

Hannes Strass (based on slides by Michael Thielscher) Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Negation: Proof Theory (SLDNF Resolution)

Lecture 7, 28th Nov 2022 // Foundations of Logic Programming, WS 2022/23

Previously ...

- Prolog employs SLD resolution with the **leftmost** selection rule, traverses the search space using **depth-first search** (including backtracking), and regards a program as a **sequence** of clauses.
- Prolog also offers list processing and arithmetics.
- The **cut** prunes certain branches of Prolog trees, and can lead to more efficient programs, but also to programming errors.

```
not(X) :- X, !, fail.
not(_).
% atom fail always fails
% not is also predefined in Prolog: :- op(900, fy, \+).
% not(X) is written as \+ X
```


Motivation: Why Negation?

Normal Logic Programs and Queries

SLDNF Resolution

Allowed Programs and Queries

Negation: Proof Theory (SLDNF Resolution) (Lecture 7) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2022/23

Slide 3 of 30

Motivation: Why Negation?

Negation: Proof Theory (SLDNF Resolution) (Lecture 7) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2022/23

Slide 4 of 30

Motivation: Example (1)

```
attends(andreas,fkr).
attends(maja,fkr).
attends(dirk,fkr).
attends(natalia,fkr).
attends(andreas,flp).
attends(maja,flp).
attends(stefan,flp).
attends(arturo,flp).
```

Who attends FLP but not FKR?

?- attends(X,flp), \+ attends(X,fkr).

Motivation: Example (2)

```
A list is a set : ↔ there are no duplicates in it.
is_set([]).
is_set([H|T]) :- \+ member(H, T), is_set(T).
```


Motivation: Example (2)

A list is a set $:\iff$ there are no duplicates in it.

```
is_set([]).
is_set([H|T]) :- \+ member(H, T), is_set(T).
```

```
The sets (lists) A = [a_1, ..., a_m] and B = [b_1, ..., b_n] are disjoint :\iff
```

- *m* = 0, or
- $m > 0, a_1 \notin B$, and $[a_2, \ldots, a_m]$ and B are disjoint

disjoint([], _). disjoint([X|Y], Z) :- \+ member(X, Z), disjoint(Y,Z).

Normal Logic Programs and Queries

Negation: Proof Theory (SLDNF Resolution) (Lecture 7) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2022/23

Slide 7 of 30

Normal Logic Programs and Queries

Definition

- "∼" (weak) **negation sign**
- $A, \sim A$ (weak) **literals** : \iff A atom
- A, $\sim A$ ground literals : \iff A ground atom ٠
- **normal guery** := finite sequence of (weak) literals •
- $H \leftarrow \vec{B}$ normal clause : \iff H atom, \vec{B} normal query
- **normal program** := finite set of normal clauses
- Everything as before, but now we are allowed to use (weak) negation in clause bodies (and queries).
- Negation " \sim " in \sim A is "weak" because it does not state that A is false; it ٠ only states that A cannot be shown to be true from certain premises.
- **In contrast**, ¬*A* **states that** *A* **is false**. More on this later in the course. ٠

SLDNF Resolution

Negation: Proof Theory (SLDNF Resolution) (Lecture 7) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2022/23

Slide 9 of 30

How Do We Compute?

Definition

The Negation as Failure (nf) rule is defined as follows:

- 1. Suppose $\sim A$ is selected in the query $Q = \vec{L}$, $\sim A$, \vec{N} .
- 2. If $P \cup \{A\}$ succeeds, then the derivation of $P \cup \{Q\}$ fails at this point.
- 3. If all derivations of $P \cup \{A\}$ fail, then Q resolves to $Q' = \vec{L}, \vec{N}$.

Thus:

$\sim A$ succeeds iff *A* finitely fails. $\sim A$ finitely fails iff *A* succeeds.

Note

SLDNF = Selection rule driven Linear resolution for Definite clauses augmented by the Negation as Failure rule

SLDNF Resolvents

Definition

Let $Q = \vec{L}$, \vec{K} , \vec{N} be a query and \vec{K} its selected literal.

- 1. K = A is an atom:
 - $H \leftarrow \vec{M}$ is a variant of a clause *c* that is variable-disjoint with *Q*
 - θ is an mgu of A and H
 - $Q' = (\vec{L}, \vec{M}, \vec{N})\theta$ is the **SLDNF resolvent** of *Q* (and *c* w.r.t. *A* with θ)
 - We write this **SLDNF derivation step** as $Q \xrightarrow{\theta} Q'$.
- 2. $K = \sim A$ is a negative ground literal:
 - $Q' = \vec{L}, \vec{N}$ **SLDNF resolvent** of Q (w.r.t. $\sim A$ with ε)
 - We write this **SLDNF derivation step** as $Q \xrightarrow{\epsilon} Q'$.

Pseudo Derivations

Definition

A maximal sequence of SLDNF derivation steps

$$Q_0 \xrightarrow[c_1]{\theta_1} Q_1 \cdots Q_n \xrightarrow[c_{n+1}]{\theta_{n+1}} Q_{n+1} \cdots$$

is a **pseudo derivation of** $P \cup \{Q_0\}$: \iff

- $Q_0, \ldots, Q_{n+1}, \ldots$ are queries, each empty or with one literal selected in it;
- $\theta_1, \ldots, \theta_{n+1}, \ldots$ are substitutions;
- c₁,..., c_{n+1},... are clauses of program P (in case a positive literal is selected in the preceding query);
- for every SLDNF derivation step with input clause the condition **standardization apart** holds.

Forests

Definition

A triple $\mathcal{F} = (\mathcal{T}, T, subs)$ is a **forest** : \iff

- $\ensuremath{\mathfrak{T}}$ set of trees where
 - nodes are queries;
 - a literal is selected in each non-empty query;
 - leaves may be marked as "success", "failure", or "floundered".
- $T \in \mathcal{T}$ is the **main** tree
- *subs* assigns to some nodes of trees in T with selected negative ground literal ~*A* a **subsidiary** tree of T with root *A*.

Definition

Let $T \in \mathcal{T}$ be a tree.

- *T* is **successful** :⇔ it contains a leaf marked as "success".
- *T* is **finitely failed** : \iff it is finite and all leaves are marked as "failure".

Pre-SLDNF Trees and their Extensions

Definition

The class of **pre-SLDNF trees** for a program *P* is the smallest class C of forests such that

- for every query *Q*: the **initial pre-SLDNF tree** ($\{T_Q\}, T_Q, subs$) is in \mathcal{C} , where T_Q contains the single node *Q* and *subs*(*Q*) is undefined;
- for every $\mathcal{F} \in \mathcal{C}$: the **extension** of \mathcal{F} is in \mathcal{C} .

Definition

The **extension** of $\mathcal{F} = (\mathcal{T}, T, subs)$ is the forest that is obtained as follows:

- 1. Every occurrence of the empty query is marked as "success."
- 2. For every non-empty query *Q* that is an unmarked leaf in some tree in \mathcal{T} , perform the action *extend*(\mathcal{F} , *Q*, *L*), where *L* is the selected literal of *Q*.

Action extend(F, Q, L)

Recall that *L* is the selected literal of *Q*.

Definition

- *L* is positive. Then *extend*(*F*, *Q*, *L*) is obtained as follows:
 - Q has no SLDNF resolvents $\Rightarrow Q$ is marked as "failure"
 - else ⇒ for every program clause *c* which is applicable to *L*, exactly one direct descendant of *Q* is added. This descendant is an SLDNF resolvent of *Q* and *c* w.r.t. *L*.
- $L = \sim A$ is negative. Then *extend*(\mathcal{F} , *Q*, *L*) is obtained as follows:
 - A non-ground \Rightarrow Q is marked as "floundered"
 - A ground: case distinction on Q:
 - subs(Q) undefined
 - \Rightarrow new tree T' with single node A is added to T and subs(Q) is set to T'
 - subs(Q) defined and successful $\Rightarrow Q$ is marked as "failure"
 - subs(Q) defined and finitely failed
 - \Rightarrow SLDNF resolvent of Q is added as the only direct descendant of Q
 - subs(Q) defined and neither successful nor finitely failed \Rightarrow no action

SLDNF Trees (Successful, Failed, Finite)

Definition

An **SLDNF tree** is the limit of a sequence $\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2 \dots$, where

- \mathfrak{F}_0 is an initial pre-SLDNF tree;
- \mathcal{F}_{i+1} is the extension of \mathcal{F}_i , for every $i \in \mathbb{N}$.

The SLDNF tree **for** $P \cup \{Q\}$ is the SLDNF tree in which Q is the root of the main tree.

Definition

- A (pre-)SLDNF tree is $\mathbf{successful}$: \iff its main tree is successful.
- A (pre-)SLDNF tree **finitely failed** : \iff its main tree is finitely failed.
- An SLDNF tree is **finite** : \iff no infinite paths exist in it, where a **path** is a sequence of nodes N_0, N_1, N_2, \ldots such that for every $i = 0, 1, 2, \ldots$:
 - either N_{i+1} is a direct descendant of N_i ,
 - or N_{i+1} is the root of $subs(N_i)$.

Consider the following logic program *P*:

The SLDNF tree for $P \cup \{\sim p\}$ is infinite:

 $\sim p$

р

 $\leftarrow p$

Consider the following logic program *P*:

The SLDNF tree for $P \cup \{\sim p\}$ is infinite:

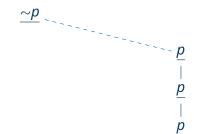
 $p \leftarrow p$

Consider the following logic program *P*:

The SLDNF tree for $P \cup \{\sim p\}$ is infinite:

Consider the following logic program *P*:

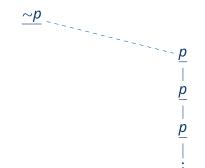
The SLDNF tree for $P \cup \{\sim p\}$ is infinite:



Negation: Proof Theory (SLDNF Resolution) (Lecture 7) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2022/23

Consider the following logic program *P*:

The SLDNF tree for $P \cup \{\sim p\}$ is infinite:

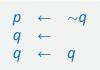


Negation: Proof Theory (SLDNF Resolution) (Lecture 7) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2022/23

Consider the following logic program *P*:

 $\sim p$

The SLDNF tree for $P \cup \{\sim p\}$ is successful:



Consider the following logic program *P*:

The SLDNF tree for $P \cup \{\sim p\}$ is successful:

р	←	$\sim q$
q	\leftarrow	
q	←	q

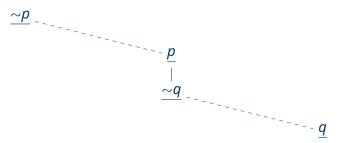
Consider the following logic program *P*:

The SLDNF tree for $P \cup \{\sim p\}$ is successful:

р	←	$\sim q$
q	←	
q	←	q

Consider the following logic program *P*:

The SLDNF tree for $P \cup \{\sim p\}$ is successful:



Negation: Proof Theory (SLDNF Resolution) (Lecture 7) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2022/23

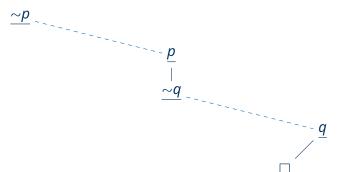
Slide 18 of 30

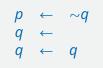
 $\sim a$

q

Consider the following logic program *P*:

The SLDNF tree for $P \cup \{\sim p\}$ is successful:



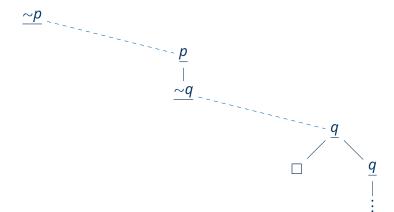


Negation: Proof Theory (SLDNF Resolution) (Lecture 7) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2022/23

Consider the following logic program *P*:

The SLDNF tree for $P \cup \{\sim p\}$ is successful:

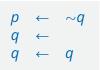
 $\begin{array}{rrrr} p & \leftarrow & \sim q \\ q & \leftarrow & \\ q & \leftarrow & q \end{array}$

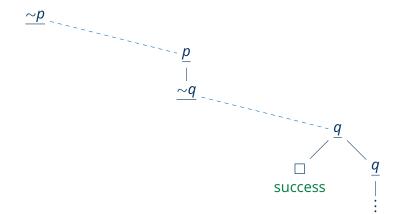


Negation: Proof Theory (SLDNF Resolution) (Lecture 7) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2022/23

Consider the following logic program *P*:

The SLDNF tree for $P \cup \{\sim p\}$ is successful:



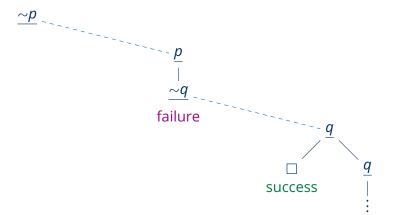


Negation: Proof Theory (SLDNF Resolution) (Lecture 7) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2022/23

Consider the following logic program *P*:

The SLDNF tree for $P \cup \{\sim p\}$ is successful:

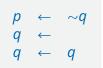
 $\begin{array}{rrrr} p & \leftarrow & \sim q \\ q & \leftarrow & \\ q & \leftarrow & q \end{array}$

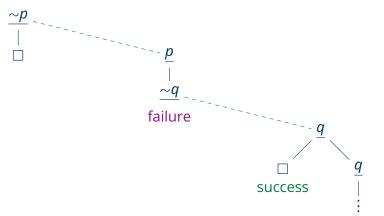


Negation: Proof Theory (SLDNF Resolution) (Lecture 7) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2022/23

Consider the following logic program *P*:

The SLDNF tree for $P \cup \{\sim p\}$ is successful:

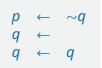


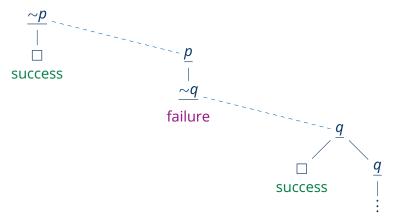


Negation: Proof Theory (SLDNF Resolution) (Lecture 7) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2022/23

Consider the following logic program *P*:

The SLDNF tree for $P \cup \{\sim p\}$ is successful:





Negation: Proof Theory (SLDNF Resolution) (Lecture 7) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2022/23

Quiz: SLDNF Trees

Quiz

Consider the following logic program P: ...

SLDNF derivation

Definition

An **SLDNF derivation** of $P \cup \{Q\}$ is

- a branch in the main tree of an SLDNF tree \mathcal{F} for $P \cup \{Q\}$
- together with the set of all trees in $\ensuremath{\mathfrak{F}}$ whose roots can be reached from the nodes in this branch.

An SLDNF derivation is **successful** : \iff the branch ends with \Box .

Definition

Let the main tree of an SLDNF tree for $P \cup \{Q_0\}$ contain a branch

$$\xi = Q_0 \xrightarrow{\theta_1} Q_1 \cdots Q_{n-1} \xrightarrow{\theta_n} Q_n = \Box$$

The **computed answer substitution** (cas) of Q_0 (w.r.t. ξ) is $(\theta_1 \cdots \theta_n)|_{Var(Q_0)}$.

A Theorem on Limits

Theorem 3.10 [Apt and Bol, 1994]

(i) Every SLDNF tree is the limit of a unique sequence of pre-SLDNF trees.
(ii) If the SLDNF tree F is the limit of the sequence F₀, F₁, F₂, ..., then:
(a) F is successful and yields cas θ iff some F_i is successful and yields cas θ,
(b) F finitely failed iff some F_i is finitely failed.

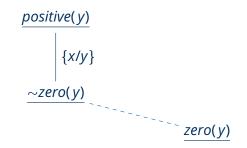
Allowed Programs and Queries

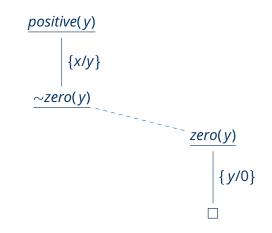
Negation: Proof Theory (SLDNF Resolution) (Lecture 7) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2022/23

Slide 22 of 30

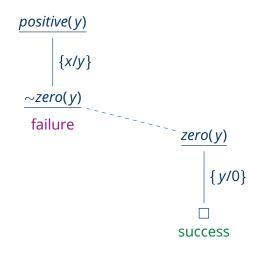
positive(y)

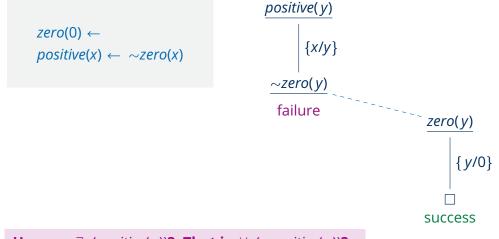
 $zero(0) \leftarrow$ $positive(x) \leftarrow \sim zero(x)$ $\frac{positive(y)}{|\{x/y\}}$ $\sim zero(y)$





positive(y) $zero(0) \leftarrow$ $\{x/y\}$ $positive(x) \leftarrow \sim zero(x)$ \sim zero(y) zero(y){ y/0} success





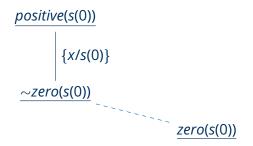
Hence, $\neg \exists y (positive(y))$? **That is**, $\forall y (\neg positive(y))$?

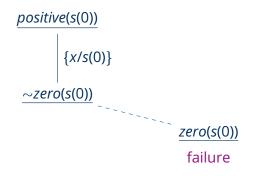
positive(s(0))

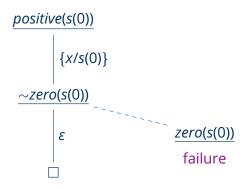
 $positive(x) \leftarrow \sim zero(x)$

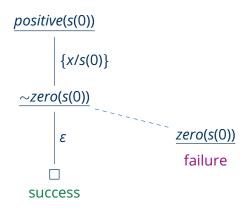
positive(s(0)) $\{x/s(0)\}$ \sim *zero*(*s*(0))

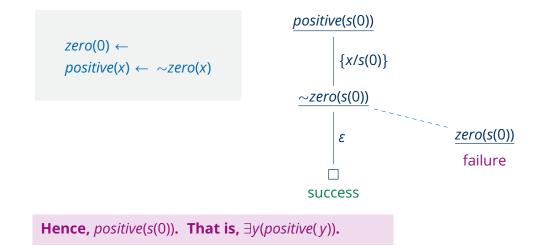
 $zero(0) \leftarrow$

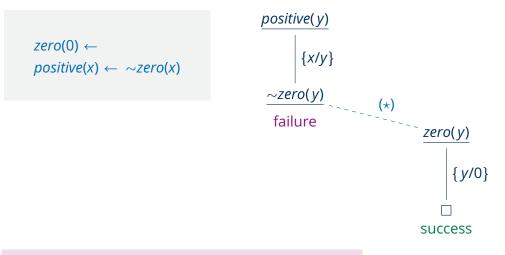








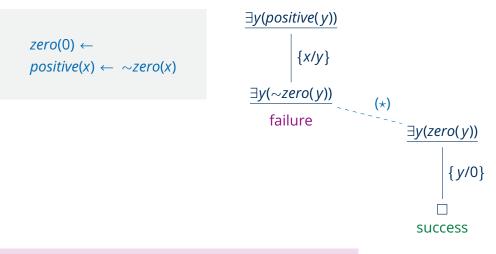




Mistake in (*): $\exists y(zero(y)) \neq \neg \exists y(\neg zero(y))$

Negation: Proof Theory (SLDNF Resolution) (Lecture 7) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2022/23

Slide 25 of 30



Mistake in (*): $\exists y(zero(y)) \neq \neg \exists y(\neg zero(y))$

Negation: Proof Theory (SLDNF Resolution) (Lecture 7) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2022/23

Slide 25 of 30

Non-Ground Negative Literals in Prolog

```
zero(0).
positive(X) := + zero(X).
| ?- positive(0).
no
| ?- positive(s(0)).
yes
?- positive(Y).
no
```


SLDNF Selection Rules & Blocked Queries

Definition

- An SLDNF selection rule is a function that, given a pre-SLDNF tree *F* = (*T*, *T*, *subs*), selects a literal in every non-empty unmarked leaf in every tree in *T*.
- An SLDNF tree 𝔅 is via a selection rule 𝔅 :↔ 𝔅 is the limit of a sequence of pre-SLDNF trees in which literals are selected according to 𝔅.
- A selection rule \mathcal{R} is **safe** : $\iff \mathcal{R}$ never selects a non-ground negative literal.

Definition

- A query *Q* is **blocked** : \iff *Q* is non-empty and contains exclusively non-ground negative literals.
- $P \cup \{Q\}$ **flounders** : \iff some SLDNF tree for $P \cup \{Q\}$ contains a blocked node.

Allowed Programs and Queries

Definition

- A query *Q* is **allowed** :⇔ every variable in *Q* occurs in a positive literal of *Q*.
- A clause $H \leftarrow \vec{B}$ is **allowed** : \iff the query $\sim H, \vec{B}$ is allowed. (Thus: A unit clause $H \leftarrow$ is **allowed** : \iff *H* is a ground atom.)
- A program *P* is **allowed** : \iff all its clauses are allowed.

Allowed clauses are also called *safe* (whenever no confusion with selection rules can arise).

Theorem 3.13 [Apt and Bol, 1994]

Suppose that *P* and *Q* are allowed. Then (i) $P \cup \{Q\}$ does not flounder; (ii) if θ is a cas of *Q*, then $Q\theta$ is ground.

Allowed Programs: Example

```
zero(0) \leftarrow
positive(x) \leftarrow \sim zero(x)
```

This program is not allowed.

```
zero(0) \leftarrow

positive(x) \leftarrow num(x), \sim zero(x)

num(0) \leftarrow

num(s(x)) \leftarrow num(x)
```

This program is allowed.

Conclusion

Summary

- Normal logic programs allow for negation in queries (clause bodies).
- A proof theory for normal logic programs is given by **SLDNF resolution**.
- Negated atoms ~*A* are treated by asking the query *A* in a **subsidiary tree**.
- Care must be taken not to let **non-ground negative literals** get selected.

Suggested action points:

- Construct the (leftmost selection rule) SLDNF tree for *positive*(*y*) with the allowed version of the program.
- Find examples for programs and queries with blocked nodes in some SLDNF tree.

