Logical Modeling using

Answer Set Programming

Research Seminar, SoSe 2017

Lukas Schweizer mailto:lukas.schweizer@tu-dresden.de

https://ddll.inf.tu-dresden.de/web/Logical_Modeling_(SS2017)

April 12, 2017

Answer Set Programming

What is ASP?

- ASP is a declarative problem solving approach. \rightsquigarrow Syntactically similar to Prolog, but truely declarative.
- For a given ASP "program", we compute models representing a solution for the encoded problem.
- Very efficient implementations are available, for computing models.
- We will use the Potassco tools Gringo, Clasp and Clingo. \rightsquigarrow http://potassco.sourceforge.net/

Sudoku

The famous number riddle Sudoku represents a constraint problem, typically defined on a 9×9 board, where numbers $1 \ldots 9$ are placed on each cell. The goal is to complete a given board such that in each row, column, and square the numbers $1 \ldots 9$ occur exactly once.

Sudoku

The famous number riddle Sudoku represents a constraint problem, typically defined on a 9×9 board, where numbers $1 \ldots 9$ are placed on each cell. The goal is to complete a given board such that in each row, column, and square the numbers $1 \ldots 9$ occur exactly once.

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	
Unsolved Sudoku								

Sudoku

The famous number riddle Sudoku represents a constraint problem, typically defined on a 9×9 board, where numbers $1 \ldots 9$ are placed on each cell. The goal is to complete a given board such that in each row, column, and square the numbers $1 \ldots 9$ occur exactly once.

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

Unsolved Sudoku

4	2	6	5	7	1	3	9	8
8	5	7	2	9	3	1	4	6
1	3	9	4	6	8	2	7	5
9	7	1	3	8	5	6	2	4
5	4	3	7	2	6	8	1	9
6	8	2	1	4	9	7	5	3
7	9	4	6	3	2	5	8	1
2	6	5	8	1	4	9	3	7
3	1	8	9	5	7	4	6	2

Solved Sudoku

Sudoku

How to start modeling?

Declarative means we declare and describe the things we know;

Sudoku

How to start modeling?

Declarative means we declare and describe the things we know; i.e. the notion of

- The game board, cells, rows, columns and squares.

Sudoku

How to start modeling?

Declarative means we declare and describe the things we know; i.e. the notion of

- The game board, cells, rows, columns and squares.
- The rules, in detail
- On each cell there is exactly one number from $\{1 \ldots 9\}$.
- In each row every number occurs exactly once.
- In each column every number occurs exactly once.
- In each square every number occurs exactly once.

Sudoku

How to start modeling?

Declarative means we declare and describe the things we know; i.e. the notion of

- The game board, cells, rows, columns and squares.
- The rules, in detail
- On each cell there is exactly one number from $\{1 \ldots 9\}$.
- In each row every number occurs exactly once.
- In each column every number occurs exactly once.
- In each square every number occurs exactly once.

And there is no need to specify an algorithm on how to solve Sudokus.

Sudoku

Board Encoding

- We encode the board via facts:

$$
\begin{aligned}
& \text { number }(1 . .9) . \text { row }(0 . .8) . \text { column }(0 . .8) . \\
& \text { square }(0,0 . .2,0 . .2) . \text { square }(1,0 . .2,3 . .5) . \text { square }(2,0 . .2,6 . .8) \text {. } \\
& \text { square }(3,3 . .5,0 . .2) . \text { square }(4,3 . .5,3 . .5) . \text { square }(5,3 . .5,6 . .8) \text {. } \\
& \text { square }(6,6 . .8,0 . .2) . \text { square }(7,6 . .8,3 . .5) . \text { square }(8,6 . .8,6 . .8) .
\end{aligned}
$$

Sudoku

Board Encoding

- Alternatively, via rules:

```
square(0, X,Y) :- row (X), column (Y), X<3,Y<3.
square(1, X,Y) :- row (X), column (Y), X<3,Y>2,Y<6.
square (2, X,Y) :- row (X), column (Y), X<3,Y>5.
square(3, X,Y) :- row (X), column (Y), X>2, X<6,Y<3.
square (4, X,Y) :- row (X), column (Y), X>2, X<6,Y>2,Y<6.
square(5, X,Y) :- row (X), column (Y), X>2, X<6, Y>5.
square (6, X,Y) :- row (X), column (Y), X>5,Y<3.
square(7, X,Y) :- row (X), column (Y), X>5,Y>2, Y<6.
square(8, X,Y) :- row (X), column (Y), X>5,Y>5.
```


Sudoku

Board Encoding

- Grounding the program via
gringo sudoku.lp ---text
- Yields instantiated square atoms (beside the known facts):

```
square(0,0,0). square (0,0,1). square (0,0,2). ...
square (1,0,3). square (1,0,4). square (1,0,5). ...
square(2,0,6). square(2,0,7). square(2,0,8). ...
```

...

Sudoku

Rules Encoding

- On each cell there is exactly one number from $\{1 \ldots 9\}$.

```
cell(X,Y,1) :- row (X), column(Y),
        not cell(X,Y,2), not cell(X,Y,3), not cell(X,Y,4),
        not cell(X,Y,5), not cell(X,Y,6), not cell(X,Y,7),
        not cell(X,Y,8), not cell(X,Y,9).
cell(X,Y,2) :- row (X), column(Y),
        not }\operatorname{cell}(X,Y,1), not cell(X,Y,3), not cell(X,Y,4)
        not cell(X,Y,5), not cell(X,Y,6), not cell(X,Y,7),
        not cell(X,Y,8), not cell(X,Y,9).
cell(X,Y,9) :- }\operatorname{row}(X),\operatorname{column}(Y)
        not cell(X,Y,1), not cell(X,Y,2), not cell(X,Y,3),
        not cell(X,Y,4), not cell(X,Y,5), not cell(X,Y,6),
        not cell(X,Y,7), not cell(X,Y,8).
```


Sudoku

Board Encoding

- What is the meaning of these rules?

$$
\begin{aligned}
\operatorname{cell}(X, Y, 1):- & \operatorname{row}(X), \operatorname{column}(Y), \\
& \text { not } \operatorname{cell}(X, Y, 2), \text { not } \operatorname{cell}(X, Y, 3), \text { not } \operatorname{cell}(X, Y, 4), \\
& \operatorname{not} \operatorname{cell}(X, Y, 5), \text { not } \operatorname{cell}(X, Y, 6), \text { not } \operatorname{cell}(X, Y, 7), \\
& \text { not } \operatorname{cell}(X, Y, 8), \text { not } \operatorname{cell}(X, Y, 9) .
\end{aligned}
$$

Sudoku

Board Encoding

- What is the meaning of these rules?

$$
\begin{aligned}
\operatorname{cell}(X, Y, 1):- & \operatorname{row}(X), \operatorname{column}(Y), \\
& \text { not } \operatorname{cell}(X, Y, 2), \text { not } \operatorname{cell}(X, Y, 3), \text { not } \operatorname{cell}(X, Y, 4), \\
& \operatorname{not} \operatorname{cell}(X, Y, 5), \text { not } \operatorname{cell}(X, Y, 6), \text { not } \operatorname{cell}(X, Y, 7), \\
& \text { not } \operatorname{cell}(X, Y, 8), \text { not } \operatorname{cell}(X, Y, 9) .
\end{aligned}
$$

For the cell at position (X, Y) we can place 1, if X corresponds to some row and Y to some column, and we failed to demonstrate that there is already placed one of the other numbers $2 \ldots 9$.

Sudoku

Board Encoding

Since we have one such rule for every number, we can non-deterministically choose / guess which number to place on some cell.

We defined the search space with these rules. In fact, without further knowledge, these rules generate all 9^{81} combinations of cell numberings; therefore they are called guessing rules.

Sudoku

Board Encoding

Since we have one such rule for every number, we can non-deterministically choose / guess which number to place on some cell.

We defined the search space with these rules. In fact, without further knowledge, these rules generate all 9^{81} combinations of cell numberings; therefore they are called guessing rules.

> We need to restrict the search space such that only proper numberings are generated.

Sudoku

Constraints Encoding

- Each number occurs only once in each row and column.

$$
\begin{aligned}
& :-\operatorname{cell}(X, Y 1, N), \operatorname{cell}(X, Y 2, N), Y 1!=Y 2 \\
& :-\operatorname{cell}(X 1, Y, N), \operatorname{cell}(X 2, Y, N), X 1!=X 2
\end{aligned}
$$

Sudoku

Constraints Encoding

- Each number occurs only once in each row and column.
$:-\operatorname{cell}(X, Y 1, N), \operatorname{cell}(X, Y 2, N), Y 1!=Y 2$.
$:-\operatorname{cell}(X 1, Y, N), \operatorname{cell}(X 2, Y, N), X 1!=X 2$.
- Each number occurs only once in each square.

$$
\begin{aligned}
\text { in_square }(S, N): & \operatorname{cell}(X, Y, N), \text { square }(S, X, Y) . \\
:- & \operatorname{number}(N), \text { not in_square }(S, N), \\
& \operatorname{square}\left(S,_{-},-\right) .
\end{aligned}
$$

Sudoku

Grounding and Solving

- We ground the program and call clasp
gringo sudoku.lp | clasp

Sudoku

Grounding and Solving

```
Solving...
Answer: 1
cell(8,8,1) cell(8,7,4) cell(8,6,7) cell(8,5,2) cell(8,4,9)
cell(8,3,8) cell(8,2,3) cell(8,1,6) cell(8,0,5) cell(7,8,4)
cell(7,7,2) cell(7,6,9) cell(7,5,1) cell(7,4,8) cell(7,3,7)
cell(7,2,6) cell(7,1,5) cell(7,0,3) cell(6,8,8) cell (6,7,9)
cell(6,6,3) cell(6,5,7) cell(6,4,6) cell(6,3,5) cell (6,2,1)
cell(6,1,4) cell(6,0,2) cell(5,8,2) cell(5,7,1) cell (5,6,8)
cell(5,5,4) cell(5,4,7) cell (5,3,9) cell (5,2,5) cell (5,1,3)
cell(5,0,6) cell(4,8,9) cell(4,7,7) cell (4,6,6) cell (4,5,8)
cell(4,4,5) cell(4,3,3) cell(4,2,4) cell(4,1,2) cell (4,0,1)
cell(3,8,7) cell(3,7,8) cell(3,6,5) cell( }3,5,9) cell(3,4,3
cell(3,3,6) cell(3,2,2) cell(3,1,1) cell(3,0,4) cell (2,8,3)
SATISFIABLE
Models : 1+
Time : 0.043s (Solving: 0.01s 1st Model: 0.01s Unsat: 0.00s)
CPU Time : 0.040s
```


Sudoku

Grounding and Solving

- We ground the program and call clasp
gringo sudoku.lp | clasp
- When providing no options clasp will compute one answer set in case of satisfiability. We can request more, e.g. 5, via

$$
\text { gringo sudoku.lp | clasp ---number } 5
$$

Sudoku

Grounding and Solving

- We ground the program and call clasp
gringo sudoku.lp | clasp
- When providing no options clasp will compute one answer set in case of satisfiability. We can request more, e.g. 5, via

$$
\text { gringo sudoku.lp | clasp ---number } 5
$$

Sudoku

Problem Instance

- We add a concrete Sudoku, given as cell facts.

```
cell(0, 0, 3).cell(0,4, 8). cell(0,6,6). cell(0, 8, 7).
cell(1, 1, 1).cell(1, 6,4).cell(1, 8,9).
cell(2, 0, 8).cell (2, 1, 9). cell(2,4,6). cell (2,5,7).
cell(3,1,6).cell(3,3,1).cell(3,4,9). cell(3,6,7).
cell(4, 2, 9).cell(4, 3, 6). cell(4,4,5). cell(4, 8, 2).
cell(5, 2, 2). cell(5,7,1).
cell(6, 1, 5). cell(6,4,4). cell(6, 8, 3).
cell(7,1,4).\operatorname{cell}(7,3,2).\operatorname{cell}(7,7,9).\operatorname{cell}(7,8,8).
cell(8,1,8).\operatorname{cell}(8,2,6).\operatorname{cell}(8,4,3).\operatorname{cell}(8,6,1).
```

- There is only one solution, which we can verify by requesting all answer sets
gringo sudoku.lp sudoku-instance.lp | clasp ---number 0

Modeling Paradigm

Guess and Check Programs [1]

For the Sudoku example, we developed two main parts.

- Problem description Encoding the underlying problem, i.e. the board, rules and constraints.
- Problem instance Encoding of a concrete instance of the problem; i.e. a partially filled Sudoku.

We can solve any Sudoku with our encoding, the problem description is therefore said to be uniform.

Modeling Paradigm

Guess and Check Programs

Two important aspects in the problem description:

- We defined so-called guessing rules to generate prospective solutions.
- We then constrained guesses in order to rule out those not representing a solution.

These guess \& check parts are characteristic for answer set programs.

- Motivated by NP-problems.
- Can be seen as "Design-Pattern'

Traveling Salesman Problem

A salesman is requested to visit some pre-defined cities. In order to be as efficient as possible, he wants to visit every city only once, as well as to travel the shortest roundtrip visiting all cities starting and ending in the same city.

Traveling Salesman Problem

A salesman is requested to visit some pre-defined cities. In order to be as efficient as possible, he wants to visit every city only once, as well as to travel the shortest roundtrip visiting all cities starting and ending in the same city.

Traveling Salesman Problem

Problem Seperation

- We can split the problem into:
(a) finding roundtrips beginning from and ending in the same city visiting all other cities only once, and

Traveling Salesman Problem

Problem Seperation

- We can split the problem into:
(a) finding roundtrips beginning from and ending in the same city visiting all other cities only once, and
(b) computing the length of each roundtrip in order to find the shortest.

Traveling Salesman Problem

Problem Seperation

- We can split the problem into:
(a) finding roundtrips beginning from and ending in the same city visiting all other cities only once, and
(b) computing the length of each roundtrip in order to find the shortest.
- In fact, the first is the very well-known NP-complete problem of finding Hamiltonian cycles.

Traveling Salesman Problem

Problem Seperation

- We can split the problem into:
(a) finding roundtrips beginning from and ending in the same city visiting all other cities only once, and
(b) computing the length of each roundtrip in order to find the shortest.
- In fact, the first is the very well-known NP-complete problem of finding Hamiltonian cycles.
- For the encoding of the Hamiltonian cycle problem we stick to the guess and check paradigm.

Traveling Salesman Problem

Hamiltonian Cycle Encoding

- Every node in a Hamiltonian cycle has exactly one incoming and one outgoing edge.

$$
\begin{aligned}
& 1\{\operatorname{cycle}(X, Y): \operatorname{edge}(X, Y)\} 1 \quad:-\quad \operatorname{node}(X) . \\
& 1\{\operatorname{cycle}(X, Y): \operatorname{edge}(X, Y)\} 1 \quad:-\quad \operatorname{node}(Y) .
\end{aligned}
$$

Traveling Salesman Problem

Hamiltonian Cycle Encoding

- Every node in a Hamiltonian cycle has exactly one incoming and one outgoing edge.

$$
\begin{aligned}
& 1\{\operatorname{cycle}(X, Y): \operatorname{edge}(X, Y)\} 1 \\
& 1\{\operatorname{cycle}(X, Y): \operatorname{edge}(X, Y)\} 1 \\
& 1
\end{aligned} \text { :- } \quad \operatorname{node}(X) .
$$

- In a Hamiltonian cycle, every node is reachable.

$$
\begin{array}{rll}
\text { reachable }(Y) & :- & \operatorname{cycle}(s, Y) . \\
\text { reachable }(Y) & :-\quad \operatorname{cycle}(X, Y), \text { reachable }(X) . \\
& :-\quad \operatorname{node}(X), \text { not reachable }(X) .
\end{array}
$$

Traveling Salesman Problem

Hamiltonian Cycle Encoding

- Facts for the input graph.

Traveling Salesman Problem

Hamiltonian Cycle Encoding

- Facts for the input graph.

```
node(dresden).
node(bankok).
node(hue).
node(danang).
edge(dresden, hanoi).
edge(frankfurt, bankok).
edge(bankok,hanoi).
edge(hochi,hue).
edge(danang, hue).
edge(Y,X) :- edge(X,Y).
```

```
node(frankfurt).
node(hanoi).
node(hochi).
edge(dresden, frankfurt).
edge(frank furt, hanoi).
edge(frankfurt, hochi).
edge(bankok, hochi).
edge(hochi,danang).
edge(hanoi,hue).
```

```
Traveling Salesman Problem
Solving - Computing Hamiltonian Cycles
gringo -c s=dresden hamiltonian.lp map.lp | clasp ---n 0
Solving...
Answer: 1
cycle(dresden,hanoi) cycle(hanoi,bankok)
cycle(bankok,hue) cycle(hue,danang)
cycle(danang,hochi) cycle(hochi, frankfurt)
cycle(frankfurt,dresden)
SATISFIABLE
Models : 2
Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s
```


Traveling Salesman Problem

Hamiltonian Cycle Encoding

- In order to calculate the cycle length, we need the distance information.

```
distance(dresden, frankfurt, 40). distance(dresden,hanoi, 834).
distance(frankfurt, bankok,896). distance(bankok,hanoi,96).
distance(bankok,hochi,74). distance(frankfurt,hochi,965).
distance(frankfurt,hanoi,872). distance(hanoi,hue,54).
distance(hochi,danang,60). distance(hochi,hue,64).
distance(danang, hue, 8).
distance(X,Y,C) :- distance (Y,X,C).
```


Traveling Salesman Problem

Hamiltonian Cycle Encoding

- In order to calculate the cycle length, we need the distance information.

```
distance(dresden, frankfurt, 40). distance(dresden,hanoi, 834).
distance(frankfurt, bankok,896). distance(bankok,hanoi,96).
distance(bankok,hochi,74). distance(frankfurt,hochi,965).
distance(frankfurt,hanoi,872). distance(hanoi,hue,54).
distance(hochi,danang,60). distance(hochi,hue,64).
distance(danang, hue, 8).
distance(X,Y,C) :- distance (Y,X,C).
```

- With a so-called aggregate function, we can compute the sum of the edge in a cycle.

$$
\operatorname{circumference}(N):-N=\# \operatorname{sum}[\operatorname{cycle}(X, Y): \operatorname{distance}(X, Y, C)=C] .
$$

Traveling Salesman Problem

Hamiltonian Cycle Encoding

- In example, for cycle(dresden, frankfurt) and cycle(frankfurt, hanoi), we obtain the grounded rule

$$
\begin{aligned}
\text { circumference }(912):-912=\# \operatorname{sum}[\text { cycle }(\text { dresden, frankfurt }) & =40 \\
\text { cycle }(\text { frankfurt }, \text { hanoi }) & =872]
\end{aligned}
$$

Traveling Salesman Problem

Hamiltonian Cycle Encoding

- In example, for cycle(dresden, frankfurt) and cycle(frankfurt, hanoi), we obtain the grounded rule

$$
\begin{aligned}
\text { circumference }(912):-912=\# \text { sum }[\text { cycle }(\text { dresden, frankfurt }) & =40, \\
\text { cycle(frankfurt, hanoi }) & =872] .
\end{aligned}
$$

- We can compute answer sets including one circumference atom, via

$$
\begin{aligned}
\text { gringo -c s=dresden } & \text { hamiltonian.lp } \\
& \text { map.lp } \\
& \text { distances.lp | clasp ---n } 0
\end{aligned}
$$

Traveling Salesman Problem

Minimization

- Answer sets can be computed and enumerated with respect to some optimization value; i.e. the circumference of our cycles.

Traveling Salesman Problem

Minimization

- Answer sets can be computed and enumerated with respect to some optimization value; i.e. the circumference of our cycles.
- In clasp objective optimization functions are offered, in our case we use minimize.

$$
\# \text { minimize }[\operatorname{circumference}(N)=N] \text {. }
$$

Traveling Salesman Problem

Minimization

- Answer sets can be computed and enumerated with respect to some optimization value; i.e. the circumference of our cycles.
- In clasp objective optimization functions are offered, in our case we use minimize.

$$
\# \text { minimize }[\operatorname{circumference}(N)=N] \text {. }
$$

- Adding the statement to the program yields a minimal hamiltonian cycle of length 1966.

Traveling Salesman Problem

Minimization

```
Answer: 1
cycle(dresden,hanoi) cycle(hanoi,bankok)
cycle(bankok,hue) cycle(hue,danang)
cycle(danang,hochi) cycle(hochi, frankfurt)
cycle(frankfurt,dresden)
Optimization: }196
OPTIMUM FOUND
Models : 1
Optimization: }196
Time : 1.358s (Solving: 0.40s 1st Model: 0.01s Unsat: 0.39s)
```


Traveling Salesman Problem

Minimization

Literature

圊
Martin Gebser, Benjamin Kaufmann Roland Kaminski, and Torsten Schaub.
Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers, 2012.

Download gringo and clasp here:
http://potassco.sourceforge.net/
http://goo.gl/HQ3OMN

BACKUP

Graph Coloring

N-Coloring Problem

Is there some coloring of the vertices of a given graph using n colors, such that no two adjacent vdertices share the same color?

Graph Coloring

```
color(green). color(red). color(blue).
\(\operatorname{coloring}(X\), green \():-\quad \operatorname{node}(X)\), not \(\operatorname{coloring}(X, r e d)\),
    not coloring \((X\), blue \()\).
\(\operatorname{coloring}(X, r e d) \quad:-\operatorname{node}(X)\), not \(\operatorname{coloring}(X\), green \()\),
    not coloring \((X\), blue \()\).
\(\operatorname{coloring}(X\), blue \():-\operatorname{node}(X)\), not \(\operatorname{coloring}(X\), green \()\),
    not coloring \((X\), red \()\).
```


Graph Coloring

```
color(green). color(red). color(blue).
coloring(X,green) :- node ( }X),\mathrm{ not coloring ( }X,\mathrm{ red ),
    not coloring(X,blue).
coloring(X,red) :- node(X), not coloring(X,green),
    not coloring(X,blue).
coloring}(X,blue) :- node (X), not coloring(X,green)
    not coloring(X, red).
    :- coloring}(X1,C), coloring (X2,C)
    edge(X1, X2).
```


Cannibals and Missionaries

Three missionaries and three cannibals must cross a river using a boat which can carry at most two people, under the constraint that, for both banks, if there are missionaries present on the bank, they cannot be outnumbered by cannibals (if they were, the cannibals would eat the missionaries). The boat cannot cross the river by itself with no people on board.

