
SPARQL Queries over Ontologies Under
the Fixed-Domain Semantics

Sebastian Rudolph(B) , Lukas Schweizer(B) , and Zhihao Yao(B)

Computational Logic Group, TU Dresden, Dresden, Germany
{sebastian.rudolph,lukas.schweizer,zhihao.yao}@tu-dresden.de

Abstract. Fixed-domain reasoning over OWL ontologies is adequate in
certain closed-world scenarios and has been shown to be both useful and
feasible in practice. However, the reasoning modes hitherto supported by
available tools do not include querying. We provide the formal founda-
tions of querying under the fixed domain semantics, based on the prin-
ciple of certain answers, and show how fixed-domain querying can be
incorporated in existing reasoning methods using answer set program-
ming (ASP).

1 Introduction

Semantic web technologies [13] are widely adopted for knowledge representation
on the Web or in other scenarios requiring intelligent data management. For
expressing sophisticated background knowledge, the ontology language OWL 2
and its profiles are the standard [17,30]. OWL 2 is based on expressive description
logics [4,21] and supported by optimized engines for reasoning and querying
[12,28,29].

The success of OWL 2 has led to its usage also in scenarios that actually go
against its standard semantics, which operates under the open-world assumption.
In many such scenarios, the involved elements (the “domain”) are actually known
upfront. In order to better account for such scenarios, an alternative, “fixed-
domain” semantics has been proposed and tools providing reasoning support
have been implemented on top of answer-set solvers [9,24,25].

While the existing reasoning support is helpful for standard reasoning tasks
such as satisfiability testing and also for non-standard ones such as model enu-
meration, sometimes more elaborate information needs must be addressed. For
sophisticated querying tasks in the Semantic Web setting, SPARQL has been
established as the query language of choice [31], originally designed as querying
formalism for RDF graphs [27]. The recent SPARQL 1.1 standard, however, sup-
ports queries over OWL ontologies by means of the so called entailment regimes
[5]. Given that querying OWL ontologies even under very basic queries is not
known to be decidable [23], the proposed approach constitutes a compromise,
implementing what is practically feasible under the open world semantics.

Under the fixed-domain semantics, however, a tighter integration of OWL
background knowledge and querying can be realized without risking decidability.
c© Springer Nature Switzerland AG 2019
A. C. Nayak and A. Sharma (Eds.): PRICAI 2019, LNAI 11670, pp. 486–499, 2019.
https://doi.org/10.1007/978-3-030-29908-8_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29908-8_39&domain=pdf
http://orcid.org/0000-0002-1609-2080
http://orcid.org/0000-0003-1167-1777
https://doi.org/10.1007/978-3-030-29908-8_39

SPARQL Queries over Ontologies Under the Fixed-Domain Semantics 487

Table 1. Syntax and semantics of role and concept constructors in SROIQ, where
a1, . . . an denote individual names, s a role name, r a role expression and C and D
concept expressions.

Name Syntax Semantics

Inverse role s− {(x, y) ∈ ΔI × ΔI | (y, x) ∈ sI}
Universal role u ΔI × ΔI

Top � ΔI

Bottom ⊥ ∅
Negation ¬C ΔI \ CI

Conjunction C � D CI ∩ DI

Disjunction C � D CI ∪ DI

Nominals {a1, . . . , an} {aI
1 , . . . , a

I
n}

Univ. restriction ∀r.C {x | ∀y.(x, y) ∈ rI → y ∈ CI}
Exist. restriction ∃r.C {x | ∃y.(x, y) ∈ rI ∧ y ∈ CI}
Self concept ∃r.Self {x | (x, x) ∈ rI}
Qualified number �n r.C {x | #{y ∈ CI | (x, y) ∈ rI} ≤ n}
Restriction �n r.C {x | #{y ∈ CI | (x, y) ∈ rI} ≥ n}

Under these circumstances we can realize querying following the principle of
certain answers: each fixed-domain model of a given ontology can be conceived
as an RDF graph which can be SPARQL-queried in separation. Only if a query
answer is returned when querying each and every model, it qualifies as query
answer for the corresponding ontology.

Since model enumeration is a task readily provided by existing fixed-domain
reasoners, the above definition immediately gives rise to a brute-force algorithm
for fixed-domain ontological querying. However, the combinatorial explosion typ-
ically occurring in model-enumeration makes the feasibility of such an approach
appear highly doubtful. We therefore propose an alternative method based on
a tighter integration with existing reasoning technology, where SPARQL query
evaluation is encoded in the same answer set program that produces the models.
By means of this tight integration, we can leverage the structural similarity of
certain answers and skeptical consequences.

2 Description Logics

OWL 2 DL, the version of the Web Ontology Language we focus on, is based on
description logics (DLs, [4,21]). We briefly recap the description logic SROIQ
(for details see [14]). Let NI , NC , and NR be finite, disjoint sets called individual
names, concept names, and role names, respectively.1 These atomic entities can
be used to form complex ones as displayed in Table 1.
1 To ensure compatibility with their later usage in RDF and SPARQL, we silently

presume that all these vocabulary elements are Internationalized Resource Identifiers
(IRIs).

488 S. Rudolph et al.

Table 2. Syntax and semantics of SROIQ axioms.

Axiom α I |= α, if

r1 ◦ · · · ◦ rn � r rI
1 ◦ · · · ◦ rI

n ⊆ rI RBox R
Dis(s, r) sI ∩ rI = ∅
C � D CI ⊆ DI TBox T
C(a) aI ∈ CI ABox A
r(a, b) (aI , bI) ∈ rI

a
.
= b aI = bI

a � .= b aI �= bI

A SROIQ knowledge base K is a tuple (A, T ,R) where A is a SROIQ
ABox, T is a SROIQ TBox and R is a SROIQ RBox. Table 2 presents the
respective axiom types available in the three parts.2 We use NI(K), NC(K), and
NR(K) to denote the sets of individual names, concept names, and role names
occurring in K, respectively.

The semantics of SROIQ is defined via interpretations I = (ΔI , ·I) com-
posed of a non-empty set ΔI called the domain of I and a function ·I mapping
individual names to elements of ΔI , concept names to subsets of ΔI , and role
names to subsets of ΔI × ΔI . This mapping is extended to complex role and
concept expressions (cf. Table 1) and finally used to define satisfaction of axioms
(see Table 2). We say that I satisfies a knowledge base K = (A, T ,R) (or I is
a model of K, written: I |= K) if it satisfies all axioms of A, T , and R. We say
that a knowledge base K entails an axiom α (written K |= α) if all models of K
are models of α.

Example 1. Consider a knowledge base K = (A, T ,R). Let A contain the
assertions Aca(alice), Aca(bob), Aca(claire), Aca(david), Aca(eve), stat-
ing that the mentioned individuals are all academics and the assertions
supervises(alice, bob), supervises(bob, claire), and supervises(david,
eve) indicating supervision relationships and inProject(bob, projectX),
inProject(david, projectY), as well as inProject(eve, projectY) to indicate
research project affiliations.

Let T contain the axioms Aca � Masterstudent � PhDstudent �
Professor as well as Masterstudent � ¬PhDstudent, Masterstudent �
¬Professor, and PhDstudent � ¬Professor to indicate that every aca-
demic must be in exactly one of the three categories. Moreover, we

2 The original definition of SROIQ contained more RBox axioms (expressing tran-
sitivity, (a)symmetry, (ir)reflexivity of roles), but these can be shown to be syntac-
tic sugar. Moreover, the definition of SROIQ contains so-called global restrictions
which prevents certain axioms from occurring together. These complicated restric-
tions, while crucial for the decidability of classical reasoning in SROIQ are not
necessary for fixed-domain reasoning considered here, hence we omit them for the
sake of brevity.

SPARQL Queries over Ontologies Under the Fixed-Domain Semantics 489

impose some constraints on supervision relationships: ∃supervises.� �
(Professor � PhDstudent) � ∀supervises.(Masterstudent � PhDstudent)
as well as ∃supervises.PhDstudent � Professor and PhDstudent �
∀supervises.Masterstudent.

It can be readily checked that K is satisfiable. It would, however, become
unsatisfiable upon adding the assertion supervises(finn, alice). Note also
that, e.g., K |= ¬Masterstudent(david).

3 Fixed-Domain Semantics

In DLs, models can be of arbitrary cardinality – for a satisfiability check, for
example, all what matters is the mere existence of a model. Yet, in many appli-
cations, the domain of interest is known to be finite. Restricting reasoning to
models of finite domain size (called finite model reasoning, a natural assumption
in database theory), has been intensively studied in DLs [7,16,20,22]. As opposed
to assuming the domain to be merely finite (but of arbitrary, unknown size), one
can consider the case where the domain has an a priori known cardinality and
use the term fixed domain [9].

Definition 1 (Fixed-Domain Semantics). Given a non-empty finite set Δ ⊆
NI , called fixed domain, an interpretation I =(ΔI , ·I) is said to be Δ-fixed (or
just fixed, if Δ is clear from the context), if ΔI = Δ and aI = a for all a ∈ Δ.
Accordingly, for a DL knowledge base K, we call an interpretation I a Δ-model
of K, if I is a Δ-fixed interpretation and I |= K. A knowledge base K is called
Δ-satisfiable if it has a Δ-model. We say K Δ-entails an axiom α (K |=Δ α) if
every Δ-model of K is also a model of α.

Example 2. Consider the knowledge base K from Example 1. Assume, we
let Δ = {alice, bob, claire, david, eve, projectX, projectY}. It is not hard
to see that K is Δ-satisfiable. Moreover, K Δ-entails the axiom ¬Aca �
{projectX, projectY}, whereas this axiom is not generally entailed.

4 RDF

We will now very briefly introduce RDF [8], and show how to represent a Δ-
fixed interpretation as RDF graph which in our setting will serve as essential
data structure over which SPARQL queries are evaluated. We will omit named
graphs from our presentation as they are not meaningful in our context.

Let I, B, L be countably infinite, pairwise disjoint sets, called IRIs, blank
nodes, and RDF literals, respectively. A tuple (v1, v2, v3) ∈ (I∪B)×I×(I∪B∪L)
is called an RDF triple, where v1 is called the subject, v2 the predicate, and v3

the object. An RDF graph G (or just graph) is a set of RDF triples, and we
use term(G) as the set of all elements from I ∪ B ∪ L occurring in G, and
blank(G) ⊆ B to denote the set blank nodes occurring in G. We will make later
use of Definition 2 that defines the construction of an RDF graph given a Δ-fixed
interpretation, promoting the interpretation as queryable artifact.

490 S. Rudolph et al.

Definition 2. Let I be a Δ-fixed interpretation. Then the RDF graph G(I)
induced by I consists of the triples (a, rdf:type, C) for all a ∈ CI , and (a, r, b)
for all (a, b) ∈ rI .

5 SPARQL

We will give a very compact introduction on the core elements of SPARQL [31],
similar to [3,19]. For reasons of space and relevance, we will focus on SELECT
queries and omit aggregates and solution modifiers.

Let V be a countably infinite set of available variables, where V ∩(I∪B∪L) =
∅. A tuple from (I ∪L∪V)× (I ∪L∪V)× (I ∪V) is called triple pattern, and we
call a finite set of triple patterns a basic graph pattern. Complex graph patterns
are now inductively defined: (i) every basic graph pattern is a graph pattern,
(ii) for graph patterns P1 and P2, the expressions P1 AND P2, P1 UNION P2,
P1 MINUS P2, and P1 OPT P2 are graph patterns and (iii) for P a graph pattern
and C a filter constraint (defined below), P FILTER C is a graph pattern. The
set of variables occurring in a graph pattern P is denoted with var(P). A filter
constraint is defined recursively as follows: (i) if ?X, ?Y ∈ V and u ∈ I ∪ L
then ?X = u, ?X =?Y , bound(?X), isIRI(?X), isLiteral(?X), and isBlank(?X)
are atomic filter constraints; (ii) if C1 and C2 are filter constraints then (¬C1),
(C1 ∧ C2), and (C1 ∨ C2) are complex filter constraints.

Finally, a SPARQL query q is a structure SELECT ?X1 . . .?Xn WHERE P
with ?X1, . . . , ?Xn variables and P a graph pattern. We use avar(q) =
{?X1, . . . , ?Xn} to denote the set of answer variables.

Example 3. In the following, a simple SPARQL query q1 asks for all projects in
which some PhD student is involved.

SELECT ?Y
WHERE { ?X rdf:type PhDStudent. ?X inProject ?Y }

The next SPARQL query q2 retrieves employees who are PhD students or pro-
fessors together with their projects.

SELECT ?X ?Y
WHERE { { ?X rdf:type PhDStudent. UNION ?X rdf:type Professor. }

AND ?X inProject ?Y. }

A mapping μ is a partial function μ : V → (I ∪ B ∪ L). The domain of μ,
dom(μ) ⊆ V , are the variables for which μ is defined. Two mappings μ1, μ2 are
compatible, written μ1 ∼ μ2, if for all ?X ∈ dom(μ1) ∩ dom(μ2), it holds that
μ1(?X) = μ2(?X). Given a triple pattern t, we let tμ denote the triple obtained
by replacing every variable ?X ∈ dom(μ) in t by μ(?X).

SPARQL Queries over Ontologies Under the Fixed-Domain Semantics 491

Definition 3. Let t be a triple pattern, P, P1, P2 graph patterns, and G an RDF
graph, then the evaluation 〈〈·〉〉G is defined as:

〈〈{t1, ..., tk}〉〉G = {μ | dom(μ) =
⋃

1≤i≤k

var(ti) and {t1μ, ..., tkμ} ⊆ G}

〈〈P1 AND P2〉〉G = {μ1 ∪ μ2 | μ1 ∈ 〈〈P1〉〉G, μ2 ∈ 〈〈P2〉〉G, μ1 ∼ μ2}
〈〈P1 UNION P2〉〉G = 〈〈P1〉〉G ∪ 〈〈P2〉〉G
〈〈P1 MINUS P2〉〉G = 〈〈P1〉〉G \ 〈〈P2〉〉G

〈〈P1 OPT P2〉〉G = {μ1 ∪ μ2 | μ1 ∈ 〈〈P1〉〉G, μ2 ∈ 〈〈P2〉〉G, μ1 ∼ μ2}
∪ {μ1 | μ1 ∈ 〈〈P1〉〉G, ∀μ2 ∈ 〈〈P2〉〉G.μ1 �∼ μ2}

〈〈P FILTER C〉〉G = {μ ∈ 〈〈P 〉〉G | Cμ = �}
〈〈SELECT ?X1...?Xn WHERE P 〉〉G = {μ|{?X1,...,?Xn} | μ ∈ 〈〈P 〉〉G}

Let C,C1, C2 be filter constraints, ?X, ?Y ∈ V , a ∈ I ∪ B ∪ L. The valuation
of C on a mapping μ, written Cμ takes one of the three values {�,⊥, ε} and is
defined as follows. Cμ = ε, if:

C = isBlank(?X), C = isIRI(?X), C = isLiteral(?X), or (1)
C = (?X = a) with ?X �∈ dom(μ);
C = (?X =?Y) with ?X �∈ dom(μ) or ?Y �∈ dom(μ); (2)
C = (¬C1) where C1μ = ε; (3)
C = (C1 ∨ C2) with � �∈ {C1μ,C2μ} and ε ∈ {C1μ,C2μ}; (4)
C = (C1 ∧ C2) with ⊥ �∈ {C1μ,C2μ} and ε ∈ {C1μ,C2μ}. (5)

Cμ = �, if:

C = bound(?X) with ?X ∈ dom(μ); (1)
C = isBlank(?X) with ?X ∈ dom(μ) and μ(?X) ∈ B; (2)
C = isIRI(?X) with ?X ∈ dom(μ) and μ(?X) ∈ I; (3)
C = isLiteral(?X) with ?X ∈ dom(μ) and μ(?X) ∈ L; (4)
C = (?X = a) with ?X ∈ dom(μ) and μ(?X) = a; (5)
C = (?X = ?Y) with ?X, ?Y ∈ dom(μ) and μ(?X) = μ(?Y); (6)
C = (¬C1) with C1μ = ⊥; (7)
C = (C1 ∨ C2) with C1μ = � or C2μ = �; (8)
C = (C1 ∧ C2) with C1μ = � and C2μ = �. (9)

Cμ = ⊥, otherwise.

6 SPARQL over Knowledge Bases Under Fixed Domain
Semantics

In database theory, as it is the case for SPARQL, a database instance is typ-
ically conceived to be complete in terms of knowledge, and thus queries are

492 S. Rudolph et al.

answered under the closed-world assumption (e.g. a person not listed in an
employee database is not an employee) [2]. In contrast, a DL knowledge base
represents incomplete knowledge, thus the mere absence of a fact does not allow
to assume its truth value to be false. Alike the notion of axiom entailment, this
has coined the notion of certain query answers [1], where (intuitively) a tuple is
considered to be an answer if it is the result of evaluating the query over every
model of the knowledge base. Thus, each interpretation I is seen as database
instance, over which the query is evaluated. For the evaluation of a SPARQL
query over some model I, we will therefore use the RDF graph G(I) induced by
I, as introduced in Sect. 4. To obtain the certain answers to a SPARQL query, we
collect only those answers that are returned upon executing the query over the
RDF graph G(I) of each and every model I of the queried knowledge base K.

Definition 4. The set of certain answers to a SPARQL query q over a DL
knowledge base K and a fixed domain Δ, is defined by certΔ(K, q) = {μ | μ ∈
〈〈q〉〉G(I) for all I |=Δ K}.

Example 4. Consider the knowledge base K from Example 1. Like in Exam-
ple 2 we let Δ = {alice, bob, claire, david, eve, projectX, projectY}. For
q1 from Example 3 we obtain certΔ(q1,K) = {?Y �→ projectX}. For q2 we
get certΔ(q2,K) = {(?X �→ bob, ?Y �→ projectX), (?X �→ david, ?Y �→
projectY)}.

7 Practical SPARQL Answering

Practical fixed-domain reasoning for DL knowledge bases has been realized via
a translation-based approach [9]. The given finite domain allows to translate DL
axioms into ASP rules, and thereby make use of modern solvers to evaluate the
resulting program in order to check satisfiability, as well as enumerating models
– which in turn correspond to answer sets.

In consequence, it is a straightforward idea to build on top of this translation
to answer SPARQL queries, in particular since translating SPARQL to datalog
rules has already been proposed [3,19]; in fact, it was shown that SPARQL is
equally expressive as non-recursive safe datalog with default negation.

We essentially combine both approaches (ASP-based model enumeration and
ASP-based query evaluation) and adapt them to make them compatible. After
providing a short introduction of answer set programming, we will sketch the
translation of DL knowledge bases into answer set programs [9]. In more detail,
the translation of SPARQL queries into a stratified answer set program is given
thereafter.

7.1 Answer Set Programming

We review the basic notions of answer set programming [18] under the stable-
model semantics [11], for further details we refer to [6,10].

SPARQL Queries over Ontologies Under the Fixed-Domain Semantics 493

We fix a countable set U of (domain) elements, also called constants; and
presume a total order < over the domain elements. An atom is an expression
p(t1, . . . , tn), where p is a predicate of arity n ≥ 0 and each ti is either a variable
or an element from U . An atom is ground if it is free of variables. BU denotes
the set of all ground atoms over U . A (normal) rule ρ is of the form

a ← b1, . . . , bk, not bk+1, . . . , not bm.

with m ≥ k ≥ 0, where a is an atom or empty (in the latter case the rule is called
integrity constraint), b1, . . . , bm are atoms, and “not ” denotes default negation.
The head of ρ is the singleton set H(ρ) = {a} if a is an atom and H(ρ) = ∅
otherwise, and the body of ρ is B(ρ) = {b1, . . . , bk, not bk+1, . . . , not bm}. Fur-
thermore, B+(ρ) = {b1, . . . , bk} and B−(ρ) = {bk+1, . . . , bm}. A rule ρ is safe if
each variable in ρ occurs in B+(r). A rule ρ is ground if no variable occurs in ρ.
A fact is a ground rule with empty body. An (input) database is a set of facts. A
(normal) program is a finite set of normal rules. For a program Π and an input
database D, we often write Π(D) instead of D ∪ Π. For any program Π, let UΠ

be the set of all constants appearing in Π. Gr(Π) is the set of rules ρσ obtained
by applying, to each rule ρ ∈ Π, all possible substitutions σ from the variables
in ρ to elements of UΠ.

An interpretation I ⊆ BU satisfies a ground rule ρ iff H(ρ)∩ I �= ∅ whenever
B+(ρ) ⊆ I, B−(ρ) ∩ I = ∅. I satisfies a ground program Π, if each ρ ∈ Π
is satisfied by I. A non-ground rule ρ (resp., a program Π) is satisfied by an
interpretation I iff I satisfies all groundings of ρ (resp., Gr(Π)). I ⊆ BU is an
answer set (also called stable model) of Π iff it is the subset-minimal set satisfying
the Gelfond-Lifschitz reduct ΠI = {H(ρ) ← B+(ρ) | I ∩B−(ρ) = ∅, ρ ∈ Gr(Π)}.
For a program Π, we denote the set of its answer sets by S(Π).

Consequences. We rely on two notions of consequence: Given a program Π and
a ground atom α, we say that Π cautiously entails α, written Π |=∀ α, if α ∈ S
for every answer set S ∈ S(Π). Likewise, we say that Π bravely entails α, written
Π |=∃ α, if there exists an answer set S ∈ S(Π) with α ∈ S. The set of all cautious
consequences of Π is denoted Cn∀(Π) and the set of its brave consequences
Cn∃(Π).

7.2 Translating DL Knowledge Bases

An ASP translation of SROIQ knowledge bases has been proposed in [9,26].
Intuitively, given a fixed domain, one can guess an interpretation and verify
modelhood with appropriate constraints (resulting from the axioms). Thus, the
key idea of the translation is that every axiom is turned into an integrity con-
straint, and the only rules with nonempty head are so-called “guessing rules”
for the extensions of every concept and role. Following this guess and check
approach, the translation is rather direct, for example, a simple concept sub-
sumption A � B becomes a constraint of the form ←A(X), notB(X); i.e. ruling
out interpretations where X is an instance of A but not of B, and hence not
satisfying the subsumption.

494 S. Rudolph et al.

For a DL knowledge base K and fixed domain Δ, let Π(K,Δ) denote the
answer set program resulting from translating K with respect to Δ. It is shown
that every answer set S ∈ S(Π(K,Δ)), corresponds to a Δ-model of K, and
vice versa. Hence, it is possible to obtain the corresponding RDF graph G(I) of
every model via the answer sets and evaluate a SPARQL query on it. Since the
translation has been implemented and is available in the tool Wolpertinger
[25], which is able to enumerate Δ-models, SPARQL query evaluation could
be realized with only little implementation effort; i.e. retrieve all models and
evaluate the query on each of the induced graphs, and compute the intersection
of all answers – that would be taking Definition 4 literally. However, as the sets
of enumerated models tend to be very large due to combinatorial explosion, we
are certain that this approach would not be feasible. Therefore, we will propose
another translation-based approach.

In Π(K,Δ), predicate names directly correspond to concept and role
names in K. This translation can syntactically be lifted to a triple nota-
tion, such that, e.g. , translating A � B results in the constraint ←
triple(X, rdf:type, A), not triple(X, rdf:type, B). We let ΠRDF(K,Δ) denote this
lifted program. Now by letting RDF(S) = {(v1, v2, v3) | triple(v1, v2, v3) ∈ S},
we obtain the following correspondence.

Lemma 1. Let K be a DL knowledge base, Δ a fixed domain, and I a Δ-fixed
interpretation. Then I |=Δ K if and only if there exists some answer set S ∈
S(ΠRDF(K,Δ)) such that G(I) = RDF(S).

This correspondence now provides us with the right starting point for apply-
ing the SPARQL querying – again via a translation into ASP.

7.3 Translating SPARQL Queries

We let Π(q) denote the answer set program resulting from the translation of a
SPARQL query q, into rules, closely following [19]. Intuitively, the translation
follows the recursive definition of 〈〈q〉〉G (cf. Definition 3), evaluating the graph
pattern Pq of q inside out. For a set of variables V = {X1, . . . , Xn}, we denote
with V = (X1, . . . , Xn) the sequence of variables obtained relying on some lexi-
cographic ordering. Π(q) is then obtained with the initial call τ(avar(q), Pq, 1) of
the translation τ defined in the following. Thereby, the dedicated atom answer i
represents the result of evaluating the sub-graph pattern at position i in the
query graph pattern seen as binary tree; thus, alike the definition of 〈〈q〉〉G (cf.
Definition 3), the translation τ traverses the binary tree. For the translation of
filter expressions via the function Φ we refer the reader to [19].

τ(V, {T1, . . . , Tn}, i) = {answer i(V) ← triple(T1), . . . , triple(Tn)}
where Ti = (vi, v

′
i, v

′′
i) is a triple pattern. (1)

τ(V, P1 ANDP2, i) = {answer i(V) ← answer2i(V ′
P1

), answer2i+1(V ′
P2

),

SPARQL Queries over Ontologies Under the Fixed-Domain Semantics 495

join |SP1,2 |(S
′
P1,2

, S′′
P1,2

, SP1,2)}

∪ τ(var(P1), P1, 2i) ∪ τ(var(P2), P2, 2i + 1) ∪ Join(|SP1,2 |)
with V ′

P1 = var(P1)[SP1,2 → S′
P1,2]

and V ′
P2 = var(P2)[SP1,2 → S′′

P1,2] (2)

τ(V, P1 UNIONP2, i) = {answer i(V [(V \var(P1)) → null]) ← answer2i(var(P1)),

answer i(V [(V \var(P2)) → null]) ← answer2i+1(var(P2))}
∪ τ(var(P1), P1, 2i) ∪ τ(var(P2), P2, 2i + 1) (3)

τ(V, P1 MINUSP2, i) = {answer i(V [(V \var(P1)) → null]) ← answer2i(var(P1)),

not answer2i+1(var(P1) ∩ var(P2))}
∪ τ(var(P1), P1, 2i) ∪ τ(var(P2), P2, 2i + 1) (4)

τ(V, P1 OPTP2, i) = τ(V, P1 ANDP2, i) ∪ τ(V, P1 MINUSP2, i) (5)

τ(V, P FILTERC, i) = τ(var(P), P, 2i) ∪ Φ(answer i(V) ← answer2i(var(P)), C) (6)

The translation of AND (joins), realized in Rule (2) requires some more expla-
nation. First, the variables to join on are determined via SP1,2 = var(P1)∩var(P2)
(shared variables), and we denote with S′

P1,2
and S′′

P1,2
the renamed copies

of the shared variables SP1,2 . For example, S′
P1,2

= {X ′
1, . . . , X

′
n} for SP1,2 =

{X1, . . . , Xn}. Thus, in Rule (2), the shared variables in answer2i are replaced
by their singly primed version, and the shared variables in answer2i to their dou-
bly primed version, respectively. The non-primed version is bound by joinn(. . .),
which basically ensures that any value joins with null, for n shared variables. To
implement this, we define the rule set Join(n) as follows:

join (null, null, null)

join (X,X,X) ← term(X).

join (X, null, X) ← term(X). join (null, X,X) ← term(X).

join1(X
′
1, X

′′
1 , X1) ← join (X

′
1, X

′′
1 , X1)

join2(X
′
1, X

′
2, X

′′
1 , X

′′
2 , X1, X2) ← join1(X

′
1, X

′′
1 , X1), join (X

′
2, X

′′
2 , X2)

join3(X
′
1, X

′
2, X

′
3, X

′′
1 , X

′′
2 , X

′′
3 , X1, X2, X3) ← join2(X

′
1, X

′
2, X

′′
1 , X

′′
2 , X1, X2), join (X

′
3, X

′′
3 , X3)

.

.

.

joinn(X
′
1, . . . , X

′
m, . . . , X1, . . . , Xn) ← joinn−1(X

′
1, . . . , X

′
n−1, . . . , X1, . . . , Xn−1),

join (X
′
n, X

′′
n , Xn)

Example 5. The following rule is the result of applying τ({?Y }, Pq1 , 1) for the
query q1 in Example 3.

answer1(Y) ← triple(X, rdf:type,PhDStudent), triple(X, inProject, Y).

496 S. Rudolph et al.

For the query q2 we obtain the following result for the computation of
τ({?X, ?Y }, Pq1 , 1) (omitting the rules defining the join predicate).

answer1(X,Y) ← answer2(X ′), answer3(X ′′, Y), join1(X
′,X ′′,X).

answer2(X) ← answer4(X).
answer2(X) ← answer5(X).

answer3(X,Y) ← triple(X, inProject, Y).
answer4(X) ← triple(X, rdf:type,PhDStudent).
answer5(X) ← triple(X, rdf:type,Professor).

Note that Π(q) is stratified and hence can have only one answer set. Moreover,
observe that the answer set of Π(q) might contain instances of answer i with the
null constant, with the intuitive meaning that the corresponding answer variables
do not have a value assigned. In contrast the mapping μ is not defined to map
variables onto null. Therefore, for some V ⊇ dom(μ) let μV be the total function
with domain V such that μV (?X) = μ(?X) if ?X ∈ dom(μ) and μV (?X) = null
otherwise. Now, for an RDF graph G, let ASP(G) denote the translation of G
into a database of triple atoms. Then we obtain the following lemma.

Lemma 2. Let G be an RDF graph and let q be a SPARQL query with V =
avar(q). Then μ ∈ 〈〈q〉〉G if and only if μ : V → terms(G) and answer1(V μV) is
an element of the one and only answer set of Π(q) ∪ ASP(G).

7.4 Combining Model Generation and Querying

It is straightforward to reformulate Lemma 2 for models of our knowledge base.

Lemma 3. Let I be a Δ-model for the DL knowledge base K and let q be a
SPARQL query with V = avar(q). Then μ ∈ 〈〈q〉〉G(I) if and only if μ : V →
terms(G) and answer1(V μV) is an element of the one and only answer set of
Π(q) ∪ ASP(G(I)).

Now we are ready to “plug together” the results from Lemmas 1 and 3 to
obtain the correctness result for the described translation.

Theorem 1. For a DL knowledge base K over a fixed domain Δ, and a SPARQL
query q with V = avar(q), it holds that μ ∈ certΔ(K, q) if and only if μ : V →
terms(G) and answer1(V μV) ∈ Cn∀(ΠRDF(K,Δ) ∪ Π(q)).

Proof (Sketch). First, we observe that no predicate from ΠRDF(K,Δ) occurs in
the head of any rule of Π(q). Hence, by an application of the well-known splitting
theorem [15], we can establish the following correspondence:

S is an answer set of ΠRDF(K,Δ) ∪ Π(q) if and only if S = S′ ∪ S′′ where S′

is an answer set of ΠRDF(K,Δ) and S′′ is an answer set of Π(q) ∪ S′. (†)
Now consider a mapping μ such that answer1(V μV) ∈ Cn∀(ΠRDF(K,Δ) ∪

Π(q)). By the definition of cautious consequences, this means that
answer1(V μV) ∈ S for every answer set S of ΠRDF(K,Δ) ∪ Π(q). By (†),

SPARQL Queries over Ontologies Under the Fixed-Domain Semantics 497

this means that answer1(V μV) ∈ S′′ for the one and only answer set S′′ of
Π(q) ∪ S′ for every answer set S′ of ΠRDF(K,Δ). Now, using Lemmas 1 and 3
we find that this is the case exactly if for every Δ-model I of K (represented by
S′ = ASP(G(I))), we find that μ ∈ 〈〈q〉〉G(I). Now, by the definition of certain
answers, the latter is the case exactly if μ ∈ certΔ(K, q). ��

8 Conclusion

In this paper, we introduced the formal underpinnings for answering SPARQL
queries over OWL ontologies under the fixed domain semantics. As usual for
query answering over expressive logics, we employ the principle of certain
answers. We also proposed a way to realize this task by means of cautious infer-
encing over answer set programs, allowing to employ existing, highly optimized
off-the-shelf machinery for that purpose.

As next steps in our research, we will evaluate the approach over synthetic
and real-world data sets in order to verify the (albeit very plausible) assumption
that our proposed approach is superior to the brute-force approach of enumer-
ating and querying all models.

Beyond that, our initial work raises many interesting conceptual questions.

Adequacy of the Certain Answer Principle. On the one hand it is natural to ask
for “guaranteed” results applying to all scenarios complying with the knowledge
base. On the other hand, fixed-domain reasoning is often employed in the search
for solutions to some sort of constraint satisfaction problem, and the enumerated
models represent the solutions to that problem. In such a setting, one might also
ask for possible answers, i.e., answers obtained from some model (rather than
all of them). We foresee that such a setting can be captured by our approach in
a straightforward way by considering brave consequences rather than cautious
ones.

On yet another note, an alternative approach would be to conceive the set
of models of a knowledge base as a collection of RDF graphs, stored together in
an RDF dataset using named graphs. SPARQL queries could then be executed
over this “super-model”.

Aggregates. For space reasons, we refrained from addressing aggregates. The
technically most straightforward (and readily implementable) way to define
answers for queries featuring aggregates would again be to fully execute the
query over each model separately and then intersect the result sets over all mod-
els. Such strategy might, however lead to unintuitive results. If we queried the
knowledge base from Example 1 asking for academics and the number of projects
each of them is in, we would get an empty result, since there exist models where
every person is working in each of the project, where in the “standard model”
one or no project would be assigned to every person. This observation suggests
that under certain circumstances we might perform other operations than just
intersection when accumulating certain answers.

498 S. Rudolph et al.

Acknowledgments. We are grateful for the valuable feedback from the anonymous
reviewers, which helped greatly to improve this work. This work has been funded by the
European Research Council via the ERC Consolidator Grant No. 771779 (DeciGUT).

References

1. Abiteboul, S., Duschka, O.M.: Complexity of answering queries using materialized
views. In: Proceedings of the 7th Symposium on Principles of Database Systems
(PODS), pp. 254–263. ACM Press (1998)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

3. Angles, R., Gutierrez, C.: The expressive power of SPARQL. In: Sheth, A., et
al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 114–129. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-88564-1 8

4. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn.
Cambridge University Press, Cambridge (2007)

5. Birte Glimm, C.O. (ed.): SPARQL 1.1 Entailment Regimes. W3C Working Draft,
21 March 2013. http://www.w3.org/TR/sparql11-entailment/

6. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

7. Calvanese, D.: Finite model reasoning in description logics. In: Proceedings of
Description Logic Workshop, 1996. AAAI Technical Report, vol. WS-96-05, pp.
25–36. AAAI Press (1996)

8. Cyganiak, R., Wood, D., Lanthaler, M. (eds.): RDF 1.1 Concepts and Abstract
Syntax. W3C Recommendation, 25 February 2014. http://www.w3.org/TR/rdf11-
concepts/

9. Gaggl, S.A., Rudolph, S., Schweizer, L.: Fixed-domain reasoning for description
logics. In: Proceedings of European Conference on AI (ECAI), 2016. Frontiers in
Artificial Intelligence and Applications, vol. 285, pp. 819–827. IOS Press (2016)

10. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan
& Claypool Publishers, San Rafael (2012)

11. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–386 (1991)

12. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: an OWL 2
reasoner. J. Autom. Reason. 53(3), 245–269 (2014)

13. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
Chapman & Hall/CRC, Boca Raton (2009)

14. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Pro-
ceedings of the 10th International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR), pp. 57–67. AAAI Press (2006)

15. Lifschitz, V., Turner, H.: Splitting a logic program. In: Proceedings of the 11th
International Conference on Logic Programming (ICLP), pp. 23–37. MIT Press
(1994)

16. Lutz, C., Sattler, U., Tendera, L.: The complexity of finite model reasoning in
description logics. Inf. Comput. 199(1–2), 132–171 (2005)

17. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.):
OWL 2 Web Ontology Language: Profiles. W3C Recommendation, 27 October
2009. http://www.w3.org/TR/owl2-profiles/

https://doi.org/10.1007/978-3-540-88564-1_8
http://www.w3.org/TR/sparql11-entailment/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/owl2-profiles/

SPARQL Queries over Ontologies Under the Fixed-Domain Semantics 499

18. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

19. Polleres, A., Wallner, J.P.: On the relation between SPARQL1.1 and answer set
programming. J. Appl. Non-Class. Logics 23(1–2), 159–212 (2013)

20. Rosati, R.: Finite model reasoning in DL-Lite. In: Bechhofer, S., Hauswirth, M.,
Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 215–229.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68234-9 18

21. Rudolph, S.: Foundations of description logics. In: Polleres, A., et al. (eds.) Reason-
ing Web 2011. LNCS, vol. 6848, pp. 76–136. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-23032-5 2

22. Rudolph, S.: Undecidability results for database-inspired reasoning problems in
very expressive description logics. In: Proceedings of the 15th International Con-
ference on the Principles of Knowledge Representation and Reasoning (KR), pp.
247–257. AAAI Press (2016)

23. Rudolph, S., Glimm, B.: Nominals, inverses, counting, and conjunctive queries or:
why infinity is your friend!. J. Artif. Intell. Res. 39, 429–481 (2010)

24. Rudolph, S., Schweizer, L.: Not too big, not too small... complexities of fixed-
domain reasoning in first-order and description logics. In: Oliveira, E., Gama, J.,
Vale, Z., Lopes Cardoso, H. (eds.) EPIA 2017. LNCS (LNAI), vol. 10423, pp. 695–
708. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65340-2 57

25. Rudolph, S., Schweizer, L., Tirtarasa, S.: Wolpertinger: a fixed-domain reasoner. In:
Proceedings of the 16th International Semantic Web Conference (ISWC), Posters
& Demonstrations. CEUR, vol. 1963. CEUR-WS.org (2017)

26. Rudolph, S., Schweizer, L., Tirtarasa, S.: Justifications for description logic knowl-
edge bases under the fixed-domain semantics. In: Benzmüller, C., Ricca, F., Parent,
X., Roman, D. (eds.) RuleML+RR 2018. LNCS, vol. 11092, pp. 185–200. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-99906-7 12

27. Schreiber, G., Raimond, Y. (eds.): RDF 1.1 Primer. W3C Recommendation, 24
February 2014. http://www.w3.org/TR/rdf11-primer/

28. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-
DL reasoner. J. Web Semant. 5(2), 51–53 (2007)

29. Steigmiller, A., Liebig, T., Glimm, B.: Konclude: system description. J. Web
Semant. 27, 78–85 (2014)

30. W3C OWL Working Group: OWL 2 Web Ontology Language: Docu-
ment Overview. W3C Recommendation (2009). https://www.w3.org/TR/owl2-
overview/

31. W3C SPARQL Working Group: SPARQL 1.1 Overview. W3C Recommendation,
21 March 2013. http://www.w3.org/TR/sparql11-overview/

https://doi.org/10.1007/978-3-540-68234-9_18
https://doi.org/10.1007/978-3-642-23032-5_2
https://doi.org/10.1007/978-3-642-23032-5_2
https://doi.org/10.1007/978-3-319-65340-2_57
https://doi.org/10.1007/978-3-319-99906-7_12
http://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/sparql11-overview/

	SPARQL Queries over Ontologies Under the Fixed-Domain Semantics
	1 Introduction
	2 Description Logics
	3 Fixed-Domain Semantics
	4 RDF
	5 SPARQL
	6 SPARQL over Knowledge Bases Under Fixed Domain Semantics
	7 Practical SPARQL Answering
	7.1 Answer Set Programming
	7.2 Translating DL Knowledge Bases
	7.3 Translating SPARQL Queries
	7.4 Combining Model Generation and Querying

	8 Conclusion
	References

