
Foundations of Description Logics

Sebastian Rudolph

Institute AIFB, Karlsruhe Institute of Technology, DE
rudolph@kit.edu

Abstract. This chapter accompanies the foundational lecture on Descrip-
tion Logics (DLs) at the 7th Reasoning Web Summer School in Galway,
Ireland, 2011. It introduces basic notions and facts about this family of
logics which has significantly gained in importance over the recent years
as these logics constitute the formal basis for today’s most expressive on-
tology languages, the OWL (Web Ontology Language) family.

We start out from some general remarks and examples demonstrating
the modeling capabilities of description logics as well as their relation
to first-order predicate logic. Then we begin our formal treatment by
introducing the syntax of DL knowledge bases which comes in three
parts: RBox, TBox and ABox. Thereafter, we provide the corresponding
standard model-theoretic semantics and give a glimpse of the alternative
way of defining the semantics via an embedding into first-order logic with
equality.

We continue with an overview of the naming conventions for DLs
before we delve into considerations about different notions of semantic
alikeness (concept and knowledge base equivalence as well as emulation).
These are crucial for investigating the expressivity of DLs and performing
normalization. We move on by reviewing knowledge representation ca-
pabilities brought about by different DL features and their combinations
as well as some model-theoretic properties associated thereto.

Subsequently, we consider typical reasoning tasks occurring in the
context of DL knowledge bases. We show how some of these tasks can
be reduced to each other, and have a look at different algorithmic ap-
proaches to realize automated reasoning in DLs.

Finally, we establish connections between DLs and OWL. We show
how DL knowledge bases can be expressed in OWL and, conversely, how
OWL modeling features can be translated into DLs.

In our considerations, we focus on the description logic SROIQ which
underlies the most recent and most expressive yet decidable version of
OWL called OWL 2 DL. We concentrate on the logical aspects and omit
data types as well as extralogical features from our treatise. Examples
and exercises are provided throughout the chapter.

A. Polleres et al. (Eds.): Reasoning Web 2011, LNCS 6848, pp. 76–136, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Foundations of Description Logics 77

1 Introduction
Come join the DL vaudeville show!
It’s variable-free, although
With quantifiers, not, and, or
Quite deeply rooted in FOLklore.
Still, curing the first-order ailment
We sport decidable entailment!

Fig. 1. The DL logo

While formal, logic-based approaches to rep-
resenting and working with knowledge occur
throughout human history, the advent and wide-
spread adoption of programmable computing de-
vices in the 20th century has led to intensified
studies of both theoretical and practical aspects of
knowledge representation and automated reason-
ing. Rooted in early AI approaches, Description
Logics (DLs) have developed into one of the main
knowledge representation formalisms. The matu-
rity of the field is also reflected by the adoption of
description logics as prior specification paradigm
for ontological descriptions – culminating in the standardization of the OWL
web ontology language by the World Wide Web Consortium (W3C) – as well
as the availability of highly optimized and readily deployable (yet open source)
tools for automated inferencing. Thanks to this “dissemination path,” DLs con-
stitute the theoretical backbone for information systems in many disciplines,
among which life sciences can be seen as the “early adopters” [Sidhu et al., 2005;
Wolstencroft et al., 2005; Golbreich et al., 2006].

1.1 Outlook

What is in this Lecture. This document is supposed to give a gentle intro-
duction into state-of-the-art description logics. Before going into technicalities
the remainder of this section will briefly discuss how DLs are positioned in the
landscape of knowledge representation formalisms, provide some examples for
modeling features of DLs, and sketch the most prominent application context:
the Semantic Web.

Section 2 starts the formal treatment by introducing the syntax of knowledge
bases of the description logic SROIQ. Section 3 provides the corresponding
model-theoretic semantics and substantiates the claimed connection between
DLs and first-order predicate logic (FOL) by giving a translation from SROIQ
into FOL with equality.

Section 4 reviews the naming scheme for DLs between the basic DL ALC
and the high-end DL SROIQ. Section 5 provides several notions that capture
that different syntactic specifications may have the same (or “alike”) semantical
impact. The motivation of Section 6 is to give a feeling for the modeling power
provided by different constructs and the according model-theoretic consequences.

Subsequently, Section 7 considers typical reasoning tasks normally occurring
in the context of DL-based knowledge representation and discusses the mutual

78 S. Rudolph

reducibility of these tasks. In Section 8, we give a shallow overview over different
algorithmic paradigms for automated inferencing with DLs. Finally, in Section 9,
we provide a way to translate SROIQ knowledge bases into OWL ontologies
and, conversely, show how OWL axioms can be translated into DLs.

What is not in this Lecture. Due to space limitations, we have to restrict
this lecture in many respects. We will focus on the core logical aspects of descrip-
tion logics and hence omit datatypes, keys, etc. despite their obvious practical
importance for knowledge representation. Likewise, this is not supposed to be
an introduction into OWL nor any other Semantic Web specification language.
Thus, we will only briefly state how DL knowledge bases can be translated into
OWL such that OWL reasoning tools can be harnessed to perform DL reasoning
tasks. Moreover, we will refrain from looking into sub-Boolean fragments of DLs,
even though they are practically important for serving as theoretical basis for
the tractable profiles of the latest version of OWL. On the theoretical side, we
will omit considerations about computational complexity of reasoning tasks.

Required Previous Knowledge. This lecture is meant to be introductory and
foundational. Consequently, we tried to make it as self-contained as feasibly pos-
sible and hope that it is comprehensible even without any background in formal
logics, although it can do no harm either. We presume, however, a certain famil-
iarity with basic concepts and notations of näıve set theory. We do not expect
prior knowledge about Semantic Web formalisms like the Resource Description
Framework (RDF) or OWL, still it would come handy to fully comprehend the
comments about the connections between DLs and OWL.

1.2 DLs in the Context of Other Formalisms

Historically, DLs have emerged from semantic networks [Quillian, 1968] and
frame-based systems [Minsky, 1974]. These early knowledge representation ap-
proaches had the advantage of being rather intuitively readable and compre-
hensible. On the downside, it turned out that the understanding of the precise
meaning of these diagrammatic representations differed widely amongst humans.
This also became apparent by the heterogeneous behavior of tools implemented
to reason with these structures. Under a plethora of names (among them ter-
minological systems and concept languages), description logics developed out of
the attempt to endow these intuitive representations with a formal semantics to
establish a common ground for human and tool interoperability.

With the formal semantics introduced it was rather immediately clear that –
abstracting from the syntax used – DLs can be seen as a fragment of first-order
predicate logic (short: FOL), many of them even as a fragment of FOL’s two-
variable fragment [Borgida, 1996] in cases extended with counting quantifiers
[Pratt-Hartmann, 2005]. As opposed to general FOL where logical inferencing is
undecidable, DL research has been focusing on decidable fragments to such an
extent that today, decidability is almost conceived as a necessary condition to
call a formalism a DL.

Foundations of Description Logics 79

Remark 1. Recap that in theoretical computer science, a class of problems is
called decidable, if there is a generic algorithm that can take any problem instance
from this class as an input and provide a yes-or-no answer to it after finite time. In
the context of logics, the generic problem normally investigated is whether a given
set of statements logically entails another statement. In case there is no danger of
confusion about the type of problem considered, sometimes the logic itself is called
decidable or undecidable.

In contrast to the well-known correspondence to FOL, it took some time to
discover the close relation of DLs to modal logics [Schild, 1991]; in fact, the basic
description logic ALC is just a syntactic variant of the multi-modal logic Km.
As a consequence of this, there is also a close relationship of DLs to the Guarded
Fragment [Andréka et al., 1998], a very expressive fragment of FOL which is still
decidable.

For application purposes, DLs can be tailored to the specific requirements
of a concrete usage scenario. To this end, a set of modeling features is selected
such that the resulting logic has sufficient expressivity for the intended purpose
while still being manageable in terms of the inferencing needed. This strategy
has led to thorough investigations and finally a deeper understanding of the
impact of the diverse standard modeling features on decidability and complexity
of reasoning.

Remark 2. Thereby, the boundaries of the above mentioned fragments are some-
times crossed. For instance, functionality statements and cardinality constraints in
general are not supported by the Guarded Fragment, the same holds for transitivity
statements, which also lie outside the two-variable fragment. DLs featuring regu-
lar expressions on roles [Calvanese et al., 2009] even go beyond FOL with equality,
but we will not discuss them here.

Beyond decidability, a crucial design principle in DLs is to establish favor-
able trade-offs between expressivity and scalability. On the theoretical side, es-
tablishing complexity results for inferencing problems (a tradition started by
Brachman and Levesque [1984] and meanwhile widely accepted as central part
of the DL research methodology) helps to roughly estimate how scalable and
how “implementable” reasoning methods are likely to be. Of course, for the
deployment in practice, many engineering and optimization considerations are
necessary even if they do not influence the worst-case complexities. Today, there
exist several highly optimized and efficient systems for reasoning in DL-based
formalisms [Motik et al., 2009c; Sirin et al., 2007; Tsarkov and Horrocks, 2006].

1.3 DL Modeling in a Nutshell

This section provides an informal introduction of the most common modeling
features in DLs. For the interested reader with some background in logics, we
will relate them to FOL with equality by giving the corresponding terms and
logical translations in square brackets.

All DLs are based on a vocabulary [signature] containing individual names
[constants], concept names [unary predicates] and role names [binary predicates].

80 S. Rudolph

Two specific class names, � and ⊥, denote the concept containing all individuals
and the empty concept, respectively. Usually, a DL knowledge base [theory]
is partitioned into an assertional part, called ABox and a terminological part,
which is further subdivided into TBox and RBox. The ABox contains assertional
knowledge [ground facts], the notation of which coincides with FOL: there are
concept assertions such as

Actor(angelina)

(indicating that the individual named angelina belongs to the set of all actors)
and role assertions like

married(angelina,brad)

(stating that the individuals named angelina and brad are in the relation of
being married). The TBox contains universal statements. The notation used
in DLs does not need variables and is inspired by set theory. We can specify
subsumptions, e.g. by expressing that every actor is an artist via

Actor � Artist

[∀x
(
Actor(x) → Artist(x)

)
]. A specific feature of DLs is that concept names

can be combined into complex concepts by Boolean operators, as in

Actor� USGovernor � Bodybuilder� ¬Austrian

[∀x
(
Actor(x)∧USGovernor(x) → Bodybuilder(x)∨¬Austrian(x)

)
], expressing

that every actor who is a US governor is also a bodybuilder or not Austrian.
Another way to define complex concepts is by quantifying over roles, as for
instance in

∃knows.Actor � ∀hasfriend.Envious
[∀x

(
∃y(knows(x, y) ∧ Actor(y)) → ∀z(hasfriend(x, z) → Envious(z))

)
], which

states that everybody knowing some actor has only envious friends.
The modeling features introduced above constitute ALC (attributive language

with complements, [Schmidt-Schauß and Smolka, 1991]), the smallest DL that is
Boolean-closed (i.e. it allows Boolean operators to be applied to concepts without
restriction).

As stated before, in order to satisfy requirements emerging from practical
modeling scenarios, these basic modeling features have been enriched by more
and more expressive features for specifying and querying knowledge. In DLs, this
development has led from the basic ALC to more expressive formalisms. Role
inverses can be used to “traverse” roles backward e.g. in

∃HasChild.� � ∀hasChild−.Grandparent

[∀x(∃y(hasChild(x, y)) → ∀z(hasChild(z, x) → Grandparent(x)))], expressing
that everybody having a child is the child of only grandparents. Cardinality
constraints allow for specifying the number of related instances:

Polygamist � �2.Married.�

Foundations of Description Logics 81

[∀x(Polygamist(x) → ∃y∃z(Married(x, y)∧Married(x, z)∧y �= z))] states that
a polygamist is married to at least two distinct individuals. By means of nomi-
nals, classes can be defined by enumerating their instances: the axiom

∃Married.{brad} � {angelina}

[∃x(Married(x, brad) → x = angelina)] claims that being married to Brad is a
property only applying to Angelina.

The RBox of a DL knowledge base allows for further, role-centric modeling
features. These include role inclusion statements as for instance:

married � loves

[∀x∀y(married(x, y) → loves(x, y))], which states that being married to some-
body implies loving them. A more general and expressive variant of role inclu-
sions are role-chain axioms as in

hasChild− ◦ hasChild � hasSibling

[∀x∀y∀z(hasChild(y, x)∧hasChild(y, z) → hasSibling(x, z))], saying that the
child of somebody I am a child of is my sibling.

1.4 The Semantic Web

The rise of the World Wide Web as a large body of digitally accessible knowledge
has inspired a plethora of research related to the question how to organize and
formalize knowledge on the Web in order to allow for automated, intelligent
retrieval and combination of the stored information. The term Semantic Web
stands for a variety of research and standardization efforts towards this goal,
and DLs constitute a crucial part of this endeavor. The underlying idea of the
Semantic Web is to provide information on the Web in a sufficiently formal
and structured way to enable “intelligent” processing by machines. To this end,
several key requirements can be identified: First, it is necessary to agree on
common and open standards for representing information, in order to enable
the exchange of information between diverse applications and platforms and
subsequently the combination of pieces of information from different origins.
Such standards have to be defined in a clear formal way but at the same time,
they need to be flexible and extendable.

In fact, the World Wide Web Consortium (W3C) has fostered and approved
the definition of the basic Semantic Web standards. The ontology languages RDF
and its extension RDF Schema (RDFS) as well as OWL have been deliberately
developed for a deployment in the Semantic Web.1

1 Originating from philosophy, the term ontology is not precisely defined in the com-
puter science context either and a lot of deviating definitions can be found through-
out the literature. In this treatise, we will use the term to simply refer to a document
created in RDF(S) or OWL, modeling knowledge of an application domain. Thereby,
we will consider it to be equivalent with the arguably more appropriate term knowl-
edge base.

82 S. Rudolph

As the second key ingredient for the Semantic Web, methods are needed which
automatically infer new knowledge from given knowledge. In order to maximally
benefit from specified knowledge, it must be possible to obtain information that
is not explicitly given but constitutes a logical consequence of what is known.
This directly leads to the multifarious field of formal logic, and in particular to
the area of automated reasoning. A significant portion of DL research has been
spawned by problems and usage scenarios from the Semantic Web area.

2 Syntax Deluxe DL delivery
Will come in boxes (number: three),
Precisely marked with A, T, R.
The first exhibits solid grounding,
The next allows for simple counting,
The third one’s strictly regular.

In this section, we provide the definition of the expressive description logic
SROIQ [Horrocks et al., 2006] which serves as the logical basis for OWL 2 DL,
the most expressive member of the OWL family where inferencing is still decid-
able. Most of today’s mainstream DLs are, in fact, sublanguages of SROIQ.

DLs are based on three disjoint sets of primal elements:

– The set NI of individual names contains all names used to denote singular
entities (be they persons, objects or anything else) in our domain of interest.
Examples would be brad, excalibur, rhine, or sun.

– The set NC of concept names contains names that refer to types, categories,
or classes of entities, usually characterized by common properties. Typical
concept names are Mammal, Country, Organization, but also Yellow or
English.

– The set NR of role names contains names that denote binary relationships
which may hold between individuals of a domain, for instance: marriedWith,
fatherOf, likes, or locatedIn.

Remark 3. There are no mandatory rules for writing and typography of vocab-
ulary elements. According to a convention most widely adopted, we capitalize
concept names whereas individual and role names are written in lower case. More-
over, camel case is used for names corresponding to multi word units in natural
language.

Having these name sets at hand (they are usually jointly referred to as vocab-
ulary or signature), we can now turn to the three building blocks of SROIQ
knowledge bases: RBox, TBox and ABox.

2.1 RBox

A SROIQ RBox captures interdependencies between the roles of the considered
knowledge base. Given the set NR of role names, a role is either the universal

Foundations of Description Logics 83

role u or it has the form r or r− for any role name r. The set of roles will be
denoted by R. For convenience, we introduce the function Inv that “inverts”
roles, i.e. we set Inv(r) := r− and Inv(r−) := r in order to simplify notation. In
the sequel, we will use the symbols r, s, possibly with subscripts, to denote roles.

A role inclusion axiom (RIA, sometimes also referred to as role chain axiom) is
a statement of the form r1 ◦ . . .◦ rn � r where r1, . . . , rn, r are roles. As a special
case thereof (for n = 1), we obtain simple role inclusions r � s. Typical examples
of role inclusion axioms are owns ◦ partOf � owns or fatherOf � childOf−. A
finite set of such RIAs is called a role hierarchy.

Given a role hierarchy, it is useful to distinguish the roles that can be “created”
by role chains of length greater than one from those which cannot. Consequently,
we define non-simple roles as follows:

S1. Every role r occurring in a RIA r1 ◦ . . . ◦ rn � r where n > 1 is non-simple.
S2. Every role r occurring in a simple role inclusion s � r with a non-simple s

is itself non-simple.
S3. If r is non-simple then so is Inv(r).
S4. No other role is non-simple.

We let Rn denote the set of all non-simple roles of a role hierarchy and call all
the other roles simple denoted by Rs = R \ Rn.

Example 4. Consider the following role hierarchy:

motherOf � parentOf (1)

parentOf � ancestorOf (2)

ancesterOf ◦ ancestorOf � ancestorOf (3)

ancestorOf � descendantOf
− (4)

Then we can use S1. to find that ancestorOf is non-simple due to (3). This allows
us to conclude that descendantOf− is non-simple via (4) and S2.. From the above
follows via S3. that also ancestorOf− and descendantOf must be non-simple. Fi-
nally, S4. ensures that motherOf, motherOf−, parentOf, and parentOf− are simple.

In order to ensure decidability of the ensuing logic, we cannot allow arbitrary
role hierarchies but have to restrict to those which have the property of being
regular. Formally, a role hierarchy is regular if there is a strict partial order ≺
on the non-simple roles Rn such that

– S ≺ R iff Inv(S) ≺ R, and
– every RIA is of one of the forms

R1 r ◦ r � r,
R2 Inv(r) � r,
R3 s1 ◦ . . . ◦ sn � r,
R4 r ◦ s1 ◦ . . . ◦ sn � r,
R5 s1 ◦ . . . ◦ sn ◦ r � r,
such that r ∈ NR is a (non-inverse) role name r, and si ≺ r for i = 1, . . . , n
whenever si is non-simple.

84 S. Rudolph

Example 5. Consider the following role hierarchy containing the RIAs: s◦s � s,
r ◦ s � r, and r ◦ s ◦ r � t. First observe that all involved atomic roles are non-
simple. If we define ≺ such that s− ≺ s ≺ r− ≺ r ≺ t− ≺ t, then all the above
criteria are satisfied: the first RIA is an instance of R1, the second is an instance
of R4, and the third is an instance of R3. Hence this role hierarchy is regular.

Example 6. Assume a role hierarchy containing r ◦ t ◦ s � t as the only axiom.
Only t is non-simple here, still this role hierarchy is not regular, as the RIA does
not fit any of the allowed forms R1–R5 (to see this, note that ≺ is required to be
strict, therefore t �≺ t must always be the case, irrespective of the concrete choice
of ≺).

Example 7. Let a role hierarchy contain the two RIAs r ◦ s � s, and s ◦ r � r.
While each of these RIAs alone would be acceptable as a role hierarchy, they do not
go well together: the first requires r ≺ s (due to R5) whereas the second enforces
s ≺ r (due to R4) which as a whole violates the condition of ≺ being a strict order.
Thus the considered role hierarchy is not regular.

A role characteristic is a statement of the form Ref(r) (reflexivity), Asy(s)
(asymmetry), or Dis(s, s′) (role disjointness), where s and s′ are simple roles
while r may be simple or non-simple. A SROIQ RBox (usually denoted by R)
is the union of a finite set of role characteristics together with a role hierarchy.
A SROIQ RBox is regular if its role hierarchy is regular.

2.2 TBox

Given a SROIQ RBox R as defined in the previous section, we now inductively
define concept expressions (also simply called concepts) as follows:

• every concept name C ∈ NC is a concept expression,
• � and ⊥ are concept expressions, called top concept and bottom concept,

respectively,
• {a1, . . . , an} is a concept expression for every finite set {a1, . . . , an} ⊆ NI of

individual names; concepts of this type are called nominal concepts,
• if C and D are concept expressions then so are ¬C (negation), C � D (in-

tersection), C � D (union),
• if r is a role and C is a concept expression, then ∃r.C (existential quantifi-

cation) and ∀r.C (universal quantification) are also concept expressions,
• if r is a simple role, n is a natural number and C is a concept expression,

then ∃r.Self (self restriction), �nr.C (at-least restriction), and �nr.C (at-
most restriction) are also concept expressions. The latter two are also jointly
referred to as qualified number restrictions or cardinality constraints.

We will denote the set of all concept expressions thus defined by C. Throughout
this chapter, the symbols C, D will be used to denote concept expressions.

Foundations of Description Logics 85

Remark 8. Note that the definition of concept expressions depends on the un-
derlying RBox due to the restriction of some concept expressions to contain only
simple roles.

A general concept inclusion axiom (short: GCI) has the form C � D where C
and D are concepts. This kind of statement is also sometimes called subsump-
tion axiom, as C � D is often read “C is subsumed by D.” Sometimes, this
axiom type is also referred to as is-a relationship, inspired by the often chosen
wording for this type of statement (e.g. “a cat is a mammal” would be a typical
verbalization of Cat � Mammal).

Remark 9. Sometimes, C � D is also called a subconcept statement with C � D
being read “C is a subconcept of D.” While this is well justified by standard formal
theories of (human) conceptual thinking where concepts are hierarchically ordered
by subconcept-superconcept relationships [Ganter and Wille, 1997], this naming
is unfortunate in the DL setting since it can also be understood syntactically to
mean subformula of a concept term. Thus we do not use this term and whenever
referring to the latter meaning, we speak of subexpressions of a concept.

Finally, a SROIQ TBox (usually denoted by T) is a finite set of GCIs.

2.3 ABox

The ABox of a knowledge base contains information that applies to single indi-
viduals as opposed to the GCIs in the TBox, which represent statements which
are generally true for all individuals alike.

An individual assertion can have any of the following forms:

• C(a), called concept assertion,
• r(a, b), called role assertion,
• ¬r(a, b), called negated role assertion,
• a ≈ b, called equality statement, or
• a �≈ b, called inequality statement,

with a, b ∈ NI individual names, C ∈ C a concept expression, and r ∈ R a role.

Remark 10. Of course, also the form ¬C(a) is captured by the above definition
since ¬C is again a concept expression, as opposed to roles, which do not allow
for negation (note that the inverse of a role is something quite different from its
negation).

A SROIQ ABox (usually denoted by A) is a finite set of individual assertions.
We call an ABox extensionally reduced if the only concepts and roles occurring
therein are concept names and roles names, respectively.

Remark 11. It should be noted that the separation between ABox and TBox
– originally conceived for less expressive DLs – becomes less sharp once nominal
concepts are allowed, since nominal concepts allow for referring to single individuals
in the TBox as well. In fact, every of the different types of individual assertions
can be expressed by a GCI featuring nominals: C(a) becomes {a} � C, (¬)r(a, b)
is equivalent to {a} � (¬)∃r.{b}, a ≈ b can be rewritten into {a} � {b}, and
a �≈ b into {a} � ¬{b}. Still the distinction is not entirely meaningless even for
DLs featuring nominals as soon as data complexity of reasoning is investigated.

86 S. Rudolph

A SROIQ knowledge base KB is the union of a regular RBox R and a TBox
T as well as an ABox A for R. The elements of KB are referred to as axioms.
Given a knowledge base KB we write NI(KB), NC(KB), and NR(KB) to denote
those individual names, concept names, and role names which occur in KB,
respectively.

Example 12. As an example consider the following knowledge base KB:

RBox R
owns � caresFor

“If somebody owns something, they care for it.”

TBox T
Healthy � ¬Dead

“Healthy beings are not dead.”

Cat � Dead � Alive

“Every cat is dead or alive.”

HappyCatOwner � ∃owns.Cat 	 ∀caresFor.Healthy

“A happy cat owner owns a cat and all beings
he cares for are healthy.”

ABox A
HappyCatOwner (schrödinger)

“Schrödinger is a happy cat owner.”

3 Semantics
Semantics has wide applications
To relationship-based altercations,
For semantics unveils
What a statement entails
Depending on interpretations.

Like for any other logic, the definition of a formal semantics for DLs boils
down to providing a consequence relation that determines whether an axiom
logically follows from (also: is entailed by) a given set of axioms. The semantics
of description logics is defined in a model-theoretic way. Thereby, one central
notion is that of an interpretation. Interpretations might be conceived as poten-
tial “realities” or “worlds.” In particular, interpretations need in no way comply
with the actual reality.

3.1 Interpretations

In the case of DLs, an interpretation, normally denoted with I, provides

• a nonempty set ΔI , called the domain or also universe of discourse which
can be understood as the entirety of individuals or things existing in the
“world” that I represents, and

Foundations of Description Logics 87

• a function ·I , called interpretation function which connects the vocabulary
elements (i.e., the individual, concept, and role names) to ΔI , by providing
• for each individual name a ∈ NI a corresponding individual aI ∈ ΔI

from the domain,
• for each concept name A ∈ NC a corresponding set AI ⊆ ΔI of domain

elements (as opposed to the domain itself, AI is allowed to be empty),
and

• for each role name r ∈ NR a corresponding (also possibly empty) set
rI ⊆ ΔI × ΔI of ordered pairs of domain elements.

I

aI CI

rI

individual names NI role names NR class names NC

...a... ...C... ...r...

ΔI

Fig. 2. Structure of DL interpretations

Figure 2 depicts this definition graphically. For domain elements δ, δ′ ∈ Δ, the
intuitive meaning of δ ∈ AI is that the individual δ belongs to the class described
by the concept name A, while 〈δ, δ′〉 ∈ r means that δ is connected to δ′ by the
relation denoted by the role name r.

Remark 13. To avoid confusion, it is important to strictly separate syntactic no-
tions (referring to the vocabulary and axioms) from the semantic notions (referring
to the domain and domain elements). Individual names, concept names and role
names are syntactic entities and so are roles and concepts. Individuals are elements
of ΔI and hence semantic entities. In order to refer to the semantic counterparts
of concepts and roles, one would use the terms concept extension or role extension,
respectively. Single elements of the extension of a concept or role are also called
concept instances or role instances.

88 S. Rudolph

Example 14. Consider the following signature:

– NI = {sun, morning star, evening star, moon, home}.
– NC = {Planet, Star}.
– NR = {orbitsAround, shinesOn}.

We now define an interpretation I = (ΔI , ·I) as follows: Let our domain ΔI

contain the following elements: �, �, ♀, ♁, �, ♂, �, �, 	,
, �. We define the interpre-
tation function by

sunI = �
morning starI = ♀
evening starI = ♀

moonI = �
homeI = ♁

PlanetI = {�, ♀, ♁, ♂, �, �, 	,
}
StarI = {�}

orbitsAroundI = {〈�,�〉, 〈♀,�〉, 〈♁,�〉, 〈♂,�〉, 〈�,�〉,
〈�,�〉, 〈	,�〉, 〈
,�〉, 〈�,�〉, 〈�, ♁〉}

shinesOnI = {〈�, �〉, 〈�, ♀〉, 〈�, ♁〉, 〈�, �〉, 〈�, ♂〉,
〈�, �〉, 〈�, �〉, 〈�, 	〉, 〈�,
〉, 〈�, �〉}

For a better understanding, it is often helpful to display an interpretation as a
directed graph with labeled nodes and arcs. Thereby, the nodes correspond to
the domain individuals ΔI where a node δ ∈ ΔI gets labeled by the individual
names assigned to it (i.e. those a ∈ NI for which aI = δ) as well as the concept
names A in the extensions of which δ lies (i.e. δ ∈ AI). Moreover, whenever a pair
of two domain individuals δ, δ′ ∈ ΔI is in the extension of a role name r (that
is, if 〈δ, δ′〉 ∈ rI), a directed arc is drawn from δ to δ′ and labeled with r. The
graphical representation of the interpretation I defined above would then look like
this (where we abbreviate orbitsAround by o and shinesOn by s):

Planet♀

o

��

morning star
evening star home

Planet♁

o

��

Planet�

o

��

�
o

��

moon

�
o

��
Star

�
sun

s

�� s

��

s

��

s

��

s

		
s

s

��

s

��

s

s
��
Planet♂

o

�
Planet

o

��

	
Planet

o

��

Planet

o

��

�
Planet

o

��

Foundations of Description Logics 89

Remark 15. One should keep in mind that the domain ΔI is not required to be
finite, but can also be an infinite set. It is also possible to consider only interpreta-
tions with finite domains, but then one explicitly talks about finite models or finite
satisfiability. There are logics where infinite interpretations are “dispensable” as
there are always finite ones that do the same job, these logics are said to have the
finite model property. SROIQ does not have this property. However, since DLs
are normally fragments of first-order logic, we can safely restrict our attention to
interpretations with countable domains (that is, domains having at most as many
individuals as there are natural numbers). This is a consequence of the downward
part of the Theorem of Löwenheim-Skolem, according to which every FOL theory
that has an arbitrary infinite model also has a countable one.

Example 16. As an example of an interpretation, this time with an infinite do-
main, consider the following vocabulary:

– NI = {zero}.
– NC = {Prime, Positive}.
– NR = {hasSuccessor, lessThan, multipleOf}.

Now, we define I as follows: let ΔI = N = {0, 1, 2, . . .}, i.e., the set of all natural
numbers including zero. Furthermore, we let zeroI = 0, as well as PrimeI = {n |
n is a prime number} and PositiveI = {n | n > 0}. For the roles, we define

– hasSuccessorI = {〈n, n + 1〉 | n ∈ N}
– lessThanI = {〈n, n′〉 | n < n′, n, n′ ∈ N}
– multipleOfI = {〈n, n′〉 | ∃k.n = k · n′, n, n′, k ∈ N}

Note that this interpretation is well defined, although it has an infinite domain. For
space reasons, we refrain from providing the corresponding graph representation.

Remark 17. Note that the definition of an interpretation does not require that
different individual names denote different individuals, that is, it may happen
that for two individual names a and b, we have aI = bI . A stronger definition
of DL interpretations that excludes such cases is usually referred to as unique
name assumption (short: UNA). Note also, that not every domain element δ ∈ Δ
needs to be named, i.e., there may be δ for which no individual name a with
aI = δ exists. For obvious reasons, such individuals are usually referred to as
anonymous individuals.

3.2 Satisfaction of Axioms

By now, we have seen that an interpretation determines the semantic counter-
parts of vocabulary elements. However, in order to finally determine the truth of
complex axioms, it is necessary to also find the counterparts of complex concepts
and roles. We provide a definition according to which the semantics of a com-
plex language construct can be obtained from the semantics of its constituents
(thereby following the principle of compositional semantics). Formally, this is
done by “lifting” the interpretation function ·I to these complex expressions.

90 S. Rudolph

First we extend the interpretation function from role names to roles by letting
uI = ΔI × ΔI (that is: the universal role interconnects any two individuals of
the domain and also every individual with itself), and assigning to inverted
role names r− the set of all pairs 〈δ, δ′〉 of domain elements for which 〈δ′, δ〉 is
contained in rI .

Next we define the interpretation function for concepts:

• � is the concept which is true for every individual of the domain, hence
�I = ΔI .

• ⊥ is the concept which has no instances, hence ⊥I = ∅.
• {a1, . . . , an} is the concept containing exactly the individuals denoted by
a1, . . . , an, therefore {a1, . . . , an}I = {aI1 , . . . , aIn}

• ¬C is supposed to denote the set of all those domain individuals that are
not contained in the extension of C, i.e., (¬C)I = ΔI \ CI .

• C � D is the concept comprising all individuals that are simultaneously in
C and D, thus we define (C � D)I = CI ∩ DI .

• C � D contains individuals being present in C or D (or both), therefore we
let (C � D)I = CI ∪ DI .

• ∃r.C is the concept that holds for an individual δ ∈ ΔI exactly if there
is some domain individual δ′ ∈ ΔI such that δ is connected to δ′ via the
relation denoted by r and δ′ belongs to the extension of the concept C,
formally: (∃r.C)I = {δ ∈ ΔI | ∃δ′ ∈ ΔI .

(
〈δ, δ′〉 ∈ rI ∧ δ′ ∈ CI)

}.
• ∀r.C denotes the set of individuals δ ∈ ΔI with the following property:

whenever δ is connected to some domain individual δ′ ∈ ΔI via the relation
denoted by r, then δ′ belongs to the extension of the concept C, formally:
(∀r.C)I = {δ ∈ ΔI | ∀δ′ ∈ ΔI .

(
〈δ, δ′〉 ∈ rI → δ′ ∈ CI)

}.
• ∃r.Self comprises those domain individuals which are r-related to themselves,

thus we let (∃r.Self)I = {x ∈ ΔI | 〈x, x〉 ∈ rI}.
• �n r.C refers to the domain elements δ ∈ ΔI for which no more than n

individuals exist to which δ is r-related and that are in the extension of C,
formally: (�n r.C)I = {δ ∈ ΔI | #{δ′ ∈ ΔI | 〈δ, δ′〉 ∈ rI ∧ δ′ ∈ CI} ≤ n}
(thereby #S is used to denote the cardinality of a set S, i.e., the number of
its elements).

• �n r.C, dual to the case before, denotes those domain elements having at
least n such r-related elements: (�n r.C)I = {δ ∈ ΔI | #{δ′ ∈ ΔI | 〈δ, δ′〉 ∈
rI ∧ δ′ ∈ CI} ≥ n}.

Remark 18. The reader should be aware that by the above definition, the ex-
tension of the concept ∀r.C contains every domain individual δ ∈ ΔI that is not
r-connected to any δ′. For instance, the concept ∀hasChild.Happy comprises all
individuals all of whose children are happy (alternatively, and arguably less con-
fusing: all individuals that do not have children which are not happy). This includes
those individuals not having children at all. In fact, when modeling with DLs, the
concept ∀r.⊥ is often used to refer to all individuals not being r-connected to any
other individual (nor to themselves).

Foundations of Description Logics 91

Example 19. Consider the interpretation I from Example 14. With the lifting of
the interpretation function just defined, we are able to determine the extension of
concepts and roles as follows:

orbitsaround−I

= {〈�, �〉, 〈�, ♀〉, 〈�, ♁〉, 〈�, ♂〉, 〈�, �〉, 〈�, �〉, 〈�, 	〉, 〈�,
〉, 〈�, �〉}
(
∀orbitsAround.(¬Star)

)I

= {δ | ∀δ′.
(
〈δ, δ′〉 ∈ orbitsAroundI → δ′ ∈ (¬Star)I

)
}

= {δ | ∀δ′.
(
〈δ, δ′〉 ∈ orbitsAroundI → δ′ ∈ ΔI \ StarI

)
}

= {δ | ∀δ′.
(
〈δ, δ′〉 ∈ orbitsAroundI → δ′ ∈ {�, ♀, ♁, �, ♂, �, �, 	,
, �})}

= {�, �}
(
(¬Planet) 	 ∃orbitsAround.Star

)I

= (¬Planet)I ∩ (∃orbitsAround.Star)I

= ΔI \ PlanetI ∩ {δ | ∃δ′.
(
〈δ, δ′〉 ∈ orbitsAroundI ∧ δ′ ∈ StarI

)
}

= {�, �, �} ∩ {�, ♀, ♁, ♂, �, �, 	,
, �}
= {�}(

�2shinesOn.{morning star, evening star}
)I

= {δ | #{δ′ | 〈δ, δ′〉 ∈ shinesOnI ∧ δ′ ∈ {morning star, evening star}I} ≥ 2}
= {δ | #{δ′ | 〈δ, δ′〉 ∈ shinesOnI ∧ δ′ ∈ {morning starI , evening starI} ≥ 2}
= {δ | #{δ′ | 〈δ, δ′〉 ∈ shinesOnI ∧ δ′ ∈ {♀}} ≥ 2}
= ∅

Exercise 1. Describe – both verbally and formally – the extension of the following
concepts with respect to the interpretation I defined in Example 16:

(a) ∀ hasSuccessor−.Positive
(b) ∃ multipleOf.Self
(c) ∃ multipleOf.∃hasSuccessor−.∃hasSuccessor−.{zero}
(d) �10 lessThan−.Prime
(e) ¬Prime 	 �2 multipleOf.�
(f) ∃lessThan.Prime
(g) ∀ multipleOf.

(
∃hasSuccessor−.{zero}

� ∃multipleOf.∃hasSuccessor−.∃hasSuccessor−.{zero}
)

The final purpose of the (lifted) interpretation function is to determine sat-
isfaction of axioms. In the following, we define when an axiom α is true (also:
holds), given a specific interpretation I. If this is the case, we also say that I is
a model of α or that I satisfies α and write I |= α.

• A role inclusion axiom r1 ◦ . . . ◦ rn � r holds in I if for every sequence
δ0, . . . , δn ∈ ΔI for which holds 〈δ0, δ1〉 ∈ rI1 , . . ., 〈δn−1, δn〉 ∈ rIn , also
〈δ0, δn〉 ∈ rI is satisfied. Figuratively, this means that every path in ΔI

that traverses the roles r1, . . . , rn (in the given order) must have a direct

92 S. Rudolph

r-“shortcut.” When using ◦ as symbol for the relation product, we can write
down this condition as rI1 ◦ . . . ◦ rIn ⊆ rI .

• A role disjointness statement Dis(r, s) is true in I if every two domain in-
dividuals δ, δ′ ∈ ΔI that are connected via an r-relation are not connected
via an s-relation. In other words, we can say that the two roles are mutually
exclusive which can be formally expressed by the condition rI ∩ sI = ∅.

• A general concept inclusion C � D is satisfied by I, if every instance of C
is also an instance of D. An alternative wording of this would be that the
extension of C is contained in the extension of D, formally CI ⊆ DI .

• A concept assertion C(a) holds in I if the individual with the name a is an
instance of the concept C, that is aI ∈ CI .

• A role assertion r(a, b) is true in I if the individual denoted by a is r con-
nected to the individual denoted by b, i.e. the extension of r contains the
corresponding pair of domain elements: 〈aI , bI〉 ∈ rI .

• I is a model of ¬r(a, b) exactly if it is not a model of r(a, b).
• The equality statement a ≈ b holds in I if the individual names a and b

refer to the same domain individual, i.e. aI = bI .
• I is a model of a �≈ b exactly if it is not a model of a ≈ b.

Example 20. We now check for some example axioms whether interpretation I
from Example 14 satisfies them.

– morning star ≈ evening star is true, since morning starI = ♀ =
evening starI , i.e. the two names denote the same domain individual.

– orbitsAround ◦ orbitsAround � shinesOn− is also true: The only chain of
domain individuals δ1, δ2, δ3 with 〈δ1, δ2〉 ∈ orbitsAroundI and 〈δ2, δ3〉 ∈
orbitsAroundI is δ1=�, δ2=♁, δ3=�. Therefore, we obtain orbitsAroundI ◦
orbitsAroundI = {〈�,�〉}. On the other hand, due to 〈�, �〉 ∈ shinesOnI

we obtain 〈�,�〉 ∈ shinesOn−I
.

– Star(evening star) is false since the domain element evening starI = ♀ is
not contained in StarI = {�}.

– Planet � ¬{sun, moon} is valid in I as we get (¬{sun, moon})I = ΔI \
({sun, moon})I = ΔI \ {�, �} = {�, ♀, ♁, ♂, �, �, 	,
, �} which is a superset of
PlanetI = {�, ♀, ♁, ♂, �, �, 	,
}.

– shinesOn(moon, earth) does not hold in I since the pair of the respec-
tive individuals is not contained in the extension of the shinesOn role:
〈moonI , earthI〉 = 〈�, ♁〉 �∈ shinesOnI .

– � � ∀shinesOn−.{sun} is true. To see this we first need to find
(∀shinesOn−.{sun})I . In words, this concept comprises those objects that are
shone upon by nothing but the sun (if they are shone upon by anything at all).
Formally, to check whether a domain individual δ is in the extension of that

concept, we have to verify that every individual δ′ with 〈δ, δ′〉 ∈ shinesOn−I

(which is equivalent to 〈δ′, δ〉 ∈ shinesOnI) also satisfies δ′ ∈ {sun}I which
just means δ′ = �. Scrutinizing all elements of ΔI , we find this condition
satisfied for each, therefore we have �I = ΔI ⊆ ΔI = (∀shinesOn−.{sun})I .

– Dis(orbitsAround, shinesOn) is satisfied by I since no pair 〈δ, δ′〉 is con-
tained in the extensions of both orbitsAround and shinesOn and therefore
orbitsAroundI ∩ shinesOnI = ∅.

Foundations of Description Logics 93

Exercise 2. Decide whether the following axioms are satisfied by the interpreta-
tion I from Example 16.

(a) hasSuccessor � lessThan

(b) ∃hasSuccessor−.∃hasSuccessor−.{zero} � Prime

(c) � � ∀multipleOf−.{zero}
(d) Dis(divisileBy, lessThan−)
(e) multipleOf ◦ multipleOf � multipleOf

(f) � � �1hasSuccessor.Positive
(g) zero �≈ zero

(h) �1multipleOf−.�(zero)
(i) � � ∀lessThan.∃lessThan.(Prime 	 ∃hasSuccessor.∃hasSuccessor.Prime)

Now that we have defined when an interpretation I is a model of an axiom,
we can easily extend this notion to whole knowledge bases: we say that I is a
model of a given knowledge base KB (also: I satisfies KB, written I |= KB), if
it satisfies all the axioms of KB, i.e., if I |= α for every α ∈ KB. Moreover, a
knowledge base KB is called satisfiable or consistent if it has a model, and it is
called unsatisfiable or inconsistent or contradictory otherwise.

Example 21. The following knowledge base is inconsistent.

Reindeer	∃hasNose.Red(rudolph)
∀worksFor−.(¬Reindeer�Flies)(santa)

worksFor(rudolph, santa)

santa �≈ batman

Reindeer � Mammal

Mammal	Flies � Bat

Bat � ∀worksFor.{batman}

Remark 22. Note that, for determining whether a knowledge base satisfies an
interpretation I, only the value of ·I for those individual, concept, and role names
are relevant, that occur in KB. All vocabulary elements not contained in NI(KB)∪
NC(KB)∪NR(KB) can be mapped arbitrarily and do not influence the semantics.

3.3 Logical Consequence

So far, we have defined a “modelhood” relation, which for a given interpretation
and a given set of axioms determines whether the axiom is true with respect to
the interpretation. Remember that the actual purpose of a formal semantics is
to provide a consequence relation, which tells us whether an axiom is a logical
consequence of a knowledge base. This consequence relation is commonly also
denoted by |= and defined as follows: an axiom α is a consequence of (also
entailed by) a knowledge base KB (written: KB |= α) if every model of KB is
also a model of α, i.e. for every I with I |= KB also holds I |= α.

Remark 23. As a straightforward consequence of this model-theoretic definition
of consequences we obtain the fact that an inconsistent knowledge base entails any
axiom, since the considered set of models which have to satisfy the axiom is empty
and hence the condition is vacuously true. This effect, well-known in many logics,
is called the principle of explosion according to which “anything follows from a
contradiction.”

94 S. Rudolph

Exercise 3. Decide whether the following propositions about the knowledge base
KB from Example 12 are true and give evidence:

(a) KB is satisfiable,
(b) KB |= Alive(schrödinger),
(c) KB |= Dead 	 Alive � ⊥,
(d) KB |= Alive � Healthy.

Exercise 4. Decide whether the following statements are true or false and justify
your decision. For arbitrary SROIQ knowledge bases KB and KB′ holds:

(a) If an axiom α is a logical consequence of the empty knowledge base, i.e. ∅ |= α,
then it is the consequence of any other knowledge base KB.

(b) The larger a knowledge base, the more models it has. That is, if KB ⊆ KB′

then every model of KB is also a model of KB′.
(c) The larger a knowledge base, the more consequences it has. That is, if KB ⊆

KB′ then every logical consequence from KB is a logical consequence from KB′.
(d) If ¬C(a) ∈ KB, then KB |= C(a) can never hold (for arbitrary concepts C).
(e) If two knowledge bases are different (KB �= KB′), then they also differ in

terms of logical consequences, i.e., there is an axiom α such that KB |= α and
KB′ �|= α or vice versa.

3.4 Excursus: Semantics via Embedding into FOL

As mentioned before, it is often said that most description logics, including
SROIQ, are fragments of first-order predicate logic (FOL). Technically, this
statement is somewhat misleading since, from a syntax point of view, most DL
axioms are not FOL formulae. What is rather meant by this statement is the
following: It is obvious that DL interpretations have the same structure as FOL
interpretations if one conceives individual names as constants, concept names as
unary predicates and role names as binary predicates. Under this assumption,
one can define an easy syntactic translation τ which, applied to a DL axiom α,
yields a FOL sentence τ(α) such that the model sets of α and τ(α) coincide,
that is an interpretation I is a model of α exactly if it is a model of τ(α).
Consequently, every reasoning problem in a DL is easily transferrable to an
equivalent reasoning problem in FOL, whence the semantics of description logics
could – as an alternative to the previously introduced way – be defined by
reducing it to the semantics of FOL via the mentioned translation.

Remark 24. Obviously, the converse cannot be the case, for any decidable DL:
supposing it were, we could decide any FOL reasoning problem by translating it to
the DL and then deciding the DL version. This clearly contradicts the well-known
undecidability of FOL.

We provide here a definition of τ but omit a proof of its correctness. More
precisely, the translation outputs first-order predicate logic with equality, a mild
generalization of pure first-order predicate logic featuring an equality predicate

Foundations of Description Logics 95

=. Every SROIQ knowledge base KB thus translates via τ to a theory τ(KB)
in first-order predicate logic with equality. We define

τ(KB) =
⋃

α∈KB
τ(α),

i.e., we translate every axiom of the knowledge base separately into a FOL
sentence. How exactly τ(α) is defined depends on the type of the axiom α.

However, first we have to define auxiliary translation functions τR : R ×
Var × Var → FOL for roles and τC : C × Var → FOL for concepts (where
Var = {x0, x1, . . .} is a set of variables):

τR(u, xi, xj) = true
τR(r, xi, xj) = r(xi, xj)

τR(r−, xi, xj) = r(xj , xi)

τC(A, xi) = A(xi)
τC(�, xi) = true
τC(⊥, xi) = false

τC({a1, . . . , an}, xi) =
∨

1≤j≤n
xi = aj

τC(¬C, xi) = ¬τC(C, xi)
τC(C � D, xi) = τC(C, xi) ∧ τC(D, xi)
τC(C � D, xi) = τC(C, xi) ∨ τC(D, xi)

τC(∃r.C, xi) = ∃xi+1.
(
τR(r, xi, xi+1) ∧ τC(C, xi+1)

)

τC(∀r.C, xi) = ∀xi+1.
(
τR(r, xi, xi+1) → τC(C, xi+1)

)

τC(∃r.Self, xi) = τR(r, xi, xi)
τC(�nr.C, xi) = ∃xi+1 . . . xi+n.

(∧
i+1≤j<k≤i+n

(xj �= xk)
∧

∧
i+1≤j≤i+n

(τR(r, xi, xj) ∧ τC(C, xj)
)

τC(�nr.C, xi) = ¬τC(�(n + 1)r.C, xi)

Obviously, the translation assigns to a role a FOL formula with (at most) two
free variables and to a concept a FOL formula with (at most) one free variable.
Now we are ready to translate axioms:

τ(r1 ◦ . . . ◦ rn � r) = ∀x0 . . . xn(
∧

1≤i≤n
τR(ri, xi−1, xi)) → τR(r, x0, xn)

τ(Dis(r, r′)) = ∀x0x1(τR(r, x0, x1) → ¬τR(r′, x0, x1))
τ(C � D) = ∀x0(τC(C, x0) → τC(D, x0))

τ(C(a)) = τC(C, x0)[x0/a]
τ(r(a, b)) = τR(C, x0, x1)[x0/a][x1/b]

τ(¬r(a, b)) = ¬τ(r(a, b))
τ(a ≈ b) = a = b

τ(a �≈ b) = ¬(a = b)

96 S. Rudolph

Exercise 5. Translate the axioms from Example 20 and Exercise 2 into first-order
logic with equality.

Remark 25. The considerations in this section do not apply to all DLs, since also
extensions of DLs with non-first-order features have been defined and investigated
such as non-monotonic features, regular expressions as role constructors or fixpoint
operators. However, the mainstream DLs for which mature reasoners exist and
which have been used as a basis for OWL are all first-order-embeddable.

4 Description Logics Nomenclature

What’s in a name? That which we call, say, SHIQ,
By any other name would do the trick.
While DL names might leave the novice SHOQed,
Some principles of ALCHemy unlocked
Enable understanding in a minute:
Though it be madness, yet there’s method in it.

There is a well-established naming convention for DLs. The naming scheme
for mainstream DLs can be summarized as follows:

(
(ALC | S)[H]| SR

)
[O][I][F |N |Q]

The meaning of the name constituents is as follows:
• ALC is an abbreviation for attributive language with complements

[Schmidt-Schauß and Smolka, 1991]. This DL disallows RBox axioms as well
as the universal role, role inverses, cardinality constraints, nominal concepts,
and self concepts.

• By S we denote ALC where we additionally allow transitivity statements,
i.e., specific role chain axioms of the shape r ◦ r � r for r ∈ NR. The name
goes back to the name of a modal logic called S.

• ALC and S can be extended by role hierarchies (obtaining ALCH or SH)
which allow for simple role inclusions, i.e., role chain axioms of the shape
r � s.

• SR denotes ALC extended with all kinds of RBox axioms as well as self
concepts.

• The letter O in the name of a DL indicates that nominal concepts are sup-
ported.

• When a DL contains I then it features role inverses.
• The letter F at the end of a DL name enables support for role functionality

statements which can be expressed as � � �1.�.
• N at the end of a DL name allows for unqualified number restrictions, i.e.,

concepts of the shape �nr.� and �nr.�.
• Q indicates support for arbitrary qualified number restrictions.

As becomes clear from the previous descriptions, S contains ALC. Moreover SR
subsumes all of ALC, ALCH, S, and SH. Finally F becomes obsolete once N
is present and both are superseded by Q.

Foundations of Description Logics 97

Exercise 6. Come up with a partial order diagram displaying syntactic contain-
ment of all DLs that match the above naming scheme and do not contain F or
N .

Exercise 7. Name, for each of the following knowledge bases, the “smallest” DL
that contains it:

(a) the knowledge base from Example 12,
(b) the knowledge base from Example 21,
(c) the knowledge base consisting of the axioms (a), (b) and (e) from Exercise 2,
(d) the knowledge base containing the axioms

� � ∃sameAs.Self � � �1sameAs.� batman � ¬∃sameAs−.{santa}.

5 Equivalences, Emulation,
Normalization Don’t give told consequences lip,

Nor ’bout equivalences quip,
’Cause often it’s the formal norm
That statements be in normal form.

The language of the DL SROIQ is rather redundant, that is, a matter can be
formulated in in many ways that are syntactically different but semantically the
same. In the following, we will survey different kinds of “semantical alikeness.”
Moreover we also discuss how this “syntactic redundancy” can be reduced by
reverting to so-called normal forms, which come handy for preprocessing knowl-
edge bases before performing actual automated reasoning, but are also useful to
alleviate proof work when certain meta-logical properties have to be shown.

5.1 Concept Equivalences

A very basic form of “semantical alikeness” is concept equivalence. Two concepts
C, D ∈ C are called equivalent – which is usually denoted by C ≡ D – if they
have the same extension in any interpretation I, i.e. CI = DI . Note that this
notion does not presume a fixed knowledge base, thus it really refers to all
possible interpretations I.

Remark 26. It is easy to see that the definition of concept equivalence can be
reformulated in terms of axiom entailment: C ≡ D holds exactly if the empty
knowledge base entails both C � D and D � C, i.e. ∅ |= C � D and ∅ |= D � C.
In fact, sometimes in the literature, statements of the form C ≡ D are allowed to
occur in knowledge bases as TBox axioms.

Exercise 8. Contemplate whether the condition from Remark 26 can be captured
by just one axiom, i.e. whether there is an axiom α such that ∅ |= α if and only
if C ≡ D. If this question cannot be answered right now, you may revisit it after
having read this section.

98 S. Rudolph

Quite a few basic concept equivalences (which are normally simply taken
for granted without further consideration) can be directly traced back to the
semantics definition for concepts. To recognize and memorize the equivalences
it is quite helpful that the syntactical notation of concept constructors (�, �)
is inspired by the associated set-theoretical interpretation (∪, ∩) and is also
very related to the corresponding notation in propositional logic (∨,∧). First, we
find that both concept intersection and union are commutative, associative and
idempotent.

C � D ≡ D � C
(C � D) � E ≡ C � (D � E)

C � C ≡ C

C � D ≡ D � C
(C � D) � E) ≡ C � (D � E)

C � C ≡ C

commutativity
associativity
idempotency

The law of associativity alone already releases us from the duty to put paren-
theses if the union or intersection of more than two concepts is written down,
this allows us to write C � D � D or C � D � D without causing semantical
ambiguity due to the missing precedence information. By virtue of the laws of
commutativity, associativity, and idempotency together, we can even conceive
unions and intersections of many concepts as sets and write for concept sets
{C1, . . . , Cn} = C ⊆ C

⊔

C∈C

C or
�

C∈C

C

instead of C1 � . . . � Cn or C1 � . . . � Cn, respectively.
While the aforementioned laws deal with semantical properties of � and �

separately, the following cope with their mutual interactions. On the right hand
side, we see that the two connectives are distributive over each other, while the
equivalences on the right are usually referred to as absorption laws.

(C � D) � E ≡ (C � E) � (D � E)
(C � D) � E ≡ (C � E) � (D � E)

(C � D) � C ≡ C
(C � D) � C ≡ C

Next, we investigate equivalence correspondences involving negation and are
certainly not too surprised to find that double negation can be removed and also
that the laws of de Morgan are valid in the DL setting:

¬¬C ≡ C
¬(C � D) ≡ ¬D � ¬C
¬(C � D) ≡ ¬D � ¬C

Beyond but similar to the de Morgan laws, negation can be shifted past quan-
tifiers or be “absorbed” by number restrictions and we obtain:

¬∃r.C ≡ ∀r.¬C
¬∀r.C ≡ ∃r.¬C

¬�nr.C ≡ �(n + 1)r.C
¬�(n + 1)r.C ≡ �nr.C

Foundations of Description Logics 99

The above laws provide a lot of leeway to move negation around. In particular,
they ensure that for every concept there exists a concept in negation normal
form. A concept is said to be in negation normal form (short: NNF), if the only
negation symbols in it occur in front of concept names, nominal concepts or
self concepts. Given a concept C, we determine the concept nnf (C) which is
in negation normal form and satisfies C ≡ nnf (C) by applying the recursive
function nnf :

nnf (C) := C if C∈{A,¬A, {a1,..., an},¬{a1,..., an}, ∃r.Self,¬∃r.Self,�,⊥}
nnf (¬¬C) := nnf (C)

nnf (¬�) := ⊥ nnf (¬⊥) := �
nnf (C � D) := nnf (C) � nnf (D) nnf (¬(C � D)) := nnf (¬C) � nnf (¬D)
nnf (C � D) := nnf (C) � nnf (D) nnf (¬(C � D)) := nnf (¬C) � nnf (¬D)
nnf (∀r.C) := ∀r.nnf (C) nnf (¬∀r.C) := ∃r.nnf (¬C)
nnf (∃r.C) := ∃r.nnf (C) nnf (¬∃r.C) := ∀r.nnf (¬C)
nnf (�n r.C) := �n r.nnf (C) nnf (¬�n r.C) := �(n + 1) r.nnf (C)
nnf (�n r.C) := �n r.nnf (C) nnf (¬�n r.C) := �(n − 1) r.nnf (C)

The following equivalences show that �0 cardinality constraints are vacuously
true and that existential and universal quantification can be seen as a special
case of number restrictions.

�0r.C ≡ �
�1r.C ≡ ∃r.C
�0r.C ≡ ∀r.¬C

Exercise 9. Argue that for every ALCQ concept C, there exists a concept C′ with
C ≡ C′ containing (next to concept and role names) only the connectives ¬,�, and
�n. Provide a function that computes C′.

We finish our enumeration of concept equivalences with some correspondences
showing, next to some interactions of quantifiers with � and ⊥, that quantifiers
may distribute over corresponding connectives, that nominal concepts can be
“split” into unions of singleton nominal concepts, and that in self concepts,
inverses don’t make a difference.

∃r.⊥ ≡ ⊥
∀r.� ≡ �

∃r.(C � D) ≡ ∃r.C � ∃r.D
∀r.(C � D) ≡ ∀r.C � ∀r.D

{a1, . . . , an} ≡ {a1} � . . . � {an}
∃r−.Self ≡ ∃r.Self

Exercise 10. Give formal proofs for all concept equivalences established in this
section.

100 S. Rudolph

Exercise 11. Show that the following equivalences are not valid:

(a) ∃r.(C 	 D) ≡ ∃r.C 	 ∃r.D,
(b) C 	 (D � E) ≡ (C 	 D) � E,
(c) ∃r.{a} 	 ∃r.{b} ≡ �2.{a, b},
(d) ∃r.� 	 ∃s.� ≡ ∃r.∃r−.∃s.�.

5.2 Knowledge Base Equivalences

Another notion of semantical alikeness is axiom or knowledge base equivalence.
Two knowledge bases KB1 and KB2 are called equivalent (which we will write
KB1 ⇐⇒ KB2), if their model sets coincide, i.e. if an interpretation I is a model
of KB1 exactly if it is a model of KB2. As a special case, we obtain axiom
equivalence: α1 and α2 are equivalent (written α1 ⇐⇒ α2) if the two singleton
knowledge bases {α1} and {α2} are equivalent.

In the following, we will review some of the most important knowledge base
equivalences which are e.g. used to define knowledge base normal forms. The first
two equivalences show that unions on the left hand side as well as intersections
on the right hand side of a GCI can be “taken apart” into several axioms. These
correspondences are also well known in the logic programming field where they
are usually referred to as Lloyd-Topor transformations [Lloyd and Topor, 1984].

{A � B � C} ⇐⇒ {A � C, B � C}
{A � B � C} ⇐⇒ {A � B, A � C}

An axiom equivalence also often used for normalization purposes is the fol-
lowing:

C � D ⇐⇒ � � ¬C � D

This allows to transform arbitrary GCIs into the statement that a certain
concept (in our case ¬C �D) is “universal”, i.e., that its extension is the whole
domain. Moreover, this transformation together with a reverse Lloyd-Topor mod-
ification allows to transform an entire TBox into one single universal concept
statement.

Example 27. Considering the TBox of the knowledge base from Example 12, we
can first perform the following transformations:

– Healthy � ¬Dead becomes � � ¬Healthy � ¬Dead
– Cat � Dead � Alive becomes � � ¬Cat � Dead � Alive

– HappyCatOwner � ∃owns.Cat 	 ∀caresFor.Healthy becomes
� � ¬HappyCatOwner � (∃owns.Cat 	 ∀caresFor.Healthy)

Finally, due to the coinciding left hand side of the created GCIs, we can put them
together to obtain

� �
(
¬Healthy � ¬Dead

)
	

(
¬Cat � Dead � Alive

)

	
(
¬HappyCatOwner � (∃owns.Cat 	 ∀caresFor.Healthy)

)

Foundations of Description Logics 101

As already mentioned before, ABox statements can be translated into equiv-
alent TBox statements in any DL that allows for nominals, according to the
following equivalences:

C(a) ⇐⇒ {a} � C
r(a, b) ⇐⇒ {a} � ∃r.{b}

¬r(a, b) ⇐⇒ {a} � ¬∃r.{b}
a ≈ b ⇐⇒ {a} � {b}
a �≈ b ⇐⇒ {a} � ¬{b}

Exercise 12. It might come as a surprise that the GCI {a} � {b} is sufficient
to express a ≈ b. Argue why the converse inclusion {b} � {a} is redundant given
{a} � {b}.

In turn this allows to transfer any knowledge base consisting only of an ABox
and a TBox into a singular universal concept statement.

Exercise 13. Consider whether there is a way to also translate RBox axioms into
GCIs by a similar technique.

Example 28. The said equivalences can also be applied reversely and thus used
to remove axioms containing nominal concepts from TBoxes. This may be worth-
while doing as nominals in TBoxes normally lead to worse runtimes of reasoning
algorithms. Give examples of GCIs containing nominals where this removal is not
possible.

The following two equivalences may take a moment to verify intuitively. The
essential idea here is to transfer the “standpoint” from the source to the target
of a role. These correspondences can be used to remove some inverses from a
knowledge base.

∃r−.C � D ⇐⇒ C � ∀r.D
C � ∀r−.D ⇐⇒ ∃r.C � D

Example 29. Give a formal proof for the two preceding axiom equivalences.

Exercise 14. Consider whether the inverse can be removed in axioms of the shape
C � ∃r−.D.

Inverses also give rise to an equivalence between role chain axioms. Intuitively,
all roles on both sides of the statement have to be inverted and (which is not
really a big surprise) additionally the order of the roles in the chain has to be
reverted.

r1 ◦ . . . ◦ rn � r ⇐⇒ Inv(rn) ◦ . . . ◦ Inv(r1) � Inv(r)

Exercise 15. In the light of this section, revisit Exercise 7 and discuss how the
knowledge bases there could be equivalently rewritten to fit an even “smaller” DL.

102 S. Rudolph

5.3 Emulation

In the previous sections, we considered very strong notions of semantic alikeness
based on the equality of extensions or model sets, respectively. These notions are
symmetric (i.e. they hold both ways) and presume that the signatures used are
the same. However, there are certain modeling tasks and certain normalization
requirements that can be accomplished only by virtue of additional vocabulary
(i.e. auxiliary individual, concept and role names; often those signature elements
are called fresh in order to indicate that they must not have been used in the
knowledge base before).

Example 30. As an easy example, consider the SROIQ axiom � � ∃u.C, which
specifies that the concept C is non-empty, i.e. in every model I, there must be
some individual δ ∈ ΔI for which δ ∈ CI holds. While we cannot express this
equivalently in any DL not featuring the universal role, it is rather easy to do so in
an emulating way: we introduce a new individual name c which is meant to denote
δ and specify that it denotes an instance of C by the ABox statement C(c). Note
that this example also represents a simple form of Skolemisation (which is not the
case for all examples of emulation).

This kind of semantic similarity that allows for introducing additional vocab-
ulary is referred to as (semantic) emulation. Formally, a knowledge base KB′

semantically emulates a knowledge base KB if the two following conditions hold:

– Every model of KB′ is a model of KB, formally: given an interpretation I,
we have that I |= KB′ implies I |= KB.

– For every model I of KB there is a model I ′ of KB′ that has the same
domain as I, and coincides with I on the vocabulary used in KB. In other
words ΞI′

= ΞI for every Ξ ∈ NI(KB) ∪ NC(KB) ∪ NR(KB).

Remark 31. Note that knowledge base equivalence is a special case of emula-
tion. In particular, every knowledge base emulates itself. Moreover, emulation is
transitive: if KB′′ emulates KB′ and KB′ emulates KB, then KB′′ emulates KB.

Another common wording for expressing that KB′ emulates KB is saying
that KB′ is conservative over KB. The semantic correspondence between two
knowledge bases KB′ and KB where the former emulates the latter is still quite
tight: KB′ is satisfiable exactly if KB is, the two knowledge bases coincide in
terms of entailment for every axiom α which does not use any name from the
auxiliary vocabulary used in KB′, i.e. in this case, we have KB |= α exactly if
KB′ |= α. In fact, we even obtain that KB∪KB1 |= KB2 exactly if KB′∪KB1 |=
KB2 for any knowledge bases KB1,KB2 that do not contain any of KB′s auxiliary
vocabulary. Thus, KB′ can do the same job as KB in many respects while the
possible usage of auxiliary signature elements provides quite some freedom in
terms of normalization possibilities.

Foundations of Description Logics 103

Example 32. Remember that we call an ABox of a knowledge base extensionally
reduced if the only concepts and roles occurring therein are concept names and roles
names, respectively. While it is easy to convert an ABox into one not containing
statements of the form r−(a, b) (as they can be equivalently expressed by r(b, a)),
concept assertions of the form C(a) where C is not a concept name cannot be
removed by equivalent transformations in general. However, by making use of an
additional, newly introduced concept name AC , we can rewrite C(a) into the two
axioms AC(a) and AC � C which together do the same job as the original axiom.
Thereby, the complex concept is shifted from the ABox into the TBox, whence an
exhaustive application of this step to all concept assertions results in a knowledge
base KB′ which is extensionally reduced and emulates KB.

Exercise 16. Prove that {AC(a), AC � C} indeed emulates {C(a)}.

One normalization being of particular importance for many reasoning algo-
rithms is known under the name structural reduction. Essentially, structural
reduction aims at reducing the complex structure of axioms by means of intro-
ducing concept names for substructures and substituting them. This allows us
to omit nestings of role restrictions and boolean operators. Technically, the idea
works as follows: let C[D] be a complex concept containing D as a subexpression.
Then, we can introduce a fresh concept name AD and force it to extensionally co-
incide with D by adding the two axioms AD � D and D � AD to the knowledge
base. This enables us to exchange all occurrences of D in C[D] by AD, obtaining
C[AD].

Example 33. Consider the axiom

∃livesAt.{northPole} � ∃worksFor−.(Reindeer 	 ∃hasNose.(Red 	 Shiny)).

Performing structural reduction (and using ≡ as a shortcut for mutual �) we
obtain

A∃livesAt.{northPole} � A∃worksFor−.(Reindeer�∃hasNose.(Red�Shiny))

A∃livesAt.{northPole} ≡ ∃livesAt.A{northPole}
A{northPole} ≡ {northPole}

A∃worksFor−.(Reindeer�∃hasNose.(Red�Shiny)) ≡ ∃worksFor−.AReindeer�∃hasNose.(Red�Shiny)

AReindeer�∃hasNose.(Red�Shiny) ≡ Reindeer 	 A∃hasNose.(Red�Shiny)

A∃hasNose.(Red�Shiny) ≡ ∃hasNose.ARed�Shiny

ARed�Shiny ≡ Red 	 Shiny

Remark 34. There are other, more elaborate and space-saving ways to perform
structural reduction. In fact normally only one of the two axioms AD � D or
D � AD is necessary to achieve emulation. Which one depends on the position of
D inside an axiom related to scopes of negation and other junctors. This position
information is captured by the notion of polarity of a subexpression.

104 S. Rudolph

Exercise 17. Using the technique of structural reduction and other semantic
alikeness correspondences introduced above, argue that any knowledge base KB can
be emulated by a knowledge base KB′ the TBox of which contains only GCIs of the
form �

C∈C

C �
⊔

D∈D

D

where C ∪ D contains only concepts of the forms {a}, A, ∃r.Self, �nr.A, or �nr.A
with a ∈ NI , A ∈ NC and r ∈ R (note that no negation is allowed, whatsoever).

Example 35. Given a concept expression of the form A � �nr.B, the cardinality
constraint can be removed as follows: We introduce fresh role names r1, . . . rn which
we specify as subroles of r (by the axioms ri � r for all 1 ≤ i ≤ n) and as pairwise
disjoint (i.e. we add Dis(ri, rj) for all 1 ≤ i < j ≤ n). With that background
axiomatization, the above statement can be rewritten into A �

�
1≤i<j≤n ∃ri.B.

Emulation techniques can also be used to show that a number of statements
which can be directly expressed in other logics (such as FOL) but not in DL, are
nevertheless expressible by using some “makros” involving auxiliary vocabulary.
In the following, we give some examples for this.

The universal role. The universal role u connects all individuals of the de-
scribed domain. In a DL where this feature is not built in, we may want to
introduce a new role u′ and write down statements which force u′ to behave
like the universal role (by making sure that u′ must be interpreted as ΔI × ΔI

in every model I). Note that this can be easily done in FOL by the statement
∀x, y(u′(x, y)). However, if a DL supports transitivity and nominal concepts, we
can obtain the same by introducing a new nominal aaux and specify the axioms
� � ∃u′.{aaux} and � � ∃u′−.{aaux} and u′◦u′ � u′. The only downside to this
is that u′ is then necessarily non-simple whence it cannot be used in all places
where u could.

Concept products. Sometimes, there are situations where one wants to express
that any instance of a concept C is connected with any instance of a concept D
via a role r. In fact, concept product statements of the form C × D � r which
express exactly that have been introduced into description logics rather early
but never found their way into the mainstream.

Example 36. As an example, the fact that alkaline solutions neutralize acid
solutions could expressed by the concept product axiom AlkalineSolution ×
AcidSolution � neutralises.

Again, it is rather easy to find that the FOL statement ∀x, y(C(x) ∧D(y) →
r(x, y)) realizes this (where we for the sake of simplicity assume that C, D are
concept names and r is a role name). However, SROIQ provides enough model-
ing capabilities to emulate this situation as well via the GCIs C � ∃raux.Self and
D � ∃r′aux.Self as well as the complex role inclusion raux ◦u◦r′aux � r. Concept
products and their impact on reasoning complexity have e.g. been considered by
Rudolph et al. [2008].

Foundations of Description Logics 105

Qualified role inclusion. Likewise, the specialization of roles due to concept
memberships of the two involved individuals seems to surpass the modeling capa-
bilities of the DLs treated here. The FOL statement ∀x, y(C(x)∧r(x, y)∧D(y) →
s(x, y))(expressing that any C-instance and D-instance that are interconnected
by r are also interconnected by s) can be emulated by a DL axiomatization
in a similar way as discussed above: Introduce the GCIs C � ∃raux.Self and
D � ∃r′aux.Self as well as the complex role inclusion raux ◦ r ◦ r′aux � s.

Exercise 18. Use this technique to express the proposition “any person of age
having signed a contract which is legal is bound to that contract.” Use the concept
names OfAge, Contract, Legal and the role names hasSigned and boundTo.

Qualified role inclusions and concept products constitute special cases of the
more general framework of description logic rules as described by Krötzsch et al.
[2008].

Boolean Combination of Axioms. From the point of view of FOL, it seems
quite straightforward that any statement can be negated or any two statements
can be connected by disjunction and conjunction, obtaining a new statement
inside the logic. In other words, FOL is Boolean-closed on the sentence level.
In DLs, the situation is quite different: there is no direct way to, for instance,
say that one of the two GCIs A � B and C � D must hold. This is, roughly
speaking, due to the fact that DL axioms can be understood as “element-wise”
propositions (the verbalization of which starts “for each element of the domain
holds...”), whereas the above statement gives an alternative choice concerning all
individuals at once. Fortunately, SROIQ provides a way to handle this by virtue
of the universal role. We first recap that the above axioms can be rewritten into
� � ¬A � B and � � ¬C � D respectively. Then we axiomatize the following
statement: “every domain element is an instance of A � B or every domain
element is an instance of C � D.” To this end we exploit the fact that every
individual is connected to every individual via the universal role, whence we can
formally express the above wording by the axiom � � ∀u.(¬A�B)�∀u.(¬C�D).

Exercise 19. In fact, the encoding introduced above doesn’t need any auxiliary vo-
cabulary. However, arbitrary Boolean combinations of axioms can also be emulated
in SHOIQ. In that case, the vocabulary must be extended. Explain how this can
be done. Hint: try using a “hub nominal.”

Exercise 20. Find a way to emulate C(a) ∨ D(b) in SHIQ.

Exercise 21. Consider whether it is possible to emulate ABox statements of the
shape ¬r(a, b), a ≈ b, and a �≈ b with an ALCHIQ knowledge base by using only
ABox statements of the form C(a) and r(a, b).

106 S. Rudolph

6 Modeling with DLs While frowning on plurality,
The pope likes cardinality:
It can enforce infinity,
And hence endorse divinity.
But, theologically speaking,
The papal theory needs tweaking
For it demands divine assistance
to prove “the three are one”-consistence.

In this section, we will discuss the added value brought about by certain DL
modeling features. We will also discuss specific types of statements for which
some formalisms provide dedicated modeling primitives, although they are just
“syntactic sugar,” that is they can be expressed by virtue of the modeling fea-
tures already introduced. Moreover, we will provide some insight about model-
theoretic consequences that arise from using or not using certain constructs.

Remark 37. Thereby, one can see that the expressive power of a logic can be char-
acterized by its capability to “distinguish” interpretations. That is, a “stronger”
logic might be able to distinguish two interpretations I1 and I2 meaning that there
is a knowledge base KB such that I1 |= KB but I2 �|= KB (or vice versa), whereas a
“weaker” logic may not have this capability. In many cases, this indistinguishabil-
ity can be cast into statements of the following type: given any knowledge base KB
in a certain DL and a (set of) model(s) of KB then performing a certain operation
or manipulation on that model(s) will inevitably result in an interpretation which
is again a model of KB. We then say the set of models of KB is closed under the
considered operation.

6.1 A Lot Can Be Done in ALC
Already ALC features many modeling capabilities usually found in knowledge
representation languages. Beyond the ones explicitly introduced, quite some
more correspondences can be expressed indirectly. We will tackle the most im-
portant ones.

Concept Disjointness. Two concepts C and D are disjoint with respect to
an interpretation I, if their extensions do not overlap, i.e. CI ∩ DI = ∅. It is
straightforward that this semantic condition can be cast into the GCI C � D �
⊥. Equivalently, this can be expressed by C � ¬D or D � ¬C. Disjointness
information is often neglected when doing logical modeling. It can, however,
be very useful to derive negative information, e.g., the guarantee that some
individual is not an instance of a concept.

Domain and Range of Roles. Given a role r, we may want to make state-
ments about the source and target individuals for the respective relation. We
say that the role r has domain C in an interpretation I if any source individual
of the relation associated with r is an instance of C, in other words, for every
〈δ, δ′〉 ∈ rI , we have δ ∈ CI . Likewise, we say that r has target D if for every

Foundations of Description Logics 107

〈δ, δ′〉 ∈ rI , also δ′ ∈ DI is satisfied. The standard DLs covered here do not pro-
vide modeling primitives for specifying domain or range of a role, but they can
be easily expressed with the means already present in ALC. The above domain
statement is equivalent to the GCI ∃r.� � C whereas the range statement can
be written as � � ∀r.D.

The Empty Role. It might seem a bit peculiar that, while SROIQ supports
both the universal and the empty concept (� and ⊥, respectively), it features
only the universal role u whereas the empty role is not part of the definition. This
is, however, not a severe omission as the empty role can be easily axiomatized:
for a new role name emptyRole we can use the GCI � � ∀emptyRole.⊥ to force
the extension of emptyRole to be empty. An alternative axiom (beyond ALC)
with the same effect is Dis(u, emptyRole).

Exercise 22. Come up with an ALC GCI that expresses the following statement:
“If an academic supervises a project, then he is a project leader and the project is
a research project.” Use the role name supervises as well as the concept names
Academic, Project, ProjectLeader, and ResearchProject.

6.2 Looking Back: Inverse Roles

Inverses allow for traversing roles in reverse direction. While DLs without in-
verses only allow for describing domain individuals by means of their “outgoing”
roles, by means of inverses, “incoming” roles can be taken into account as well.

Example 38. Consider the interpretation I from Example 16. It is rather easy
to see that the domain individuals 3 and 5 (as well as any other prime number)
are not distinguishable by ALC concepts (in fact, not even by SROQ concepts),
that is, there is no concept C having 3 as an instance but not 5, or vice versa. On
the other hand, the ALCI concept ∃succ−.∃succ−.∃succ−.¬∃succ−.� does the
job.

Moreover, some rather natural properties of relations can be expressed by
means of inverses. A role r is called symmetric if for any 〈δ, δ′〉 ∈ rI also 〈δ′, δ〉 ∈
rI holds, that is, relatedness via r always holds both ways. On the other hand
it is called asymmetric if for all 〈δ, δ′〉 ∈ rI satisfy 〈δ′, δ〉 �∈ rI holds, this means
that r-relatedness never holds both ways. Sometimes, symmetry or asymmetry
of a role r is included in a DL as a separate axiom type, denoted by Sym(r) or
Asy(r), respectively. The former can be easily expressed by stating that r has
its own inverse as a subrole: r− � r. The latter can be characterized by stating
that r and its inverse are disjoint: Dis(r, r−).

6.3 Model Manipulation Part I: Filtration

Now we will turn our attention to our first model transformation. Given a set C
of concepts and an interpretation I, we can obtain the filtration of I with respect

108 S. Rudolph

to C as follows: First, we define an equivalence relation � on the domain elements
of I by letting δ � δ′ for anonymous δ, δ′ ∈ ΔI whenever δ and δ′ coincide in
terms of concept memberships for concepts from C, that is, for every C ∈ C we
have δ ∈ CI exactly if δ ∈ CI . Then, for some δ ∈ ΔI we let [δ]� = {δ′ | δ � δ′}
and ΔI

/� = {[δ]� | δ ∈ Δ}. Verbally, the set ΔI
/� consists of “bags” of domain

elements from I where all elements in one bag coincide on the concepts from C
they satisfy. The filtration of I is the interpretation J with

– ΔJ = ΔI
/�

– for each a ∈ NI , set aJ = [aI]�;
– for each concept name A ∈ NC , set AJ = {[δ]� | δ ∈ AI};
– for each role name r ∈ NR, set rJ = {〈[δ]�, [δ]�〉 | 〈δ, δ′〉 ∈ rI};

Intuitively, this means, that the filtration is obtained by collapsing domain
elements which are not distinguishable by virtue of concepts from C (nor by
individual names) into one.

Example 39. Let I be the interpretation from Example 14 and let C contain all
ALC concepts. Then the according filtration can be sketched as follows.

Planet

{♀}

o

��

morning star
evening star home

Planet

{♁}

o

��

{�}

o

��

{�}

o
��

moon

Star

{�}
sun

s

		
s

��

s

��

s

��

s
��

Planet

{�,♂,	,�,
,�}o

If, for a given SROI knowledge base KB, we let C be all concepts occurring
in KB (including the subexpressions of concepts) then the filtration of a model
of KB will again be a model of KB. On the other hand, since in this case, C
is finite, there can be only finitely many “bags” in ΔI

/� which means that the
filtration will even be a finite model of KB. This allows to conclude that every
satisfiable SROI knowledge base has a finite model.

Remark 40. In general, logics for which the existence of an arbitrary model im-
plies the existence of a model where ΔI is a finite set (usually briefly called finite
model) are said to have the finite model property. This is a rather convenient
property, since one may disregard infinite representations when looking for models
of a knowledge base. Moreover, for any logic that has the finite model property
and that can be embedded into FOL, the problem of knowledge base satisfiability
is decidable.

Foundations of Description Logics 109

Concluding, we can state that filtrations are quite stable in terms of model-
hood preservation, however they fail as soon as cardinality constraints come into
play.

Exercise 23. Consider Example 39 and find an ALCQ axiom which is not satis-
fied in the interpretation given there although it is satisfied in the original inter-
pretation from Example 14.

6.4 Up to Infinity: Cardinality Constraints

By means of cardinality constraints, precise statements about the number of
individuals related to a certain individual via a role can be made. This kind of
modeling features is of obvious practical value and wide-spread in other knowl-
edge specification formalisms such as entity-relationship modeling or UML. Car-
dinality constraints also naturally capture certain role characteristics.

For instance, role functionality can be seen and treated as a special case of
cardinality constraints. In words, a role is functional, if every domain individual
is connected to at most one domain individual via the relation associated to that
role. Formally, a role r is functional, if for every domain individual δ ∈ ΔI there
is at most one individual δ′ ∈ ΔI satisfying 〈δ, δ′〉 ∈ rI . This condition can be en-
forced by the axiom � � �1.�. Sometimes, in DLs which do not support number
restrictions in general, the according axiom is noted as Fun(r). Typical examples
for functional roles are hasFather, marriedWith, or locatedInCountry.

Remark 41. Note that by definition, a role can be functional and still not start
from every domain individual, as in the case of marriedWith. Thus the term “func-
tional” may be misleading as it may cause the erroneous impression that the role
extension is a (total) function. Rather, functional roles semantically correspond to
partial functions.

In fact, in the presence of cardinality constraints allows to enforce that a
knowledge base has only models the domain of which is infinite. Consider the
following knowledge base:

(∀succ−.�)(zero) � � ∃succ.� � � �1.succ−.�

It is not to difficult to find a model for this knowledge base which has an
infinite domain: in fact the interpretation described in Example 16 is such a
model. On the other hand the knowledge base cannot have a model with finite
domain.

Exercise 24. Prove this. Hint: assume a finite number of domain elements and
count sources and targets for succ.

Note that we have just shown that any extension of ALCIF does not have
the finite model property.

110 S. Rudolph

6.5 Model Manipulation Part II: Unraveling

However, another nice property still holds in the presence of number restrictions.
Roughly speaking, this property states that we can take an arbitrary model and
“unfold” or “unroll” it such that all the parts of the model not containing named
individuals are tree-like (i.e., cycle-free). More formally, the unraveling of an
interpretation I is an interpretation that is obtained from I as follows: First, we
define the set S ⊆ (ΔI)∗ of paths to be the smallest set of sequences of domain
elements such that

– for every a ∈ NI , aI is a path;

– δ1 · · · δn · δn+1 is a path, if

• δ2 �= aI for all a ∈ NI ,

• δ1 · · · δn is a path,

• δi+1 �= δi−1 for all i = 2, . . . , n,

• 〈δn, δn+1〉 ∈ rI for some r ∈ R.

For each w = δ1 · · · δn ∈ S, set last(w) = δn. Now, we define the unraveling
of I as the interpretation J = 〈ΔJ , ·J 〉 with ΔJ = S and, for each sequence
w ∈ ΔJ , we define the interpretation of concept and role names as follows:

(a) for each a ∈ NI , set aJ = aI ;

(b) for each concept name A ∈ NC , set w ∈ AJ iff last(w) ∈ AI ;

(c) for each role name r ∈ NR, set 〈w, w′〉 ∈ rJ iff

– w′ = wδ for some δ ∈ ΔI and 〈last(w), δ〉 ∈ rI or

– w = w′δ for some δ ∈ ΔI and 〈δ, last(w′)〉 ∈ rI or

– w = aI , w′ = bI for some a, b ∈ NI and 〈aI , bI〉 ∈ rI .

With this notion of unraveling we find that for any ALCHIQ knowledge base
KB, an interpretation I is a model exactly if its unraveling is. This correspon-
dence has some practical consequences: First it guarantees that ALCHIQ has
the forest model property. That means that every satisfiable ALCHIQ knowl-
edge base KB has a model with a particular shape: there is a “root tangle”
of named elements from which trees of anonymous elements grow. This prop-
erty is for instance of particular interest to prove the completeness of tableau
algorithms.

Foundations of Description Logics 111

Example 42. To demonstrate what happens during the unraveling of an inter-
pretation, consider this small example interpretation (where mbt is intended to
mean “more beats than”):

doubleQuaver � � � �
��
�

mbt

��

mbt

��
� Silent

crotchet � � �

mbt

��

In order to unravel this interpretation, intuitively, we first pick all named
individuals (i.e., � � � �

��
and � �) and keep them as well as their mutual relationships.

Then, in the original interpretation, we walk along the (incoming and outgoing)
role links to anonymous elements to find the named individuals’ role neighbors,
these neighbors are (as well as the corresponding role links) reproduced in the
unraveling. Even if the neighbors are the same, we introduce separate copies in
the unraveling, using the “origin element” as a prefix to distinguish them. In our
example, we introduce � � � �

��
� as the mbt-neighbor of � � � �

��
(caused by � in the original

interpretation) and � � � as the mbt-neighbor of � � (caused by the same �). We then
proceed to neighbors of neighbors and so forth. Thereby, we exclude the elements
that we “just came from” in the previous step. We may, however, traverse elements
of the original interpretation several times, we will however disregard their names
and create anonymous copies of them in the unraveling. In our case, the re-
sult of this procedure is an infinite interpretation which is partially depicted below.

Silent Silent

doubleQuaver � � � �
��
�

mbt

��

mbt
�� � � � �
��
� � � � �

��
� � �mbt

�� � � � �
��
� � � � � � �

��
mbt

��
mbt

�� � � � �
��
� � � � � � �

��
� � � � �

��
� � � � � � �

��
� � �mbt

�� � � � �
��
� � � � � � �

��
� � � � � � �

��
mbt

�� · · ·

crotchet � � �
mbt �� � � � � � � � � � �

��mbt�� mbt �� � � � � � � �
��
� � mbt �� � � � � � � �

��
� � � � � � � � � �

��
� � � � � � �

�� mbt ��mbt�� � � � � � � �
��
� � � � � � �

��
� � · · ·

Silent Silent

Exercise 25. Sketch or formally describe the unravelings of the interpretations
from Example 14 and Example 16. For the latter and for Example 42, give one
axiom from the DL S and one from the DL ALCOI, either of which hold in the
interpretation but not the according unraveling.

Remark 43. In fact, variants of the forest model property also hold for some DLs
containing role chain axioms and/or nominal concepts, requiring also to modify
the employed unraveling technique. In the presence of role chain axioms, one usu-
ally defines a “skeleton” of the model via unraveling into a forest structure and
thereafter adds further “role links” the presence of which is enforced by the RIAs.
In the presence of nominals, one has to allow so-called “backlinks” i.e. tree indi-
viduals are allowed to have role links back into the root tangle (but not into other
trees).

112 S. Rudolph

6.6 Far Far Away: Transitivity

Transitivity of a role r is expressible by the complex role inclusion r ◦ r � r. In
DLs that do not feature any complex role inclusions but transitivity this axiom
is often alternatively written as Tra(r). Role transitivity statements come about
quite naturally for a variety of relations that are to be modeled. Typical examples
for transitive roles are ancestorOf, superiorOf, partOf, greaterThan, etc. Role
transitivity declarations allow for a more succinct modeling and better querying
capabilities via entailment checks.

Example 44. Envisioning a company and a knowledge base containing employee
data, it would of course be possible to explicitly add all superior relations as ABox
role assertions superiorOf(a, b). On the other hand, the same can be achieved
(in terms of inferrable superior information) by only adding role assertions for
the cases of where a denotes a direct superior of b, if we additionally state that
superiorOf is transitive. Moreover this second version is advantageous in terms
of maintenance: whenever a new employee joins the company, only their direct
superior(s) and inferior(s) need to be explicitly specified.

However, what can be expressed in terms of transitivity in standard DLs is
limited. Thereby the limitations are inherited from FOL. What cannot be done
in the DLs treated here is to precisely talk about the transitive closure of a given
role. In other words, there is no way to axiomatize the condition that one role r is
the transitive closure of another role s (formally, this condition can be expressed
by rI = (sI)∗). What can be done is to say that the extension of r contains
the transitive closure of s (i.e. (sI)∗ ⊆ rI) by specifying s � r and r ◦ r � r.
Presuming this axiomatization of an upper bound for the transitive closure, we
can e.g. check whether there is an “s-path” of arbitrary length from an individual
a to an individual b in every model of the knowledge base by checking whether
the knowledge base entails the role assertion s(a, b). Still, there is no way to
check for the necessary absence of such a path in all models of the knowledge
base.

6.7 Model Manipulation Part III: Disjoint Union

We now consider a transformation which, roughly speaking, takes two interpre-
tations and puts them side by side. More formally, given two interpretations I =
(ΔI , ·I) and J = (ΔJ , ·J), assuming that ΔI ∩ ΔJ = ∅, we
define the disjoint union of I with J denoted by I+J = (ΔI+J , ·I+J) as fol-
lows: ΔI+J = ΔI ∪ ΔJ , aI+J = aI , AI+J = AI ∪ AJ and rI+J = rI ∪ rJ .
Note that, unlike most definitions of disjoint unions, this definition is asymmet-
ric since, for the mapping of the individuals, preference is given to I. One can
show that whenever I and J are models of a SHIQ knowledge base KB then
so is their disjoint union I+J .

Exercise 26. Prove the claim above. Hint: An intermediate lemma showing
CI+J = CI ∪CJ will come handy for that. This will require a structural induction
over the concepts.

Foundations of Description Logics 113

Example 45. Given the interpretation I from Example 14, let I′ denote I
where every domain element δ has been renamed into δ′. Then the interpretation
I + I′ can be displayed as follows:

Planet♀

o

��

morning star
evening star home

Planet♁

o

��

Planet�

o

��

�
o

��

moon

�
o

��
Star

�
sun

s

�� s

��

s

��

s

��

s

		
s

s

��

s

��

s

s
��
Planet♂

o

�
Planet

o

��

	
Planet

o

��

Planet

o

��

�
Planet

o

��

Planet♀’

o

��

Planet♁’

o

��

Planet�’

o

��

�’

o
��

�’
o

��
Star

�’

s

�� s

��

s

��

s

��

s

		
s

s

��

s

��

s

s
��
Planet♂’

o

�’
Planet

o

��

	’
Planet

o

��

’
Planet

o

��

�’
Planet

o

��

In fact, the above result can be generalized to disjoint unions of infinitely
many models. This gives rise to a property which could be called the infinite
model property : whenever there is an arbitrary model for a SHIQ knowledge
base KB, then there is also an infinite one.

Remark 46. More generally, these properties even hold for all SRIQ knowledge
bases not containing the universal role.

Exercise 27. Consider Example 45 and find an ALCO axiom which is not satis-
fied in the interpretation given there although it is satisfied in the original inter-
pretation from Example 14.

Wrapping up, what we have learned about model manipulations, their range
of applicability, and the model properties they give rise to can be summarized
in the following table.

manipulation preserves models for associated property
filtration SROI finite model property
unraveling ALCHIQ forest model property
disjoint union SRIQ\u infinite model property

6.8 Know Your Bounds: Nominal Concept and Universal Role

The modeling power brought about by nominal concepts and universal roles
is quite similar. For instance, having the universal role at disposal, we can re-
move all nominal concepts from a SROIQ knowledge base as follows: first,

114 S. Rudolph

rewrite every nominal concept {a1, . . . , an} into {a1} � . . . � {an} according to
the equivalence given in Section 5. Next, introduce fresh concept names A{a} for
all singleton nominal concepts thus obtained and substitute every occurrence of
any {a} by the according A{a}. Finally, add the concept assertion A(a) as well as
the GCI � � �1u.A{a} for any introduced A{a}.

On the other hand, the universal role can be emulated once nominal concepts
are allowed: we introduce a fresh individual name center and a new role name
toCenter and force every individual to have a toCenter relation to the indi-
vidual denoted by center by means of the axiom � � ∃toCenter.{center}.
Now we can get from every domain individual to every other by a two-hop
travel along toCenter and toCenter−. Thus we can replace every Ξu.C with
Ξ ∈ {∀, ∃, �n, �n} by the concept expression ∃toCenter.ΞtoCenter−.C.

Exercise 28. Find a way to remove the RBox occurrences of u as well.

A crucial feature showing the added expressivity obtained from nominal con-
cepts or the universal role is the capability to bound or fix the number of in-
dividuals in the extension of a class or even in the whole domain. Both the
GCIs AtMostTwo � {one, two} and � � �2u.AtMostTwo specify that the con-
cept AtMostTwo has at most two instances in every model. In order to cause
the extension size to be exactly two, we would have to add one �≈ two or
� � �2u.AtMostTwo, respectively. Likewise, we can enforce the whole domain
to contain at most (or exactly) two individuals by imposing these axiom with
AtMostTwo substituted by �.

Remark 47. These considerations show that as soon as nominal concepts or the
universal role is involved, models of knowledge bases need not be closed under
disjoint union as it was the case for e.g. SHIQ.

Exercise 29. As we have seen, SROIQ allows to enforce that the domain size
(i.e. the number of its elements) is at most n for any given n ∈ N. Contemplate
whether there is a knowledge base KBfin that emulates finite models, i.e., for every
knowledge base KB not using vocabulary from KBfin the models of KB ∪KBfin are
exactly those models of KB with finite domain, if one abstracts from the vocabulary
of KBfin.

Exercise 30. Is it possible to create a SHIQ knowledge base KB such that ev-
ery model contains one individual which is connected via a role r to infinitely
many other individuals? Can the same be achieved in ALCHOIQ? What about
ALCHIQ? For each of the cases either provide such a knowledge base or argue
why this is not possible.

6.9 Selfishness

The self concept enables to speak about “role loops”, i.e. situations where an
individual is simultaneously source and target of the same relation, or in other

Foundations of Description Logics 115

words the individual is connected to itself. This allows to define concepts based
on such situations, for instance we could define PersonCommittingSuicide ≡
∃kills.Self or Narcissist ≡ ∃loves.Self. Beyond that, this feature comes
handy when global properties of roles are to be enforced. A role r is said to
be reflexive if its associated relation is, i.e. if 〈δ, δ〉 ∈ rI for all δ ∈ ΔI . Con-
versely, it is called irreflexive if δ �= δ′ for all 〈δ, δ′〉 ∈ rI . In some places,
the definition of SROIQ includes additional RBox axioms of the form Ref(r)
or Irr(r) to specify reflexivity or irreflexivity of r, respectively. However, these
role characteristics can be equivalently expressed by the GCIs � � ∃r.Self or
∃r.Self � ⊥, respectively.

Exercise 31. If one has a closer look into the literature, these additional axiom
types require r to be simple in the case of irreflexivity but not in the case of re-
flexivity statements. In our current translation, role simplicity would be required in
both cases. How can this restriction be circumvented by an alternative translation
of the reflexivity statement?

6.10 Open World vs. Closed World

A useful distinction often made in the context of logic-based information sys-
tems is that between closed-world and open-world reasoning. Essentially, this
distinction is concerned with the question how missing information is treated.
Under the closed-world assumption (CWA) facts which cannot be deduced from
a knowledge base are supposed to be false whereas under the open-world assump-
tion the truth of these facts is simply unknown. Expert or database systems often
implement the CWA. Opposed to this, as a consequence of the semantics intro-
duced in Section 3, DLs follow the OWA. This is also implied by the fact, that
(most) DLs are fragments of first-order logic, which also adheres to the OWA.

Example 48. Consider the following knowledge base KB containing merely ABox
statements:

Planet(home)

Planet(morning star)

Star(sun)

orbitsAround(home, sun)

orbitsAround(moon, home)

orbitsAround(morning star, sun)

evening star ≈ morning star

While Planet(evening star) and orbitsAround(evening star, sun) are conse-
quences of KB, negated statements like ¬Star(home) or ¬orbitsAround(sun, moon)
or moon �≈ home are not due to the OWA. This can be explained by the fact, that
there are models for the KB where these statements do not hold (but rather their
unnegated variants). In order to enforce these negated statements they would heave
to be explicitly added to the knowledge base.

While the OWA is commonly argued to be the right perspective in the context
of the Semantic Web where completeness seems to be hard to achieve, there are
cases, where e.g. the extension of a concept or a role is entirely known and one

116 S. Rudolph

wants to express this information in order to guarantee that the according addi-
tional consequences can be drawn. To a certain extent, this can be implemented
by virtue of nominal concepts.

Example 49. Revisiting Example 48, to obtain the consequence ¬Star(home) we
could alternatively state that sun is the name of the only individual belonging to
the concept Star by adding the TBox axiom Star � {sun}. This has the advantage
that also the concept membership of anonymous individuals is thereby excluded
which cannot be achieved by ABox statements. Yet, in order to get the above
consequence we still have to additionally assert sun �≈ home, thereby excluding the
case that home and sun refer to the same individual. In the same way, we can treat
roles. For example, the axiom {home} � ∀orbitsAround.{sun} expresses that home
is orbitsAround-connected to nothing but (possibly) sun.

While nominals come handy for making “nothing but” statements, they can-
not fully simulate closed-world behavior. Therefore (local) closed-world exten-
sions to DLs have been investigated. Notable approaches in that direction are
(auto)epistemic DLs, and circumscriptive DLs.

7 Reasoning Tasks and
Their Reducibility

A knowledge base with statements in it
Seeks a model sound and nice
No matter, finite or infinite,
It asks a hermit for advice.
Yet, shattering is the reaction:
“Inconsistency detection,
You can’t get no satisfaction.”

It is one of the major selling points of logic-based knowledge representation
in general and of DLs in particular that, once a body of knowledge has been
accumulated and transferred into a logical representation, this knowledge can
be queried and worked with in an intelligent way which goes well beyond what
can be done with traditional information systems such as databases. In this
section we will review typical tasks that can be performed with DL knowledge
bases and that require elaborate inferencing. We can see that some of those tasks
can be reduced to others which alleviates the task of creating tools performing
those tasks.

7.1 Knowledge Base Satisfiability

Remember that a knowledge base KB is called satisfiable (also: consistent) if it
has a model, i.e., there is an interpretation I with I |= KB, otherwise it is called
unsatisfiable, inconsistent, or contradictory. Deciding whether a knowledge base
is consistent is important in its own right, as knowledge base inconsistency often
hints at severe modeling errors: since knowledge bases are supposed to describe
real state of affairs, they should not be contradictory. Moreover, due to the
principle of explosion, an inconsistent knowledge base entails every statement

Foundations of Description Logics 117

which renders any derived information useless. Additionally, as we will see in
a bit, axiom entailment checks can be reduced to detecting inconsistency of
knowledge bases.

7.2 Axiom Entailment

We remember that a knowledge base KB entails a DL axiom α if every model
of KB is also a model of α. Axiom entailment can be seen as the prototypical
reasoning task for querying knowledge: given a body of knowledge formally spec-
ified in a knowledge base, this knowledge is to be “logically queried” by checking
whether some statement is necessarily true, presuming the statements of the
knowledge base.

The problem of checking axiom entailment can be reduced to deciding knowl-
edge base satisfiability. The idea behind this reduction is proof by contradiction:
we show that something holds by assuming the opposite and deriving a contra-
diction from that assumption. Suppose α and β are axioms claiming the opposite
of each other. Then every interpretation (hence in particular every model of the
knowledge base KB) satisfies either α or β, but not both. Now, if α is a conse-
quence of KB, we know that every model of KB is a model of α. This means that
no model of KB can be a model of β. In other words, the extended knowledge
base KB′ = KB ∪ {β} can have no model which just means that KB′ is unsatis-
fiable. Thus the axiom entailment problem can be easily recast into a knowledge
base unsatisfiability problem, provided we find such an “opposite” axiom for the
given α. In SROIQ this is obvious for some cases. In some other cases, we have
to revert to finding an axiom or a set of axioms emulating the opposite of α,
which works just as well. We give the correspondences for all types of SROIQ
axioms in Table 1.

Table 1. Definition of axiom sets Aα such that KB |= α exactly if KB∪Aα is unsatis-
fiable. Individual names c with possible subscripts are supposed to be fresh. For GCIs
(third line), the first variant is normally employed, however, we also give a variant
which is equivalent instead of just emulating.

α Aα

r1 ◦ . . . ◦ rn � r {¬r(c0, cn), r1(c0, c1), . . . , rn(cn−1, cn)}
Dis(r, r′) {r(c1, c2), r′(c1, c2)}

C � D {(C 	 ¬D)(c)} or: {� � ∃u(C 	 ¬D)}
C(a) {¬C(a)}

r(a, b) {¬r(a, b)}
¬r(a, b) {r(a, b)}

a ≈ b {a �≈ b}
a �≈ b {a ≈ b}

118 S. Rudolph

7.3 Concept Satisfiability

Given a knowledge base KB, a concept C ∈ C is called satisfiable with respect
to KB, if it may contain individuals, i.e. there is a model I of KB that maps C
to a nonempty set, formally: CI �= ∅. Obviously, there are concepts which are
unsatisfiable irrespective of the underlying knowledge base, like A�¬A or simply
⊥. If, however some atomic concept A ∈ NI is unsatisfiable, this may as well
indicate modeling errors. A knowledge base where all atomic concepts are satis-
fiable is usually called coherent. Note that a knowledge base can be incoherent
but satisfiable. Like knowledge base satisfiability and axiom entailment, concept
satisfiability is a decision problem, i.e. we get yes or no as an answer.

The problem of deciding concept satisfiability can be reduced to axiom en-
tailment. An unsatisfiable concept C is necessarily empty in any model I, i.e.,
CI = ∅. This can be rewritten into CI ⊆ ∅ (since the other direction is trivial),
and further (using the fact that ⊥I = ∅) into CI ⊆ ⊥I . However this means
I |= C � ⊥ for every model I of KB, therefore KB |= C � ⊥. Hence, unsatisfia-
bility of of a concept C with respect to some knowledge base KB can be decided
by checking whether KB entails the GCI C � ⊥.

7.4 Instance Retrieval

Given a knowledge base KB and a concept C, it is a rather natural desire to ask
for C’s instances. However, there are two issues with that: First, a knowledge
base usually has many models and a specific individual may be instance of C in
one model but not in another. So, one typically asks for individuals which are
instances of C in every model. The other problem is that from model to model,
the domain ΔI may vary and does not need to contain the same individual.
The only way to refer to individuals in a sensible, cross-domain way is via their
names. This is why one restricts to named individuals for the instance retrieval
task. Consequently, the task could be formulated as follows: given a knowledge
base KB and a concept C, give me all individual names a ∈ NI for which aI ∈ CI

for every model I of KB.

Remark 50. This definition of instance retrieval may even lead to the peculiar
case that one can infer from a knowledge base that a concept C is nonempty in
every model (which can e.g. be tested by asking whether KB |= � � ∃u.C) while
the instance retrieval for C yields nothing. A simple example for this would be the
knowledge base containing only the axiom (∃r.C)(a).

Given the definition of instance retrieval above, it is obvious that an individual
name a will be delivered as part of the answer of an instance retrieval with
respect to a concept C precisely if KB |= C(a). Therefore, instance retrieval can
be performed by successively checking whether the considered knowledge base
entails C(a) for every individual name a. This takes |NI(KB)| entailment checks.
Depending on what concrete reasoning algorithm is employed, fewer calls to the
reasoning procedure may be required since it might be possible to retrieve many

Foundations of Description Logics 119

instances at once. This particularly applies to reasoning methods based on logic
programming and/or database systems.

Sometimes, the term instance retrieval is also used for roles. In that case we are
looking for all pairs 〈a, b〉 of individual names a, b ∈ NI for which 〈aI , bI〉 ∈ rI

for every model I of KB. This can be easily checked by asking for the entailment
KB |= r(a, b) for every combination of individual names.

7.5 Classification

Given a knowledge base KB, the concept names occurring therein can be put
into a hierarchy according to their subsumption relationships. More precisely,
if we define a relation �KB on the set NC of concept names by A �KB B iff
KB |= A � B, we find that this relation is a preorder, that is, we have A �KB A
for all A ∈ NC and from A �KB B and B �KB C follows A �KB C.

Exercise 32. Prove that �KB is indeed a preorder.

Classification of a knowledge base is the task of entirely determining �KB. This
task is practically important due to several reasons: During the knowledge base
modeling process, the modeler has an overview over the hierarchical structure
of the used concept names which can be diagrammatically visualized in a nice,
intuitive way. On the other hand, classification can serve as a preprocessing
step that speeds up subsequently performed reasoning tasks with respect to the
underlying knowledge base.

Obviously, classification of a knowledge base can be performed by checking
the entailment KB |= A � B for any pair A, B of class names, which amounts to
|NC | · (|NC | − 1) separate entailment checks. However, exploiting the properties
of preorders and concept subsumption statements explicitly given by GCIs, the
number of such checks can be drastically reduced [Shearer and Horrocks, 2009].

7.6 Conjunctive Query Answering

Conjunctive queries (CQs) and unions of conjunctive queries (UCQs) are well
known in the database community [Chandra and Merlin, 1977] and constitute an
expressive query language with capabilities that go well beyond standard reason-
ing tasks in DLs. In terms of first-order logic, these CQs and UCQs are formulae
from the positive existential fragment. Free variables in a query (not bound by an
existential quantifier) are also called answer variables or distinguished variables,
whereas existentially quantified variables are called non-distinguished. As an ex-
ample, ∃y∃z(childOf(x, y) ∧ childOf(x, z) ∧ married(y, z)) with distinguished
variable x and non-distinguished variables y and z represents a conjunctive query
asking for all children whose parents are married with each other. If all variables
in the query are non-distinguished, the query answer is just true or false and
the query is called a Boolean query. Given a knowledge base KB and a Boolean
UCQ q, the query entailment problem is deciding whether q is true or false w.r.t.
KB, i.e., we have to decide whether each model of KB provides for a suitable

120 S. Rudolph

assignment for the variables in q.2 For a query with distinguished variables, the
answers to the query are those tuples of individual names (constants) for which
the knowledge base entails the query that is obtained by replacing the free vari-
ables with the individual names in the answer tuple. The problem of finding all
answer tuples is known as query answering.

In general, conjunctive query answering or checking Boolean conjunctive query
entailment are not easily (more precisely: polynomially) reducible to any of the
other standard reasoning tasks treated above, which can be concluded from the
fact that the worst-case complexities for these problems are usually way harder
than the complexities of the other tasks [Lutz, 2008]. Conversely, it is trivial to
reduce the task of checking knowledge base consistency to checking conjunctive
query entailment: for instance, KB is inconsistent exactly if for fresh concept
names Aaux and Baux the knowledge base KB ∪ {Aaux � Baux � ⊥} satisfies the
conjunctive query ∃x(Aaux(x) ∧ Baux(x)).

Exercise 33. A conjunctive query is called tree-shaped if for any two query
variables x, y there is exactly one sequence of pairwise different query variables
z0, . . . , zn and exactly one sequence r1, . . . rn of role names such that z0 = x,
zn = y, and for every 1 ≤ i ≤ n either ri(zi−1, zi) ∈ q or ri(zi, zi−1) ∈ q. Argue
that query answering for a tree-shaped conjunctive query with one distinguished
variable can be reduced to (concept) instance retrieval.

7.7 Other Reasoning Tasks

The reasoning tasks described above, excluding conjunctive query answering, are
often referred to as standard reasoning tasks. Still, conjunctive query answering is
conceptually in line with those, since it can be formulated as entailment checking.
Beyond those deductive tasks which are all concerned with determining logical
consequences, there are several non-standard reasoning tasks where the goal is
somewhat different. In the following, we will briefly go through a selection of
these.

Induction. As opposed to the aforementioned deductive methods, inductive
approaches3 usually take an amount of factual (assertional) data and try to gen-
eralize therefrom by generating hypotheses expressed as terminological axioms
or complex concepts. This sort of reasoning tasks are related to data mining
problems and respective approaches draw their inspiration from machine learn-
ing and in particular inductive logic programming (ILP, [Lehmann, 2009]). Since
inductive reasoning is not truth-preserving (i.e. hypotheses which are generated
may be falsified), also interactive methods with human expert involvement have
been proposed [Rudolph, 2004].

2 Note that in general, solving this task is way harder than querying a classical
database, as the considered models may be infinite in both size and number.

3 Not to be confused with the mathematical proof technique of induction.

Foundations of Description Logics 121

Abduction. Like induction and unlike deduction, abduction is an inferencing
method which is not truth-preserving. Roughly speaking, abduction could be
described as “premise guessing.” More precisely, given a knowledge base KB in
some DL and an axiom α such that α is not entailed by KB, abductive reasoning
is concerned with finding a knowledge base KB′ with specific properties such
that α is a logical consequence of KB ∪KB′. In ontology engineering, abductive
reasoning services come handy when a wanted consequence is not entailed and
one wants to determine what information is missing [Noia et al., 2009].

Explanation. If results of automated reasoning are to be shared with human
users, it is often not sufficient to just display the result. Often it is also desirable
to give an account on the cause why some axiom is entailed by the knowledge
base, in other words to give an explanation for it. In most cases, only few axioms
actually contribute to an entailment. Thus it is already quite helpful to find a
minimal subset of a knowledge base for which the entailment still holds. More
precisely, given a knowledge base KB and an axiom α with KB |= α, a justi-
fication for the entailment is a knowledge base KB′ ⊆ KB such that KB′ |= α
but for every KB′′ ⊂ KB′ holds KB′′ �|= KB. In general, a justification does not
need to be unique, there might be more than one justification for an entailment
[Horridge et al., 2008].

Module extraction. When confronted with large knowledge bases, it might be
worthwhile to identify natural partitions of them which logically interact which
each other only in a restricted way, such that they can be handled independently
when it comes to query answering or reasoning in general. In other cases, one
may be interested only in a part of the knowledge specified in a knowledge base
which is expressible in a certain fraction of the vocabulary. In general, the task
of identifying or computing such knowledge base parts is referred to as module
extraction [Stuckenschmidt et al., 2009].

8 Algorithmic Approaches to
DL Reasoning

Is it consequence-driven
Automatically given
What we base our system upon?
Or do, fueled by Rousseau,
we say “Guerre aux tableaux!
Et vive la resolution!”?

Various reasoning paradigms have been investigated with respect to their
applicability to DLs. Most of them originate from well-known approaches for
theorem proving in a first-order logic setting. However, in contrast to the un-
avoidable downside that reasoning methods for first-order logic cannot be sound,
complete, and terminating, approaches to reasoning in DLs aim at a sound and
complete decision procedures, whence the adopted reasoning techniques have to
be adapted in order to guarantee termination.

The majority of state-of-the art OWL reasoners, such as Pellet
[Sirin et al., 2007], FaCT++ [Tsarkov and Horrocks, 2006], or RacerPro

122 S. Rudolph

[Haarslev and Möller, 2001] use tableau methods with good performance results,
but even those successful systems are not applicable in all practical scenarios.
This motivates the search for alternative reasoning approaches that employ dif-
ferent methods in order to address cases where tableau algorithms exhibit certain
weaknesses. Successful examples in this respect are the works based on resolu-
tion [Motik and Sattler, 2006] and hyper-tableaux [Motik et al., 2009c] as well
as consequence-based approaches [Kazakov, 2009].

As we have seen in the previous section, many important reasoning tasks
can be reduced to checking knowledge base satisfiability, hence we will focus on
this specific task. In general, reasoning methods can be subdivided into model-
theoretic methods on one hand and proof-theoretic methods on the other.

Model-theoretic methods essentially try to construct models of a given knowl-
edge base in an organized way. If this succeeds, the knowledge base has obviously
been shown to be satisfiable, if it can be shown that the construction must nec-
essarily fail, unsatisfiability has been established. Typical reasoning paradigms
of that sort are tableau procedures and automata-based approaches.

Remark 51. If models are represented explicitly (i.e., for an interpretation I =
(ΔI , ·I) both ΔI and ·I are stored in some data structure), a näıve model con-
struction strategy can only arrive at finite models, obviously. While this may be
enough for logics that satisfy the finite model property, it is insufficient in the
general case. However, this problem can be circumvented if one reverts to finite
model representations, which only store a finite part of the model explicitly and
provide additional (finite) information how this partial model could be determinis-
tically extended into a real model. Intuitively, this can be compared to the decimal
representation of rational numbers: while the correct value of 13

11
= 1.18181818 . . .

needs infinitely many digits to be precisely noted down, it is not hard to come up
with a finite representation, namely 1.18 which, by virtue of the additional extra
information provided by the overline, shows how the infinite “pure” representation
could be constructed (if one had infinite time and memory). Of course, when work-
ing with finite representations, it is crucial that these allow for effective detection
of axiom satisfaction.

As opposed to model-theoretic reasoning methods, proof-theoretic approaches
operate more on the syntactic side: starting out from a normalized version of the
knowledge base, deduction rules are applied to derive further logical statements
about a potential model. If, in the course of these derivations an overt contra-
diction is derived, the considered knowledge base has shown to be unsatisfiable.
In order to guarantee a termination of the procedure also in the case of satisfi-
ability it is crucial that in the course of derivation, some sort of saturation will
be reached in finite time. This can e.g. be achieved by restricting the relevant
propositions (which may or may not be derived) to a finite set.

In the following, we will survey some well-known reasoning paradigms for DLs
without going into technical details.

Foundations of Description Logics 123

8.1 Tableau

Tableau procedures aim at constructing a model that satisfies all axioms of the
given knowledge base. The strategy here is to maintain a set D of elements repre-
senting domain individuals (including anonymous ones) and acquire information
about their concept memberships and role interrelatedness. D is initialized by
all the individual names and the according ABox facts. Normally, the partial
model thus constructed does not satisfy all the TBox and RBox axioms. Thus,
the intermediate model is “repaired” as required by the axioms. This may mean
to establish new concept membership or role interrelatedness information about
the maintained elements, yet sometimes it may also be necessary to extend the
set of considered domain individuals. Now and again, it might be required to
make case distinctions and backtrack later. If we arrive at a state, where the in-
termediate model satisfies all the axioms and hence does not need to be repaired
further, the knowledge base is satisfiable. If the intermediate model contains
overt contradictions (such as an element marked as instance of a concept C and
its negation ¬C or an element marked as an instance of ⊥), we can be sure
that repairing it further by adding more information will never lead to a proper
model, hence we are in a “dead end” need to backtrack. If every alternative
branch thus followed leads into such a “dead end”, we can be sure that no model
can exist.

Example 52. Omitting a lot of technical details, we shortly explain how the
satisfiability of the knowledge base from Example 12 would be established by a
tableau algorithm. For better reference, we first recap the knowledge base.

owns � caresFor (5)

Healthy � ¬Dead (6)

Cat � Dead � Alive (7)

HappyCatOwner � ∃owns.Cat 	 ∀caresFor.Healthy (8)

HappyCatOwner(schrödinger) (9)

As explained we first initialize the set of domain elements by letting D =
{schrödinger}, moreover, due to the only ABox axiom (9) we mark schrödinger

with HappyCatOwner. Inspecting the axioms, we find that (8) is not satisfied by the
current representation. Thus, we repair it as required by (8), “inventing” a new
element, say , and adding it to D. Accordingly, we stipulate that schrödinger

is connected to by an owns relation and marking with Cat. We find that,
as a consequence of these changes, (8) is satisfied (for the moment). However, the
changes have invalidated axioms (5) and (7). We account for the former by in-
troducing a caresFor connection from schrödinger to . The latter essentially
leaves us with two options: we need to mark either by Dead or by Alive. This
means, we have to make a case distinction and investigate each option separately.

124 S. Rudolph

– Let us try and pick Dead. Again, examining the axioms, we find (8) violated
due to the second part of its consequence. Repairing this requires to mark

with Healthy which in turn invalidates (6). Hence we have to mark by
¬Dead. Unfortunately, we now observe that is marked both by Dead and
¬Dead, thus we have reached a “dead end” and need to backtrack.

– So, we mark by Alive. Also here, we find (8) violated and repair it by
marking with Healthy, obtaining invalidation of (6) and coping with it by
marking by ¬Dead. We have thus arrived at a state where our intermediate
model satisfies all axioms. Hence, we have obtained a proper model of KB and
conclude that the knowledge base is satisfiable.

However, note that the continued “repairing” performed in a tableau proce-
dure does not necessarily terminate, since performing one repair might cause the
need for another repair and so forth ad infinitum.

Example 53. Consider the knowledge base containing the single axiom � �
∃succ.�, which forces every domain element to have a successor. Applying the
näıve repair approach from above we will need to introduce a successor for every
individual, then successors of successors etc.

Therefore, in order to be applicable as a decision procedure, these infinite
computations must be prevented to ensure termination. This can be achieved by
a strategy called blocking, where certain domain elements are “blocked” (which
essentially means that they are exempt from the necessity of being repaired) by
other domain individuals which “look the same” in terms of concept member-
ships. For more advanced DLs, more complicated blocking strategies are needed.

A tableau algorithm for SHOIQ is described by Horrocks and Sattler [2007].
A refinement of the tableau technique, called hypertableau is at the core of the
OWL 2 DL reasoner HermiT [Motik et al., 2009c].

8.2 Automata

As mentioned earlier, most DLs satisfy some sort of tree-model property. On the
other hand, families of trees (in other words: tree languages) can be represented
by appropriate tree-automata. Thus, given an automaton that characterizes the
tree models of a knowledge base, the problem of knowledge base satisfiability
can be rephrased into the question whether the tree language represented by this
corresponding automaton is non-empty. This line of research has been followed
by several investigations targeted at standard reasoning as well as conjunctive
query answering. Approaches along those lines are e.g. described by Glimm et al.
[2008a] and Calvanese et al. [2009].

Exercise 34. To get a feeling for the relatedness between automata and DL rea-
soning, try to design an ALC knowledge base KB with the property that for any
r1, r2, . . . , rn ∈ NR we have that KB |= A � ∃r1∃r2 . . .∃rn.B exactly if the word
r1r2 . . . rn matches the regular expression s∗(rs|srr)∗.

Foundations of Description Logics 125

8.3 Consequence-Based Reasoning

As suggested by their name, consequence-based (also: consequence-driven) rea-
soning approaches start from the given knowledge base and derive logical con-
sequences of it by means of applying deduction rules. A deduction rule has the
shape

name
α1 · · · αn

α
with α, α1, . . . , αn being axioms of the underlying logic. To apply a deduction
rule means to add α to the set of statements known to be true if truth is already
established for α1, . . . , αn (be it due to their presence in the knowledge base or
because they have been derived by an earlier application of a deduction rule). If,
given a set D of deduction rules, an axiom β can be generated like this from an
axiom set {β1, . . . , βk} by (possibly manifold) applications of deduction rules,
we say that β is derivable from {β1, . . . , βk} and write {β1, . . . , βk} � β.

In order to be of proper use for the reasoning, the used set D of deduction
rules (also jointly called a deduction calculus) has to mimic the logical entail-
ment as defined by the formal semantics. That means that on one hand, β must
be a logical consequence of {β1, . . . , βk} whenever β is derivable therefrom (in
short: {β1, . . . , βk} � β implies {β1, . . . , βk} |= β) – a property called soundness
of the deduction calculus. On the other hand, we require its completeness, i.e.
that every logical consequence of {β1, . . . , βk} can also be derived from it (in
short: {β1, . . . , βk} |= β implies {β1, . . . , βk} � β). Sometimes, completeness is
constrained to specific axiom types β, e.g. a deduction calculus is called refu-
tationally complete, if inconsistency of a knowledge base implies derivability of
� � ⊥.

Example 54. The following deduction calculus is sound and refutationally com-
plete for ALC TBoxes in an appropriate normal form (for details see Simancik et al.
[2011]). Thereby A and B denote concept names, H and K are conjunctions of
negated and unnegated concept names, whereas M , N , and Ni are disjunctions of
concept names.

R+
A A 	 H � A

R−
A

¬A 	 H � N � A

¬A 	 H � N

Rn
�

H � N1 � A1 · · · H � Nn � An

�n
i=1 Ai � M

H � M �
⊔n

i=1 Ni

R+
∃

H � N � A A � ∃r.B
H � N � ∃r.B

R−
∃

H � N � ∃r.K K � N � A ∃r.A � B

H � M � B � ∃r.(K 	 ¬A)

R⊥
∃

H � N � ∃r.K K � ⊥
H � M

R∀
H � N � ∃r.K H � N � A A � ∀r.B

H � M � N � ∃r.(K 	 B)

126 S. Rudolph

Exercise 35. Using the above deduction calculus, show that the axiom D � G can
be derived from the knowledge base containing the axioms
A � B � C D � ∀r.A ∃r.B � E D � F � ∃r.¬C E 	 F � G.

However, just a sound and complete deduction calculus is not sufficient for a
decision procedure (note that FOL itself has such a calculus while being unde-
cidable). In addition to that, one has to ensure that the “enrichment process” of
adding more and more derived consequences to the set of true statements will ter-
minate at some point. One way to guarantee this is to make sure that only finitely
many (syntactically) different axioms can be derived. Consequence-driven ap-
proaches are described e.g. by Kazakov [2009] and Simancik et al. [2011].

8.4 Resolution

Resolution is a technique prominently used in first-order logic theorem proving.
At the core of reasoning via resolution is the resolution rule which looks as
follows:

Res
A1 ∨ . . . ∨ Ai ∨ . . . An B1 ∨ . . . ∨ Bj ∨ . . . Bm

A1 ∨ . . . ∨ Ai−1 ∨ Ai+1 ∨ . . . An ∨ B1 ∨ . . . ∨ Bj−1 ∨ Bj+1 ∨ . . . Bm

Thereby, Ak and Bk denote literals, i.e. negated or unnegated FOL atoms and
the two literals Ai and Bj are assumed to be complements of each other (i.e.
Ai = ¬Bj or Bj = ¬Ai). As the resolution rule is a deduction rule, resolution
can be seen as a variant of consequence-based reasoning. One of the differences
is that resolution is performed not on DL knowledge bases directly but on a FOL
translation thereof. Resolution-based methods have been described for DLs up
to SHOIQ [Motik and Sattler, 2006; Kazakov and Motik, 2008].

9 Description Logics
and OWL

In fact, in terms of syntax, OWL
Just tends to be a bulky fowl,
However, if it mates with Turtle
This union turns out rather fertile;
I deem the offspring of this love
As graceful as a turtledove.

As mentioned before, the web ontology language OWL is based on Description
Logics but also features additional types of extra-logical information, concerning,
e.g., ontology versioning information and annotations. Moreover, OWL supports
modeling and reasoning with datatypes which we omitted from our considera-
tion. Likewise, keys are supported in OWL but not discussed here.

In this section, we will see how any OWL DL compliant reasoning tool can
be used to decide SROIQ knowledge base satisfiability as well as any other
reasoning task which can be reduced to it.

Foundations of Description Logics 127

“OWL speak” differs partially from the terms normally used in description
logics. The following table gives a synopsis of the corresponding terms used in
the OWL vs. the DL community as well as in the domain of classical first-order
logic.

OWL DL FOL

class name concept name unary predicate
class concept formula with one free variable
object property name role name binary predicate
object property role formula with two free variables
ontology knowledge base theory
axiom axiom sentence
vocabulary vocabulary / signature signature

In the next two sections, we briefly explain how a SROIQ knowledge base can
be translated into an OWL 2 DL ontology such that satisfiability and entailment
checks can be performed by OWL reasoning engines.

9.1 Translating DL KBs into OWL

For translating a SROIQ knowledge base into an OWL ontology, some
technical issues need to be taken care of. First of all, both the used vocabulary as
well as the constructors have to be URIs (i.e. uniform resource identifiers, that is,
terms following the prescribed naming scheme prevalent in the Semantic Web).
The URIs for the used individual, concept, and role names can be chosen rather
arbitrarily, while the URIs for constructors etc. are prescribed and associated to
specific namespaces usually associated to the prefixes owl:, rdfs:, rdf:, and
xsd:. For the sake of simplicity, we will assume that all used individual, con-
cept and role names from the DL knowledge base are syntactically well-formed
URIs.

Second, the mainly used encoding of OWL is as an RDF document
[Manola and Miller, 2004]. One one hand, this is advantageous from a down-
ward compatibility and tool interoperability point of view; in fact the encoding
of concept and role assertions in OWL and RDF coincide and some other RDFS
statements are available in OWL as well with a similar semantics. On the other
hand, the encoding as RDF also imposes some restrictions on the way logical
axioms can be encoded. As RDF is a graph-based formalism consisting of node-
edge-node triples, DL axioms and complex concepts have to be transformed into
a graph-like representation. This is done by virtue of the typical means used to
encode complex structures in RDF: structural bnodes and graph-based encoding
of lists.

Forour treatise,wewillusetheTurtle [Beckett and Berners-Lee, 14 January 2008]
notation, which seems most appropriate as it illustrates the underlying RDF triple

128 S. Rudolph

structure while at the same time hiding the very low-level details (such as the tripli-
fication of the list structures employed for the RDF encoding of OWL).

The translation of a SROIQ knowledge base KB contains three parts: a
preamble containing the definition of namespaces, declarations of the used con-
cept (resp. class) and role (resp. object property) names, and finally a part
containing the OWL counterparts of the axioms from KB. Hence, we let

[[KB]] = Pre + Dec(KB) +
∑

α∈KB
[[α]]

where + denotes concatenation of strings. Thereby the preamble is defined by

Pre =

⎧
⎪⎨

⎪⎩

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

whereas the declarations are expressed by according typing statements:

Dec(KB) =
∑

A∈NC(KB) A rdf:type owl:Class .

+
∑

r∈NR(KB) r rdf:type owl:ObjectProperty .

As displayed above, the actual knowledge base is translated axiom-wise via
the function [[·]] defined on the next page. The latter makes calls to the functions
[[·]]C and [[·]]R given further below, which are used to decompose and recursively
translate complex concepts and roles, respectively.

[[r1 ◦ . . . ◦ rn � r]] = [[r]]R owl:propertyChainAxiom ([[r1]]R · · · [[rn]]R) .

[[Dis(r, r′)]] = [[r]]R owl:propertyDisjointWith [[r′]]R .

[[C � D]] = [[C]]C rdfs:subClassOf [[D]]C .

[[C(a)]] = a rdf:type [[C]]C .

[[r (a , b)]] = a r b .

[[r−(a , b)]] = b r a .

[[¬r(a , b)]] = [] rdf:type owl:NegativePropertyAssertion ;

owl:assertionProperty [[r]]R ;

owl:sourceIndividual a ; owl:targetValue b .

[[a ≈ b]] = a owl:sameAs b .

[[a �≈ b]] = a owl:differentFrom b .

Foundations of Description Logics 129

[[u]]R = owl:topObjectProperty

[[r]]R = r

[[r −]]R = [owl:inverseOf :r]

[[A]]C = A

[[�]]C = owl:Thing

[[⊥]]C = owl:Nothing

[[{a1, . . . , an}]]C = [rdf:type owl:Class ; owl:oneOf (:a1 . . . :an)]

[[¬C]]C = [rdf:type owl:Class ; owl:complementOf [[C]]C]

[[C1	. . .	Cn]]C = [rdf:type owl:Class ; owl:intersectionOf ([[C1]]C . . . [[Cn]]C)]

[[C1�. . .�Cn]]C = [rdf:type owl:Class ; owl:unionOf ([[C1]]C . . . [[Cn]]C)]

[[∃r.C]]C = [rdf:type owl:Restriction ;

owl:onProperty [[r]]R ; owl:someValuesFrom [[C]]C]

[[∀r.C]]C = [rdf:type owl:Restriction ;

owl:onProperty [[r]]R ; owl:allValuesFrom [[C]]C]

[[∃r.Self]]C = [rdf:type owl:Restriction ;

owl:onProperty [[r]]R ; owl:hasSelf ’’true’’^^xsd:boolean]

[[�n r.C]]C = [rdf:type owl:Restriction ;

owl:minQualifiedCardinality n ^^xsd:nonNegativeInteger ;

owl:onProperty [[r]]R ; owl:onClass [[C]]C]

[[�n r.C]]C = [rdf:type owl:Restriction ;

owl:maxQualifiedCardinality n ^^xsd:nonNegativeInteger ;

owl:onProperty [[r]]R ; owl:onClass [[C]]C]

Example 55. For the knowledge base KB from Example 12, the transla-
tion [[KB]] looks as follows (for better readability, we use the namespace
http://www.example.org/# for individual, concept, and role names and abbrevi-
ate it by the empty prefix as shown in the first line of the translation):

@prefix : <http://www.example.org/#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

:owns rdf:type owl:ObjectProperty .

:caresFor rdf:type owl:ObjectProperty .

:Cat rdf:type owl:Class .

:Dead rdf:type owl:Class .

:Alive rdf:type owl:Class .

:Healthy rdf:type owl:Class .

:HappyCatOwner rdf:type owl:Class .

130 S. Rudolph

:owns rdfs:subPropertyOf :caresFor .

:Healthy rdfs:subClassOf [owl:complementOf :Dead] .
:Cat rdfs:subClassOf [owl:unionOf (:Dead :Alive)] .
:HappyCatOwner rdfs:subClassOf

[owl:intersectionOf
([rdf:type owl:Restriction ;

owl:onProperty :owns ; owl:someValuesFrom :Cat]
[rdf:type owl:Restriction ;
owl:onProperty :caresFor ; owl:allValuesFrom :Healthy])

] .

:schrödinger rdf:type :HappyCatOwner .

To give an idea, how the RDF graph representation of an OWL ontology looks
like, the last TBox axiom is displayed graphically in the following picture.

rdfs:subClassOf

owl:Rest
riction

:Cat

:Healthy

:caresFo
r

:owns

rdf:nil

rdf
:fir
st

rd
f:r
es
t

rd
f:r
es
t
rdf:type

rdf:type

owl:onProperty

owl:onProperty

owl:allvalues
From

owl:someValuesFrom

owl:intersectionOf

rdf
:fir
st

owl:Restriction

:Cat

:Healthy

:caresFor

:owns

:HappyCatOwner

Exercise 36. Translate the knowledge base from Example 21 and the initial axiom
from Example 33 into OWL ontologies in Turtle syntax.

9.2 Expressing OWL Axioms in SROIQ
In fact, the OWL specification features much more axiom types than the ones
used above to translate SROIQ knowledge bases. As far as the purely logical
axioms are concerned (i.e. excluding everything referring to datatypes, keys,
annotations, or the like), all these axioms can be considered as syntactic sugar,
i.e., they can be conceived as shortcuts for other axioms expressed in the “core”
OWL language used in the definitions above. In the sequel, we give the DL
paraphrases of these axioms

Foundations of Description Logics 131

Axiom type Turtle notation DL paraphrase

Class Equivalence [[C]]C owl:equivalentClass [[D]]C . C � D, D � C

Class Disjointness [[C]]C owl:disjointWith [[D]]C . C 	 D � ⊥
Disjoint Classes [] rdf:type owl:AllDisjointClasses ; Ci 	 Cj � ⊥

owl:members ([[C1]]C ... [[Cn]]C) . for all 1≤i<j≤n

Disjoint Union [[C]]C owl:disjointUnionOf
⊔

i<j
Ci � C

([[C1]]C ... [[Cn]]C) . Ci 	 Cj � ⊥
for all 1≤i<j≤n

Property Equivalence [[r]]R owl:equivalentProperty [[s]]R . r � s, s � r

Disjoint Properties [] rdf:type owl:AllDisjointProperties ; Dis(ri, rj)
owl:members ([[r1]]R ... [[rn]]R) . for all 1≤i<j≤n

Inverse Properties [[r]]R owl:inverseOf [[s]]R . Inv(r) � s

Property Domain [[r]]R rdfs:domain [[C]]C . ∃r.� � C

Property Range [[r]]R rdfs:range [[C]]C . � � ∀r.C

Functional Property [[r]]R rdf:type owl:FunctionalProperty . � � �1r.�
Inverse Functional [[r]]R rdf:type

Property owl:InverseFunctionalProperty . � � �1Inv(r).�
Reflexive Property [[r]]R rdf:type owl:ReflexiveProperty . � � ∃r.Self

Irreflexive Property [[r]]R rdf:type owl:IrreflexiveProperty . ∃r.Self � ⊥
Symmetric Property [[r]]R rdf:type owl:SymmetricProperty . Inv(r) � r

Asymmetric Property [[r]]R rdf:type owl:AsymmetricProperty . Dis(Inv(r), r)

Transitive Property [[r]]R rdf:type owl:TransitiveProperty . r ◦ r � r

Different Individuals [] rdf:type owl:AllDifferent ; ai �≈ aj

owl:members (a1 . . . an) . for all 1≤i<j≤n

10 Further Reading

At the end of this chapter, we give a few pointers to further reading with respect
to different aspects of the contents presented here. Note that this list is certainly
incomplete and subject to personal inclinations.

Description Logics. As central reference to the area of Description Logics, the
primary resource is certainly theDescriptionLogicHandbook [Baader et al., 2007],
providing an overview of the subject, introductory parts as well as parts dedicated
to advanced issues. The description logic SROIQ which, together with its sub-
logics, was the main subject of our treatise is introduced by Horrocks et al. [2006],
the according reasoning complexity results are established by Kazakov [2008].

Conjunctive Queries in Description Logics. While the principled problem
of reasoning in DLs up to SROIQ can considered to be solved, conjunctive query
answering is still a subject of active research and only preliminary decidabil-
ity and complexity results are available. Most notably, decidability of SROIQ
and even of SHOIQ is unsolved. On the other hand, the problem is settled

132 S. Rudolph

for SHIQ [Glimm et al., 2008c] and SHOQ [Glimm et al., 2008b]. Moreover,
Calvanese et al. [2009] captured additionally SHOI and extended the results
to regular path queries. The most expressive Boolean-closed DL simultaneously
featuring nominal concepts, inverses and number restrictions (i.e., O, I, and Q)
for which decidability is known is ALCHOIQb [Rudolph and Glimm, 2010].

Relations to Logics in General. For foundations of logics, the textbook by
Schöning [2008] is certainly a good starting point in particular for computer sci-
entists, whereas Ebbinghaus et al. [1996] capture mathematical aspects. Model
theory is treated in depth by Chang and Keisler [1990]. For an introduction into
the area of theorem proving in a first-order logic setting, we recommend the
textbook by Fitting [1996]. We suggest to consult Papadimitriou [1994] for the
study of algorithmic complexity theory.

The correspondence of DLs and first-order logic (in particular the 2-variable
fragment) has e.g. been described by Borgida [1996], the complexity treatment
on the 2-variable fragment of FOL with counting quantifiers by Pratt-Hartmann
[2005] has served as basis for a row of DL complexity results. The relatedness
of DLs with modal logics (see the textbook by Blackburn et al. [2006] for a
thorough introduction) is treated by Schild [1991]. As another closely related
logic, the guarded fragment of FOL is described by Andréka et al. [1998].

AI and Knowledge Representation. A central reference for a comprehensive
overviewof the area of AI as a whole is the seminal textbook by Russell and Norvig
[2003]. Knowledge Representation in particular is treated by Sowa [1984] and
van Harmelen et al. [2008].

Semantic Web and OWL. The Semantic Web vision is described in the
seminal paper by Berners-Lee et al. [2001]. In order to get an overview over all
aspects of (Web) ontologies, the Ontology Handbook by Staab and Studer [2009]
is a central reference.

As far as technical questions about syntax and semantics of OWL is con-
cerned, the primary resource are the W3C Recommendation Documents. Next to
an overview [OWL Working Group, 2009], syntax and semantics are treated by
Motik et al. [2009b] and Motik et al. [2009a], respectively, whereas
Patel-Schneider and Motik [2009] tackle the RDF serialization of OWL. The
OWL 2 Primer by Hitzler et al. [2009a] gives an informal introduction into the
use of OWL. A thorough treatment of all the standardized Semantic Web for-
malisms is provided by the textbook Foundations of Semantic Web Technologies
[Hitzler et al., 2009b].

Acknowledgements. I thank all people who helped me in one or the other way
to accumulate the knowledge about DLs which I gave a partial overview of in this
lecture. I am grateful to the organizers of the Reasoning Web Summer School
2011 for giving me the opportunity to teach. I thank the anonymous reviewers for
their comments on an earlier version of this document. I am indebted to Anees ul
Mehdi, Nadeschda Nikitina and Jens Wissmann for their thorough proofreading.

Foundations of Description Logics 133

Special thanks go to Ian Horrocks for his valuable feedback in terms of poetic
quality assurance. The DL logo displayed at the beginning of the chapter goes
back to Enrico Franconi, the deduction calculus for ALC comes from Yevgeny
Kazakov. Further inspiration was drawn from (in alphabetical order) Benedict
XVI, Nicolas Chamfort, Edward Lear, the Rolling Stones, William Shakespeare
and W.A. Spooner.

References

[Andréka et al., 1998] Andréka, H., van Benthem, J.F.A.K., Németi, I.: Modal lan-
guages and bounded fragments of predicate logic. Journal of Philosophical
Logic 27(3), 217–274 (1998)

[Baader et al., 2007] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-
Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation,
and Applications, 2nd edn. Cambridge University Press, Cambridge (2007)

[Beckett and Berners-Lee, 14 January 2008] Beckett, D., Berners-Lee, T.: Turtle –
Terse RDF Triple Language. W3C Team Submission (January 14, 2008), http://
www.w3.org/TeamSubmission/turtle/

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web.
In: Scientific American, pp. 96–101 (May 2001)

[Blackburn et al., 2006] Blackburn, P., van Benthem, J.F.A.K., Wolter, F. (eds.):
Handbook of Modal Logic. Studies in Logic and Practical Reasoning, vol. 3. Else-
vier Science, Amsterdam (2006)

[Borgida, 1996] Borgida, A.: On the relative expressiveness of description logics and
predicate logics. Artificial Intelligence 82(1–2), 353–367 (1996)

[Brachman and Levesque, 1984] Brachman, R.J., Levesque, H.J.: The tractability of
subsumption in frame-based description languages. In: Brachman, R.J. (ed.) Pro-
ceedings of the 4th National Conference on Artificial Intelligence (AAAI 1984), pp.
34–37. AAAI Press, Menlo Park (1984)

[Calvanese et al., 2009] Calvanese, D., Eiter, T., Ortiz, M.: Regular path queries in
expressive description logics with nominals. In: Boutilier, C. (ed.) Proceedings of
the 21st International Conference on Artificial Intelligence (IJCAI 2009), pp. 714–
720 (2009)

[Chandra and Merlin, 1977] Chandra, A.K., Merlin, P.M.: Optimal implementation of
conjunctive queries in relational data bases. In: Hopcroft, J.E., Friedman, E.P.,
Harrison, M.A. (eds.) Proceedings of the 9th Annual ACM Symposium on Theory
of Computing (STOC 1977), pp. 77–90. ACM Press, New York (1977)

[Chang and Keisler, 1990] Chang, C.C., Jerome Keisler, H.: Model Theory, 3rd edn.
Studies in Logic and the Foundations of Mathematics, vol. 73. North Holland,
Amsterdam (1990)

[Ebbinghaus et al., 1996] Ebbinghaus, H.-D., Flum, J., Thomas, W.: Mathematical
Logic. Springer, Heidelberg (1996)

[Fitting, 1996] Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd
edn. Springer, Heidelberg (1996)

[Ganter and Wille, 1997] Ganter, B., Wille, R.: Formal Concept Analysis: Mathemat-
ical Foundations. Springer, Heidelberg (1997)

[Glimm et al., 2008a] Glimm, B., Horrocks, I., Sattler, U.: Deciding SHOQ∩ knowl-
edge base consistency using alternating automata. In: Baader, F., Lutz, C., Motik,
B. (eds.) Description Logics. CEUR Workshop Proceedings, vol. 353 (2008),
CEUR-WS.org

http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TeamSubmission/turtle/
CEUR-WS.org

134 S. Rudolph

[Glimm et al., 2008b] Glimm, B., Horrocks, I., Sattler, U.: Unions of conjunctive
queries in SHOQ. In: Brewka, G., Lang, J. (eds.) Proceedings of the 11th In-
ternational Conference on Principles of Knowledge Representation and Reasoning
(KR 2008), pp. 252–262. AAAI Press, Menlo Park (2008)

[Glimm et al., 2008c] Glimm, B., Lutz, C., Horrocks, I., Sattler, U.: Answering con-
junctive queries in the SHIQ description logic. Journal of Artificial Intelligence
Research 31, 150–197 (2008)

[Golbreich et al., 2006] Golbreich, C., Zhang, S., Bodenreider, O.: The foundational
model of anatomy in OWL: Experience and perspectives. Journal of Web Seman-
tics 4(3) (2006)

[Haarslev and Möller, 2001] Haarslev, V., Möller, R.: RACER System Description. In:
Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083,
pp. 701–705. Springer, Heidelberg (2001)

[Hitzler et al., 2009a] Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F.,
Rudolph, S. (eds.): OWL 2 Web Ontology Language: Primer. W3C Recommen-
dation (2009), http://www.w3.org/TR/owl2-primer/

[Hitzler et al., 2009b] Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic
Web Technologies. Chapman & Hall/CRC (2009)

[Horridge et al., 2008] Horridge, M., Parsia, B., Sattler, U.: Laconic and Precise Jus-
tifications in OWL. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard,
D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 323–338.
Springer, Heidelberg (2008)

[Horrocks and Sattler, 2007] Horrocks, I., Sattler, U.: A tableau decision procedure for
SHOIQ. Journal of Automated Reasoning 39(3), 249–276 (2007)

[Horrocks et al., 2006] Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible
SROIQ. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings of the 10th
International Conference on Principles of Knowledge Representation and Reasoning
(KR 2006), pp. 57–67. AAAI Press, Menlo Park (2006)

[Kazakov and Motik, 2008] Kazakov, Y., Motik, B.: A resolution-based decision pro-
cedure for SHOIQ. Journal of Automated Reasoning 40(2-3), 89–116 (2008)

[Kazakov, 2008] Kazakov, Y.: RIQ and SROIQ are harder than SHOIQ. In:
Brewka, G., Lang, J. (eds.) Proceedings of the 11th International Conference on
Principles of Knowledge Representation and Reasoning (KR 2008), pp. 274–284.
AAAI Press, Menlo Park (2008)

[Kazakov, 2009] Kazakov, Y.: Consequence-driven reasoning for horn SHIQ ontolo-
gies. In: Boutilier, C. (ed.) Proceedings of the 21st International Conference on
Artificial Intelligence (IJCAI 2009), pp. 2040–2045 (2009)

[Krötzsch et al., 2008] Krötzsch, M., Rudolph, S., Hitzler, P.: Description logic rules.
In: Ghallab, M., Spyropoulos, C.D., Fakotakis, N., Avouris, N. (eds.) Proceedings
of the 18th European Conference on Artificial Intelligence (ECAI 2008), pp. 80–84.
IOS Press, Amsterdam (2008)

[Lehmann, 2009] Lehmann, J.: Dl-learner: Learning concepts in description logics.
Journal of Machine Learning Research 10, 2639–2642 (2009)

[Lloyd and Topor, 1984] Lloyd, J.W., Topor, R.W.: Making prolog more expressive.
Journal of Logic Programming 1(3), 225–240 (1984)

[Lutz, 2008] Lutz, C.: The complexity of conjunctive query answering in expressive
description logics. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 179–193. Springer, Heidelberg (2008)

[Manola and Miller, 2004] Manola, F., Miller, E. (eds.): Resource Description Frame-
work (RDF): Primer. W3C Recommendation (2004), http://www.w3.org/TR/

rdf-primer/

http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/

Foundations of Description Logics 135

[Minsky, 1974] Minsky, M.: A framework for representing knowledge. Artificial intel-
ligence memo, A.I. Laboratory. Massachusetts Institute of Technology, Cambridge
(1974)

[Motik and Sattler, 2006] Motik, B., Sattler, U.: A Comparison of Reasoning Tech-
niques for Querying Large Description Logic ABoxes. In: Hermann, M., Voronkov,
A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 227–241. Springer, Heidelberg
(2006)

[Motik et al., 2009a] Motik, B., Patel-Schneider, P.F., Grau, B.C. (eds.): OWL 2 Web
Ontology Language: Direct Semantics. W3C Recommendation (2009), http://

www.w3.org/TR/owl2-direct-semantics/

[Motik et al., 2009b] Motik, B., Patel-Schneider, P.F., Parsia, B. (eds.): OWL 2 Web
Ontology Language: Structural Specification and Functional-Style Syntax. W3C
Recommendation (2009), http://www.w3.org/TR/owl2-syntax/

[Motik et al., 2009c] Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for
description logics. Journal of Artificial Intelligence Research (JAIR) 36, 165–228
(2009)

[Noia et al., 2009] Di Noia, T., Di Sciascio, E., Donini, F.M.: A tableaux-based calculus
for abduction in expressive description logics: Preliminary results. In: Grau, B.C.,
Horrocks, I., Motik, B., Sattler, U. (eds.) Description Logics. CEUR Workshop
Proceedings, vol. 477 (2009), CEUR-WS.org

[OWL Working Group, 2009] W3C OWL Working Group. OWL 2 Web Ontology Lan-
guage: Document Overview. W3C Recommendation (2009) http://www.w3.org/

TR/owl2-overview/

[Papadimitriou, 1994] Papadimitriou, C.H.: Computational Complexity. Addison-
Wesley, Reading (1994)

[Patel-Schneider and Motik, 2009] Patel-Schneider, P.F., Motik, B. (eds.): OWL 2
Web Ontology Language: Mapping to RDF Graphs. W3C Recommendation (2009),
http://www.w3.org/TR/owl2-mapping-to-rdf/

[Pratt-Hartmann, 2005] Pratt-Hartmann, I.: Complexity of the two-variable fragment
with counting quantifiers. Journal of Logic, Language and Information 14, 369–395
(2005)

[Quillian, 1968] Ross Quillian, M.: Semantic memory. In: Minsky, M. (ed.) Semantic
Information Processing, ch. 4, pp. 227–270. MIT Press, Cambridge (1968)

[Rudolph and Glimm, 2010] Rudolph, S., Glimm, B.: Nominals, inverses, counting,
and conjunctive queries or: Why infinity is your friend! Journal of Artificial In-
telligence Research (JAIR) 39, 429–481 (2010)

[Rudolph et al., 2008] Rudolph, S., Krötzsch, M., Hitzler, P.: All elephants are big-
ger than all mice. In: Baader, F., Lutz, C., Motik, B. (eds.) Proceedings of the
21st International Workshop on Description Logics (DL 2008). CEUR Workshop
Proceedings, vol. 353 (2008), CEUR-WS.org

[Rudolph et al., 2008b] Rudolph, S., Krötzsch, M., Hitzler, P.: Terminological reason-
ing in SHIQ with ordered binary decision diagrams. In: Pro- ceedings of the 23rd
AAAI Conference on Artificial Intelligence (AAAI 2008), pp. 529–534. AAAI Press,
Menlo Park (2008)

[Rudolph, 2004] Rudolph, S.: Exploring relational structures via FLE. In: Wolff, K.E.,
Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 196–
212. Springer, Heidelberg (2004)

[Russell and Norvig, 2003] Russell, S., Norvig, P.: Artificial Intelligence: A Modern
Approach, 2nd edn. Prentice Hall, Englewood Cliffs (2003)

http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-syntax/
CEUR-WS.org
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-mapping-to-rdf/
CEUR-WS.org

136 S. Rudolph

[Schild, 1991] Schild, K.: A correspondence theory for terminological logics: Prelimi-
nary report. In: Mylopoulos, J., Reiter, R. (eds.) Proceedings of the 12th Inter-
national Joint Conference on Artificial Intelligence (IJCAI 1991), pp. 466–471.
Morgan Kaufmann, San Francisco (1991)

[Schmidt-Schauß and Smolka, 1991] Schmidt-Schauß, M., Smolka, G.: Attributive con-
cept descriptions with complements. Journal of Artificial Intelligence 48, 1–26
(1991)

[Schöning, 2008] Schöning, U.: Logic for Computer Scientists. Birkhäuser, Basel (2008)
[Shearer and Horrocks, 2009] Shearer, R., Horrocks, I.: Exploiting Partial Information

in Taxonomy Construction. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum,
L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 569–584. Springer, Heidelberg (2009)

[Sidhu et al., 2005] Sidhu, A., Dillon, T., Chang, E., Sidhu, B.S.: Protein ontology de-
velopment using OWL. In: Proceedings of the 1st OWL Experiences and Directions
Workshop (OWLED 2005). CEUR Workshop Proceedings, vol. 188 (2005), http://
ceur-ws.org/

[Simancik et al., 2011] Simancik, F., Kazakov, Y., Horrocks, I.: Consequence-based
reasoning beyond horn ontologies. In: Walsh, T. (ed.) Proceedings of the 22nd
International Conference on Artificial Intelligence, IJCAI 2011 (2011)

[Sirin et al., 2007] Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet:
A practical OWL-DL reasoner. Journal of Web Semantics 5(2), 51–53 (2007)

[Sowa, 1984] Sowa, J.F.: Conceptual Structures: Information Processing in Mind and
Machine. Addison-Wesley, Reading (1984)

[Staab and Studer, 2009] Staab, S., Studer, R. (eds.): Handbook on Ontologies, 2nd
edn. International Handbooks on Information Systems. Springer, Heidelberg (2009)

[Stuckenschmidt et al., 2009] Stuckenschmidt, H., Parent, C., Spaccapietra, S.
(eds.):Modular Ontologies: Concepts, Theories and Techniques for Knowledge Mod-
ularization. LNCS, vol. 5445. Springer, Heidelberg (2009)

[Tsarkov and Horrocks, 2006] Tsarkov, D., Horrocks, I.: FaCT++ Description Logic
Reasoner: System Description. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006.
LNCS (LNAI), vol. 4130, pp. 292–297. Springer, Heidelberg (2006)

[van Harmelen et al., 2008] van Harmelen, F., Lifschitz, V., Porter, B.: Handbook of
Knowledge Representation. Foundations of Artificial Intelligence. Elsevier, Ams-
terdam (2008)

[Wolstencroft et al., 2005] Wolstencroft, K., Brass, A., Horrocks, I., Lord, P., Sattler,
U., Turi, D., Stevens, R.: A little semantic web goes a long way in biology. In: Gil,
Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 786–800. Springer, Heidelberg (2005)

http://ceur-ws.org/
http://ceur-ws.org/

	Foundations of Description Logics
	Introduction
	Outlook
	DLs in the Context of Other Formalisms
	DL Modeling in a Nutshell
	The Semantic Web

	Syntax
	RBox
	TBox
	ABox

	Semantics
	Interpretations
	Satisfaction of Axioms
	Logical Consequence
	Excursus: Semantics via Embedding into FOL

	Description Logic Nomenclature
	Equivalences, Emulation, Normalization
	Concept Equivalences
	Knowledge Base Equivalences
	Emulation

	Modeling with DLs
	A Lot Can Be Done in ALC
	Looking Back: Inverse Roles
	Model Manipulation Part I: Filtration
	Up to Infinity: Cardinality Constraints
	Model Manipulation Part II: Unraveling
	Far Far Away: Transitivity
	Model Manipulation Part III: Disjoint Union
	Know Your Bounds: Nominal Concept and Universal Role
	Selfishness
	Open World vs. Closed World

	Reasoning Tasks and Their Reducibility
	Knowledge Base Satisfiability
	Axiom Entailment
	Concept Satisfiability
	Instance Retrieval
	Classification
	Conjunctive Query Answering
	Other Reasoning Tasks

	Algorithmic Approaches to DL Reasoning
	Tableau
	Automata
	Consequence-Based Reasoning
	Resolution

	Description Logics and OWL
	Translating DL KBs into OWL
	Expressing OWL Axioms in SROIQ

	Further Reading
	Further Reading
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

