aik)er lff (bil,...7bik)EP%.

In the absence of constant symbols, this definition says that the mapping
a; — b;,1 < n, is an isomorphism between the substructures of 2 and B
generated by {a1,...,a,} and {by,...,b,}, respectively.

After n rounds of an Ehrenfeucht-Fraissé game, we have moves (a, ..., ay)
and (by,...,by). Let ¢1, ..., ¢ be the constant symbols in o; then &% denotes
(c,..., ') and likewise for ¢®. We say that (@, b) is a winning position for
the duplicator if

(@cY), (.c%))

is a partial isomorphism between 2 and B. In other words, the map that

sends each a; into b; and each c;‘?l into C;B is an isomorphism between
the substructures of 24 and B generated by {al,...,an,c(‘fl,...,clm} and

{b1,...,by,cP,...,cP} respectively.
We say that the duplicator has an n-round winning strategy in the
Ehrenfeucht-Fraissé game on 2 and B if the duplicator can play in a way
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a b
2A 10 e U1 B
Clg [ ] o) b2
as’ ® b3
52[: =B
—C
— N

Fig. 3.1. Ehrenfeucht-Fraissé game

that guarantees a winning position after n rounds, no matter how the spoiler
plays. Otherwise, the spoiler has an n-round winning strategy. If the duplica-
tor has an n-round winning strategy, we write 2 =,, *B.

Observe that A =, B implies A =g B for every k < n.

Before we connect Ehrenfeucht-Fraissé games and FO-definability, we give
some examples of winning strategies.

Games on Sets

In this example, the vocabulary ¢ is empty. That is, a structure is just a set.
Let |A|,|B| > n. Then A =, B.

The strategy for the duplicator works as follows. Suppose i rounds have
been played, and the position is ((a1,...,a;), (b1,...,b;)). Assume the spoiler
picks an element a;y1 € A. If a;41 = a; for j < ¢, then the duplicator
responds with b; 11 = b;; otherwise, the duplicator responds with any b;11 €
B —{by,...,b;} (which exists since | B|> n).

Games on Linear Orders

Our next example is a bit more complicated, as we add a binary relation <
to o, to be interpreted as a linear order. Now suppose L1, Ly are two linear
orders of size at least n (i.e., structures of the form ({1,...,m}, <), m > n).
Is it true that L, =, Lo?

It is very easy to see that the answer is negative even for the case of n = 2.
Let Ly contain three elements (say {1,2,3}), and L2 two elements ({1,2}). In
the first move, the spoiler plays 2 in L. The duplicator has to respond with
either 1 or 2 in Lo. Suppose the duplicator responds with 1 € Lo; then the
spoiler plays 1 € L; and the duplicator is lost, since he has to respond with
an element less than 1 in L, and there is no such element. If the duplicator
selects 2 € Lo as his first-round move, the spoiler plays 3 € L;, and the
duplicator is lost again. Hence, L1 #5 Lo.

However, a winning strategy for the duplicator can be guaranteed if L, Lo
are much larger than the number of rounds.
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> ok—i > ok—i
d > ok—(i+1) > ok—(i+1) > ok—(i+1)
I a; 41 a aj ait1 a
1 ° ’ ° ° o
L24‘—'—’7I ' ' — - ¢
bj b1 b b bit1 by
k—(i+1
d =2 (l.+ ) > ok—(i+1) > ok—(i+1)
2 2k71 > 2k7i
(a) d<2k=G+D (b)

Fig. 3.2. Illustration for the proof of Theorem 3.6

Theorem 3.6. Let k > 0, and let Ly, Lo be linear orders of length at least 2F.
Then L1 = Lo.

We shall give two different proofs of this result that illustrate two different
techniques often used in game proofs.

Theorem 3.6, Proof # 1. The idea of the first proof is as follows. We use
induction on the number of rounds of the game, and our induction hypothesis
is stronger than just the partial isomorphism claim. The reason is that if we
simply state that after ¢ rounds we have a partial isomorphism, the induction
step will not get off the ground as there are too few assumptions. Hence, we
have to make additional assumptions. But if we try to impose too many con-
ditions, there is no guarantee that a game can proceed in a way that preserves
them. The main challenge in proofs of this type is to find the right induction
hypothesis: the one that is strong enough to imply partial isomorphism, and
that has enough conditions to make the inductive proof possible.

We now illustrate this general principle by proving Theorem 3.6. We ex-
pand the vocabulary with two new constant symbols min and max, to be
interpreted as the minimum and the maximum element of a linear ordering,
and we prove a stronger fact that L1 =y Lo in the expanded vocabulary.

Let L; have the universe {1,...,n} and Lo have the universe {1,...,m}.
Assume that the lengths of L1 and Lo are at least 2¥; that is, n, m > 2F+1. The
distance between two elements z, y of the universe, d(x,y), is simply |z — y|.
We claim that the duplicator can play in such a way that the following holds
after each round i. Let @ = (a—_1,ag,a1,...,a;) consist of a_q = min’t, qp =
max and the i moves a1, ..., a; in L1, and likewise let b= (b-1,bo,b1,...,b;)
consist of b_; = min®?, by = max’? and the i moves in Ly. Then, for —1 <
7,0 <
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1. if d(aj,a;) < 2877, then d(b;,b;) =
2. if d(aj,a;) > 2F7% then d(b b )>2 k (3.2)
3. a; <a <= b S by.

We prove (3.2) by induction; notice that the third condition ensures partial
isomorphism, so we do prove an induction statement that says more than just
maintaining partial isomorphism.

And now a simple proof: the base case of i = 0 is immediate since
d(a_1,a0),d(b_1,bo) > 2% by assumption. For the induction step, suppose
the spoiler is making his (i + 1)st move in Ly (the case of Ly is symmetric).
If the spoiler plays one of a;, j < i, the response is b;, and all the conditions
are trivially preserved. Otherwise, the spoiler’s move falls into an interval, say
aj < a;41 < ag, such that no other previously played moves are in the same
interval. By condition 3 of (3.2), this means that the interval between b; and

b; contains no other elements of b. There are two cases:

e d(aj,a;) < 28 Then d(b;,b;) = d(a;,a;), and the intervals [a;, ;] and
[bj,bi] are isomorphic. Then we simply find b;11 so that d(aj,ai+1) =
d(bj, biv1) and d(aiy1,a) = d(biy1,b;). Clearly, this ensures that all the
conditions in (3.2) hold.

e d(aj,a;) > 2*"% In this case d(bj, b;) > 2¥~¢. We have three possibilities:

1. d(aj,aiy1) < 280D Then d(a;41,a;) > 280D and we can choose
bit1 so that d(bj,bir1) = d(aj,ai+1) and d(biy1,b) > 20+ This
is illustrated in Fig. 3.2 (a), where d stands for d(a;, a;41).

2. d(aiy1,a;) < 250D This case is similar to the previous one.

3. d(aj,air1) > 28708 d(a;q,a;) > 28708 Since d(b;, by) > 2871,
by choosing b;y1 to be the middle of the interval [b;,b;] we ensure
that d(bj,biv1) > 28=0FD and d(biy1,b;) > 28~ 0FD. This case is
illustrated in Fig. 3.2 (b).

Thus, in all the cases, (3.2) is preserved.
This completes the inductive proof; hence we have shown that the dupli-
cator can win a k-round Ehrenfeucht-Fraissé game on Ly and L. [l
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3.3 Games and the Expressive Power of FO

And now it is time to see why games are important. For this, we need a crucial
definition of quantifier rank.

Definition 3.8 (Quantifier rank). The quantifier rank of a formula qr(y)
18 its depth of quantifier nesting. That is:

o If  is atomic, then qr(yp) = 0.

e qr(p1 Vp2) = ar(p1 A p2) = max(qr(e1),qr(ez))-
e qr(—p) = ar(p).

e qr(Jzp) = ar(Vap) = qr(p) + 1.

We use the notation FO[k] for all FO formulae of quantifier rank up to k.

In general, quantifier rank of a formula is different from the total of num-
ber of quantifiers used. For example, we can define a family of formulae by
induction: dy(z,y) = E(z,y), and dy = 32z dg—1(x,2) Adk—1(2,y). The quan-
tifier rank of dy, is k, but the total number of quantifiers used in dj, is 2% — 1.
For formulae in the prenex form (i.e., all quantifiers are in front, followed by
a quantifier-free formula), quantifier rank is the same as the total number of
quantifiers.

Given a set S of FO sentences (over vocabulary o), we say that two o-
structures 2 and B agree on S if for every sentence @ of S, it is the case that
AEDPS B E=O.

Theorem 3.9 (Ehrenfeucht-Fraissé). Let 2 and B be two structures in a
relational vocabulary. Then the following are equivalent:

1. A and B agree on FOIk].
2.2 =Lk B.

We will prove this theorem shortly, but first we discuss how this is useful
for proving inexpressibility results.

Characterizing the expressive power of FO via games gives rise to the
following methodology for proving inexpressibility results.

Corollary 3.10. A property P of finite o-structures is not expressible in FO
if for every k € N, there exist two finite o-structures, 2y, and By, such that:

[ ] Q[k =k %k; and
o ;. has property P, and By does not.
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Proof. Assume to the contrary that P is definable by a sentence @. Let k =
qr(®), and pick 2 and By as above. Then A, = By, and thus if A, has
property P, then so does By, which contradicts the assumptions. O
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Fig. 3.3. Reduction of parity to connectivity

3.6 More Inexpressibility Results

So far we have used games to prove that EVEN is not expressible in FO, in
both ordered and unordered settings. Next, we show inexpressibility of graph
connectivity over finite graphs. In Sect. 3.1 we used compactness to show that
connectivity of arbitrary graphs is inexpressible, leaving open the possibility
that it may be FO-definable over finite graphs. We now show that this cannot
happen. It turns out that no new game argument is needed, as the proof uses
a reduction from EVEN over linear orders.

Assume that connectivity of finite graphs is definable by an FO sentence
@, in the vocabulary that consists of one binary relation symbol E. Next,
given a linear ordering, we define a directed graph from it as described below.
First, from a linear ordering < we define the successor relation

suce(z,y) = (x <y)AVz((z <z) V(2 >y)).

Using this, we define an FO formula v(x,y) such that v(x, y) is true iff one of
the following holds:

e y is the successor of the successor of z: 3z (succ(:v, z) A suce(z,y)), or

e z is the predecessor of the last element, and y is the first element:
(32 (succ(z, z) AVu(u < 2))) AVu(y < u), or

e z is the last element and y is the successor of the first element (the FO
formula is similar to the one above).

Thus, v(z,y) defines a new graph on the elements of the linear ordering; the
construction is illustrated in Fig. 3.3.

Now observe that the graph defined by -~y is connected iff the size of the
underlying linear ordering is odd. Hence, taking —®, and substituting ~ for
every occurrence of the predicate F, we get a sentence that tests EVEN for
linear orderings. Since this is impossible, we obtain the following.

Corollary 3.19. Connectivity of finite graphs is not FO-definable.



