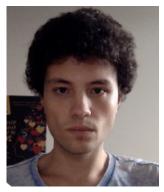


SEMINAR SELECTED TOPICS IN DATABASE THEORY


Lecture 1: Introduction / The Relational Model

David Carral, Markus Krötzsch Knowledge-Based Systems

TU Dresden, 10th October 18

Introduction

Course Tutors

David Carral

Markus Krötzsch

Seminar Selected Topics in Database Theory

slide 3 of 28

Structure of the Seminar and Evaluation

Lectures

- Wednesday 10th (i.e., today), DS6: Introductory lecture 1
- Wednesday 17th, DS6: Introductory lecture 2
- Afterwards: Office hours in 3035 and presentations

Evaluation

- Paper summary: self-selected research paper;^a ~15 pages
- Presentation:
 - 20 minutes + discussion
 - Participate in the presentations of other students

^aSee the "Literature" tab at https://iccl.inf.tu-dresden.de/web/ Research_Advances_in_Database_Theory_(WS2018). Other stuff...

Web Page https://iccl.inf.tu-dresden.de/web/Research_Advances_ in_Database_Theory_(WS2018)

Lecture Notes

All slides will be available online.

Reading list

Serge Abiteboul, Richard Hull, Victor Vianu; **Foundations of databases**. Available at http://webdam.inria.fr/Alice/

Acknowledgements Check out Vim Martens!

On to the content...

What is a database?

A **Database Management System** (DBMS) is a software to manage collections of data. The **architecture of DBMS** consist of three levels:

- External Level: Application-specific user views
- Logical Level: Abstract data model, independent of implementation, conceptual view
- **Physical Level:** Data structures and algorithms, platform-specific

In this seminar: focus on logical view for relational data model

The Relational Model

Database = collection of tables

Schedule

Movie	Cinema	Date	R-rated
Goodfellas	Thalia	15/10	True
Unforgiven	Thalia	17/10	True
Boogie Nights	Rundkino	21/11	True
Annie Hall	Rundkino	21/11	False

A table has a **schema**:

Schedule[{Movie, Cinema, Date, R-rated}]

Towards a a formal definition of "table"

A table row has one value for each column.

• That is, a row is a function from the attributes of the table schema to specific values.

Schedule

Movie	Cinema	Date	R-rated
Boogie Nights	Rundkino	21/11	True

The above row can be represented with the function:

$f: \{ Movie \mapsto Boogie Nights, Cinema \mapsto Rundkino,$ Date $\mapsto 21/11, R$ -rated $\mapsto True \}$

Let **dom** ("domain") be the set of conceivable values in tables.

Definition 1

- A **relation schema** *R*[*U*] consists of a relation name *R* and a finite set *U* of attributes
- |U| is the arity of R[U]
- A **table** for R[U] is a finite set of functions from U to **dom**
- A database instance I is a finite set of tables

Let **dom** ("domain") be the set of conceivable values in tables.

Definition 1

- A **relation schema** *R*[*U*] consists of a relation name *R* and a finite set *U* of attributes
- |U| is the arity of R[U]
- A **table** for R[U] is a finite set of functions from U to **dom**
- A database instance I is a finite set of tables

Note: we disregard the order and multiplicity of rows. Tables are also called relation instances. The table with relation schema R[U] in the database instance I is written R^{I} .

Schedule

Movie	Cinema	Date	R-rated
Goodfellas	Thalia	15/10	True
Unforgiven	Thalia	17/10	True
Boogie Nights	Rundkino	21/11	True
Annie Hall	Rundkino	21/11	False

- The domain dom of the above table is the following set: {Goodfellas, Thalia, 15/10, True, Unforgiven, Thalia, 17/10, Boogie Nights, Rundkino, 21/11, Annie Hall, Rundkino, False }
- The above is a table for the relation schema Schedules[{Movie, Cinema, Date, R-rated}]
- Let *I* be a database instance. Then, Schedules^{*I*} is the set of rows in this table.

Schedule

Movie	Cinema	Date	R-rated
Goodfellas	Thalia	15/10	True
Unforgiven	Thalia	17/10	True
Boogie Nights	Rundkino	21/11	True
Annie Hall	Rundkino	21/11	False

The table represented above is the set $\{r_1, r_2, r_3, r_4\}$ where r_1, r_2, r_3 , and r_4 are the following functions:

 $r_1 = \{\mathbf{M} \mapsto \text{Goodfellas}, \mathbf{C} \mapsto \text{Thalia}, \mathbf{D} \mapsto 15/10, \mathbf{R} \mapsto \text{True}\}$

 $r_2 = \{\mathbf{M} \mapsto \text{Unforgiven}, \mathbf{C} \mapsto \text{Thalia}, \mathbf{D} \mapsto 17/10, \mathbf{R} \mapsto \text{True}\}$

 $r_3 = \{\mathbf{M} \mapsto \text{Boogie Nights}, \mathbf{C} \mapsto \text{Rundkino}, \mathbf{D} \mapsto 21/11, \mathbf{R} \mapsto \text{True}\}$

 $r_4 = \{\mathbf{M} \mapsto \text{Annie Hall}, \mathbf{C} \mapsto \text{Rundkino}, \mathbf{D} \mapsto 21/11, \mathbf{R} \mapsto \text{False}\}$

Database = set of relations

Remark: Attribute names do not matter. Instead of the function

 $\{\mathbf{M} \mapsto \text{Goodfellas}, \mathbf{C} \mapsto \text{Thalia}, \mathbf{D} \mapsto 15/10, \mathbf{R} \mapsto \text{True}\}$

we could also use a tuple:

(Goodfellas, Thalia, 15/10, True)

Necessary assumption: Attributes have a fixed order.

Definition 2

- A relation schema *R*[*U*] is defined as before
- A table for *R*[*U*] is a finite subset of dom^{|U|}
- A database instance *I* is a finite set of tables

Database = set of relations

Schedule

Movie	Cinema	Date	R-rated
Goodfellas	Thalia	15/10	True
Unforgiven	Thalia	17/10	True
Boogie Nights	Rundkino	21/11	True
Annie Hall	Rundkino	21/11	False

The table represented above is the following set:

{(Goodfellas, 15/10, True, Thalia), (Unforgiven, 17/10, True, Thalia), (Boogie Nights, 21/11, True, Rundkino), (Annie Hall, 21/11, False, Rundkino)

Seminar Selected Topics in Database Theory

Another convenient way to write databases:

Definition 3

A fact is an expression $p(t_1, \ldots, t_n)$ where

- p is an n-ary predicate symbol
- t_1, \ldots, t_n are constan symbols

A database instance is a finite set of facts.

Database = set of facts

Schedule

Movie	Cinema	Date	R-rated
Goodfellas	Thalia	15/10	True
Unforgiven	Thalia	17/10	True
Boogie Nights	Rundkino	21/11	True
Annie Hall	Rundkino	21/11	False

The information in the above corresponds to the following facts:

Schedule(Goodfellas, 15/10, True, Thalia) Schedule(Unforgiven, 17/10, True, Thalia) Schedule(Boogie Nights, 21/11, True, Rundkino) Schedule(Annie Hall, 21/11, False, Rundkino) Graphical Representation

Summary: Different Perspectives

Perspective	DB Instance	Table	Row
Named	Set of tables	Set of functions	Function
Unnamed	Set of tables	Set of tuples	Tuple
Fact-based	Set of facts	Set of facts	Fact
Graph	Labelled hypergraph	L. hypergraph	L. Edge

The Relational Algebra

Relational Algebra Queries

Query language based on a set of **operations** on databases. Each operation refers to some tables and produces another table.

Main operations of the named perspective:

- Selection σ
- Projection π
- Join ⋈
- Renaming δ
- Difference -
- Union \cup
- Intersection \cap

Selection "Find all R-rated movies"

 $\sigma_{\text{R-rated="True"}}\text{Schedule}$

"Find all connections that begin and end in the same stop"

 $\sigma_{\rm From=to} {\rm Connect}$

Definition 4

The **selection operator** has the form $\sigma_{n=m}$

- *n* is an attribute name
- *m* is an attribute name or a constant value

Consider a table R^{I} for the relational schema R[U].

- For *m* constant value: $\sigma_{n=m}(R^{\mathcal{I}}) = \{f \in R^{\mathcal{I}} \mid f(n) = m\}$
- For *m* constant value: $\sigma_{n=m}(R^{I}) = \{f \in R^{I} \mid f(n) = f(m)\}$

Selection

"Find all dates in which some movie is projected."

 π_{Date} Schedule

Definition 5

The **projection operator** has the form $\pi_{a_1,...,a_n}$ where each a_i is an attribute name.

Consider a table R^{I} for R[U].

$$\pi_{a_1,...,a_n}(R^{I}) = \{f_{\{a_1,...,a_n\}} \mid f \in R^{I}\}$$

where $f_{\{a_1,\ldots,a_n\}}$ is the restriction of f to the domain $\{a_1,\ldots,a_n\}$, i.e., the function $\{a_1 \mapsto f(a_1),\ldots,a_n \mapsto f(a_n)\}$.

Remark: Projection is only defined if $a_i \in U$ for each a_i .

Natural Join

Schedule

Movie	Cinema	Date	R-rated
Unforgiven	Thalia	17/10	True
Boogie Nights	Rundkino	21/11	True

Location

Cinema	Neighborhood	
Thalia	Neudstadt	
Rundkino	Altstadt	

Schedule № Location

Movie	Cinema	Date	R-rated	Neighborhood
Unforgiven	Thalia	17/10	True	Neudstadt
Boogie Nights	Rundkino	21/11	True	Altstadt

Natural Join

Definition 6

The **natural join** operator has the form \bowtie . Consider tables R^I for R[U] and S^I for S[V].

$$R^{\mathcal{I}} \bowtie S^{\mathcal{I}} = \{f : U \cup V \rightarrow \mathbf{dom} \mid f_U \in R^{\mathcal{I}} \text{ and } f_V \in S^{\mathcal{I}}\}$$

where f_U (resp. f_V) is the restriction of f to elements in U (resp. V) as before.

Rename

 $\delta_{\text{Movie},\text{Cinema},\text{Date},\text{R-rated} \rightarrow \text{Film},\text{Cinema},\text{Date},\text{R-rated}}(\text{Schedule})$

Definition 7

The **renaming operator** has the form $\delta_{a_1,...,a_n \to b_1,...,b_n}$ with all a_i mutually distinct attribute names, and likewise for all b_i . Consider a table R^I for $R[\{a_1,...,a_n\}]$

$$\delta_{a_1,\dots,a_n \to b_1,\dots,b_n}(R^I) = \{ f \circ g \mid f \in R^I \text{ and } g : \{b_i \mapsto a_i\}_{1 \le i \le n} \}$$

where $f \circ g$ is function composition: $(f \circ g)(x) = f(g(x))$

Difference, Union, Intersection

- Binary operators defined like the usual set operations.
- **Remark:** These operators are only defined on tables of the same relational schema. That is, tables with the same set of attributes.

- Relational algebra query answering.
 - Studying combined/data/query Complexity.

- Relational algebra query answering.
 - Studying combined/data/query Complexity.
- Developing and studying novel query languages.
 - Fragments of relational algebra such as conjunctive queries. That is, relational algebra expressions that use only select, project, join, and rename.
 - Extensions of relational algebra such as **Datalog**.

- Relational algebra query answering.
 - Studying combined/data/query Complexity.
- Developing and studying novel query languages.
 - Fragments of relational algebra such as conjunctive queries. That is, relational algebra expressions that use only select, project, join, and rename.
 - Extensions of relational algebra such as **Datalog**.
- Study the "expressivity" of a query language.

- Relational algebra query answering.
 - Studying combined/data/query Complexity.
- Developing and studying novel query languages.
 - Fragments of relational algebra such as conjunctive queries. That is, relational algebra expressions that use only select, project, join, and rename.
 - Extensions of relational algebra such as **Datalog**.
- Study the "expressivity" of a query language.
 - Let's do this!