Complexity Theory

NP-Complete Problems

Daniel Borchmann, Markus Krötzsch

Computational Logic

2015-11-24

 \odot

Review

© € ② 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-11-24 #1	©⊕@ 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-11-24	#2		
NP-Complete F	Problems Further NP-complete Problems		NP-Complete Pr	oblems Further NP-complete Problems				
			Towards More NP-Comp	lete Problems				
			Starting with Sat, one can readil NP -complete, each time perform	• •	De			
			(1) Show that $\mathcal{P} \in NP$					
			(2) Find a known NP -complete	problem \mathcal{P}' and reduce $\mathcal{P}' \leq$	р Р			
Further NI	P-complete Problems		Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)					
			In this course:					
			$\leq_{\rho} Clique$	\leq_p Independent Set				
			Sat ≤ _p 3-Sat	\leq_p Dir. Hamiltonian Path				
			≤ _p Subset Su	im ≤ _p Knapsack				

NP-Completeness of Directed Hamiltonian Path

Directed Hamiltonian Path

Input: A directed graph G.

Problem: Is there a directed path in *G* containing every vertex exactly once?

Theorem 9.1

DIRECTED HAMILTONIAN PATH *is* NP-complete.

Proof.

- DIRECTED HAMILTONIAN PATH $\in NP$: Take the path to be the certificate.
- Directed Hamiltonian Path is NP-hard: 3-Sat ≤_p Directed Hamiltonian Path

Digression: How to design reductions

Task: Show that problem \mathcal{P} (DIR. HAMILTONIAN PATH) is NP-hard.

Arguably, the most important part is to decide where to start from.

That is, which problem to reduce to DIRECTED HAMILTONIAN PATH?

Considerations:

- Is there an NP-complete problem similar to P? (for example, CLIQUE and INDEPENDENT SET)
- It is not always beneficial to choose a problem of the same type (for example, reducing a graph problem to a graph problem)
 - For instance, CLIQUE, INDEPENDENT SET are "local" problems (is there a set of vertices inducing some structure)
 - Hamiltonian Path is a global problem (find a structure – the Hamiltonian path – containing all vertices)

How to design the reduction:

- Does your problem come from an optimisation problem? If so: a maximisation problem? a minimisation problem?
- Learn from examples, have good ideas.

© € @ 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-11-24	#5	©⊕@ 2015 Daniel Borchmann, Markus Krötzsch		Complexity Theory	2015-11-24	#6
NP-Complete Prob	Further NP-complete Problems			NP-Comple	ete Problems	Further $\operatorname{NP}\text{-}complete$ Problems		

NP-Completeness of Directed Hamiltonian Path

DIRECTED HAMILTONIAN PATH

Input: A directed graph G.

Problem: Is there a directed path in G containing every vertex exactly once?

Theorem 9.1

Directed Hamiltonian Path is NP-complete.

Proof.

- DIRECTED HAMILTONIAN PATH $\in NP$: Take the path to be the certificate.
- Directed Hamiltonian Path is NP-hard: 3-Sat ≤_p Directed Hamiltonian Path

Complexity Theory

2015-11-24 #7 © 👀 2015 Daniel Borchmann, Markus Krötzsch

NP-Completeness of Directed Hamiltonian Path

Proof idea: (see blackboard for details) Let $\varphi := \bigwedge_{i=1}^{k} C_i$ and $C_i := (L_{i,1} \lor L_{i,2} \lor L_{i,3})$

- For each variable X occurring in φ, we construct a directed graph ("gadget") that allows only two Hamiltonian paths: "true" and "false"
- Gadgets for each variable are "chained" in a directed fashion, so that all variables must be assigned one value
- Clauses are represented by vertices that are connected to the gadgets in such a way that they can only be visited on a Hamiltonian path that corresponds to an assignment where they are true

Details are also given in [Sipser, Theorem 7.46].

Example 9.2 (see blackboard)

 $\varphi := C_1 \land C_2$ where $C_1 := (X \lor \neg Y \lor Z)$ and $C_2 := (\neg X \lor Y \lor \neg Z)$

Towards More NP-Complete Problems

Starting with SAT, one can readily show more problems \mathcal{P} to be NP-complete, each time performing two steps:

- (1) Show that $\mathcal{P} \in NP$
- (2) Find a known NP-complete problem \mathcal{P}' and reduce $\mathcal{P}' \leq_p \mathcal{P}$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course: SUBSET SUM *is* NP-complete. $\leq_{\mathcal{D}} \mathsf{Clique}$ ≤_p Independent Set Sat \leq_p 3-Sat \leq_p Dir. Hamiltonian Path Proof. • SUBSET SUM \in NP: Take T to be the certificate. $\leq_{\mathcal{D}}$ Subset Sum $\leq_{\mathcal{D}}$ Knapsack Subset Sum is NP-hard: Sat \leq_p Subset Sum 🐵 🖲 🎯 2015 Daniel Borchmann, Markus Krötzsch **Complexity Theory** 2015-11-24 © € 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-11-24 #10 #9 Further NP-complete Problems Further NP-complete Problems NP-Complete Problems NP-Complete Problems $\mathsf{Sat} \leq_{\rho} \mathsf{Subset} \; \mathsf{Sum}$ Example

$$X_1 \lor X_2 \lor X_3) \land (\neg X_1 \lor \neg X_4) \land (X_4 \lor X_5 \lor \neg X_2 \lor \neg X_3)$$

$X_1 X_2 X_3 X_4 X_5 C_1 C_2 C_3$

t1 f1 t2 f2 t3 f3 t4 f4 t5 f5		1	0 0 1 1	0 0 0 1 1	0 0 0 0 0 1 1	0 0 0 0 0 0 0 0 1 1	1 0 1 0 1 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 1 0 0	0 0 0 1 0 1 0 1 0 1 0	
$m_{1,1}$ $m_{1,2}$ $m_{2,1}$ $m_{3,1}$ $m_{3,2}$ $m_{3,3}$	= = = = =					•	1 1 0 0 0	0 0 1 0 0	0 0 1 1 1	
t	=	1	1	1	1	1	3	2	4	

Given: $\varphi := C_1 \land \cdots \land C_k$ in conjunctive normal form.

(w.l.o.g. at most 9 literals per clause)

Let X_1, \ldots, X_n be the variables in φ . For each X_i let

$$t_i := a_1 \dots a_n c_1 \dots c_k \text{ where } a_j := \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \text{ and } c_j := \begin{cases} 1 & X_i \text{ occurs in } C_i \\ 0 & \text{otherwise} \end{cases}$$

$$f_i := a_1 \dots a_n c_1 \dots c_k \text{ where } a_j := \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \text{ and } c_j := \begin{cases} 1 & \neg X_i \text{ occurs in } C_j \\ 0 & \text{otherwise} \end{cases}$$

NP-Completeness of Subset Sum

SUBSET SUM *Input:* A collection of positive integers $S = \{a_1, \ldots, a_k\}$ and a target integer t. *Problem:* Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

Theorem 9.3

Example

$$(X_1 \lor X_2 \lor X_3) \land (\neg X_1 \lor \neg X_4) \land (X_4 \lor X_5 \lor \neg X_2 \lor \neg X_3)$$

NP-Complete Problems

$X_1 X_2 X_3 X_4 X_5 C_1 C_2 C_3$

Further NP-complete Problems

t1 f1 t2 f2 t3 f3 t4 f4 t5 f5		1	0 0 1 1	0 0 0 1 1	0 0 0 0 0 0 1 1	0 0 0 0 0 0 0 1 1	1 0 1 0 0 0 0 0	0 1 0 0 0 0 0 1 0 0	0 0 1 0 1 1 0 1 0	
$m_{1,1} \ m_{1,2} \ m_{2,1} \ m_{3,1} \ m_{3,2} \ m_{3,3}$							1 1 0 0 0	0 0 1 0 0	0 0 1 1	
t	=	1	1	1	1	1	3	2	4	_

Sat \leq_p Subset Sum

Further, for each clause C_i take $r := |C_i| - 1$ integers $m_{i,1}, \ldots, m_{i,r}$ where $m_{i,j} := c_i \ldots c_k$ with $c_\ell := \begin{cases} 1 & \ell = i \\ 0 & \ell \neq i \end{cases}$ Definition of *S*: Let

$$S := \{t_i, f_i \mid 1 \le i \le n\} \cup \{m_{i,j} \mid 1 \le i \le k, -1 \le j \le |C_i| - 1\}$$

Target: Finally, choose as target

$$t := a_1 \dots a_n c_1 \dots c_k$$
 where $a_i := 1$ and $c_i := |C_i|$

Claim: There is $T \subseteq S$ with $\sum_{a_i \in T} a_i = t$ iff φ is satisfiable.

©⊕@ 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-11-24	#13	© € 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-11-24	#14
NP-Complete Problem	s Further NP-complete Problems			NP-Complete Problems	Further $\operatorname{NP}\text{-}complete$ Problems		
Example				NP-Completeness of Subset	Sum		
$(X_1 \lor X_2 \lor X_3) \land (\neg X_1 \lor \neg$	$(X_4) \wedge (X_4 \vee X_5 \vee \neg X_2 \vee $	$(\neg X_3)$		Let $\varphi := \bigwedge C_i$ C_i : clause	es		

$X_1 X_2 X_3 X_4 X_5 C_1 C_2 C_3$

t1 f1 t2 f2 t3 f3 t4 f4 t5 f5		1	0 0 1 1	0 0 0 1 1	0 0 0 0 0 0 1 1	0 0 0 0 0 0 0 1 1	1 0 1 0 0 0 0 0 0	0 1 0 0 0 0 0 1 0 0	0 0 1 0 1 1 0 1 0	
$m_{1,1} \ m_{1,2} \ m_{2,1} \ m_{3,1} \ m_{3,2} \ m_{3,3}$	= = = =						1 1 0 0 0	0 0 1 0 0	0 0 1 1 1	
t	=	1	1	1	1	1	3	2	4	

Show: If φ is satisfiable, then there is $T \subseteq S$ with $\sum_{s \in T} s = t$.

Let β be a satisfying assignment for φ

Set $T_1 := \{t_i \mid \beta(X_i) = 1 \mid 1 \le i \le m\} \cup \{f_i \mid \beta(X_i) = 0 \mid 1 \le i \le m\}$

Further, for each clause C_i let r_i be the number of satisfied literals in C_i

(with resp. to β).

Set $T_2 := \{m_{i,j} \mid 1 \le i \le k, \quad 1 \le j \le |C_i| - r_i\}$ and define $T := T_1 \cup T_2$. It follows: $\sum_{s \in T} s = t$

Complexity Theory

NP-Completeness of SUBSET SUM

Show: If there is $T \subseteq S$ with $\sum_{s \in T} s = t$, then φ is satisfiable.

Let $T \subseteq S$ such that $\sum_{s \in T} s = t$

Define $\beta(X_i) = \begin{cases} 1 & \text{if } t_i \in T \\ 0 & \text{if } f_i \in T \end{cases}$

This is well defined as for all *i*: $t_i \in T$ or $f_i \in T$ but not both.

Further, for each clause, there must be one literal set to 1 as for all *i*,

the $m_{i,i} \in S$ do not sum up to the number of literals in the clause.

Knapsack and Strong NP-Completeness

🐵 🖲 🎯 2015 Daniel Borchmann, Markus Krötzsch **Complexity Theory** 2015-11-24 #17 © € 2015 Daniel Borchmann, Markus Krötzsch **Complexity Theory** 2015-11-24 #18 **NP-Complete Problems** Knapsack and Strong NP-Completeness **NP-Complete Problems** Knapsack and Strong NP-Completeness Towards More NP-Complete Problems NP-completeness of KNAPSACK Starting with SAT, one can readily show more problems \mathcal{P} to be NP-complete, each time performing two steps:

(1) Show that $\mathcal{P} \in NP$

(2) Find a known NP-complete problem \mathcal{P}' and reduce $\mathcal{P}' \leq_{p} \mathcal{P}$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

- \leq_p Clique \leq_p Independent Set
- Sat \leq_p 3-Sat \leq_p Dir. Hamiltonian Path
 - \leq_{p} Subset Sum \leq_{p} Knapsack

Knapsack	
Input:	A set $I := \{1,, n\}$ of items
	each of value v_i and weight w_i for $1 \le i \le n$,
	target value t and weight limit ℓ
Problem:	Is there $T \subseteq I$ such that
	$\sum_{i \in T} v_i \ge t$ and $\sum_{i \in T} w_i \le \ell$?

Theorem 9.4

KNAPSACK is NP-complete.

Proof.

- KNAPSACK \in NP: Take T to be the certificate.
- ► KNAPSACK IS NP-hard: Subset Sum ≤_p Knapsack

Complexity Theory

2015-11-24 © € 2015 Daniel Borchmann, Markus Krötzsch #19

Subset Sum \leq_{p} Knapsack

Subset Sum:

Given: $S := \{a_1, \dots, a_n\}$ collection of positive integersttarget integer

Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

Reduction: From this input to SUBSET SUM construct

- ▶ set of items *I* := {1,...,*n*}
- weights and values $v_i = w_i = a_i$ for all $1 \le i \le n$
- target value t' := t and weight limit $\ell := t$

Clearly: For every $T \subseteq S$

$$\sum_{i=T} a_i = t \quad \text{iff} \quad \sum_{a_i \in T} v_i \ge t' = t$$
$$\sum_{a_i \in T} w_i \le \ell = t$$

Hence: The reduction is correct and in polynomial time.

Example

Input $I = \{1, 2, 3, 4\}$ with Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$

Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$

Weight limit: $\ell = 5$ Target value: t = 7

weight	max	max. total value from first <i>i</i> items									
limit w	<i>i</i> = 0	<i>i</i> = 1	i = 2	<i>i</i> = 3	<i>i</i> = 4						
0	0	0	0	0	0						
1	0	1	3	3	3						
2	0	1	4	4	4						
3	0	1	4	4	5						
4	0	1	4	7	7						
5	0	1	4	8	8						

Set M(w, 0) := 0 for all $1 \le w \le \ell$ and M(0, i) := 0 for all $1 \le i \le n$ For i = 0, 1, ..., n-1 set $M(w, i+1) := \max \{M(w, i), M(w-w_{i+1}, i) + v_{i+1}\}$

A Polynomial Time Algorithm for KNAPSACK

Кларзаск can be solved in time $O(n\ell)$ using dynamic programming

Initialisation:

- Create an $(\ell + 1) \times (n + 1)$ matrix M
- Set M(w, 0) := 0 for all $1 \le w \le \ell$ and M(0, i) := 0 for all $1 \le i \le n$

Computation: Assign further M(w, i) to be the largest total value obtainable by selecting from the first *i* items with weight limit *w*:

For i = 0, 1, ..., n - 1 set M(w, i + 1) as

$$M(w, i+1) := \max \left\{ M(w, i), \ M(w - w_{i+1}, i) + v_{i+1} \right\}$$

Here, if $w - w_{i+1} < 0$ we always take M(w, i).

Acceptance: If *M* contains an entry $\geq t$, accept. Otherwise reject.

Кларзаск can be solved in time $O(n\ell)$ using dynamic programming

Initialisation:

- Create an $(\ell + 1) \times (n + 1)$ matrix M
- Set M(w, 0) := 0 for all $1 \le w \le \ell$ and M(0, i) := 0 for all $1 \le i \le n$

Computation: Assign further M(w, i) to be the largest total value obtainable by selecting from the first *i* items with weight limit *w*:

For i = 0, 1, ..., n - 1 set M(w, i + 1) as

 $M(w, i+1) := \max \{ M(w, i), M(w - w_{i+1}, i) + v_{i+1} \}$

Here, if $w - w_{i+1} < 0$ we always take M(w, i).

Acceptance: If *M* contains an entry $\geq t$, accept. Otherwise reject.

Input: A set $I := \{1, \ldots, n\}$ of items

Problem: Is there $T \subseteq I$ such that

Theorem 9.4: Кларзаск is NP-complete

Example

Input $I = \{$	1, 2, 3, 4} v	vith		
Values:	<i>v</i> ₁ = 1	<i>v</i> ₂ = 3	<i>v</i> ₃ = 4	<i>v</i> ₄ = 2
Weight:	<i>w</i> ₁ = 1	<i>w</i> ₂ = 1	<i>w</i> ₃ = 3	$w_{4} = 2$
Weight lim	it: $\ell = 5$	Target	t value: t	= 7

weight	max	max. total value from first <i>i</i> items									
limit w	<i>i</i> = 0	<i>i</i> = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 4						
0	0	0	0	0	0						
1	0	1	3	3	3						
2	0	1	4	4	4						
3	0	1	4	4	5						
4	0	1	4	7	7						
5	0	1	4	8	8						

Set M(w, 0) := 0 for all $1 \le w \le \ell$ and M(0, i) := 0 for all $1 \le i \le n$ For i = 0, 1, ..., n-1 set $M(w, i+1) := \max \{M(w, i), M(w-w_{i+1}, i) + v_{i+1}\}$

© ⊕ @ 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-11-24	#25	©⊕@ 2015 Daniel Borchmann, Markus Krötzsch		Complexity Theory	2015-11-24	#26
NP-Complete Problems Knapsack and Strong NP-Completeness				NP-Comple	ete Problems	Knapsack and Strong NP-Completeness		

Pseudo-Polynomial Time

The previous algorithm is not sufficient to show that $\mathsf{K}_{\mathsf{NAPSACK}}$ is in P

- The algorithm fills a $(\ell + 1) \times (n + 1)$ matrix *M*
- The size of the input to KNAPSACK is $O(n \log \ell)$

 \rightsquigarrow the size of *M* is not bounded by a polynomial in the length of the input!

Definition 9.5 (Pseudo-Polynomial Time)

Problems decidable in time polynomial in the sum of the input length and the value of numbers occurring in the input.

Equivalently: Problems decidable in polynomial time when using unary encoding for all numbers in the input.

If KNAPSACK is restricted to instances with ℓ ≤ p(n) for a polynomial p, then we obtain a problem in P.

Complexity Theory

Кларваск is in polynomial time for unary encoding of numbers.

Strong NP-completeness

Did we prove P = NP?

Summary:

What went wrong?

KNAPSACK

Pseudo Polynomial time: Algorithms polynomial in the maximum of the input length and the value of numbers occurring in the input.

• KNAPSACK can be solved in time $O(n\ell)$ using dynamic programming

target value t and weight limit ℓ

 $\sum_{i \in T} v_i \geq t$ and $\sum_{i \in T} w_i \leq \ell$?

each of value v_i and weight w_i for $1 \le i \le n$,

Examples:

- KNAPSACK
- SUBSET SUM

Strong NP-completeness: Problems which remain NP-complete even if all numbers are bounded by a polynomial in the input length (equivalently: even for unary coding of numbers).

Examples:

- CLIQUE
- SAT
- HAMILTONIAN CYCLE

© € @ 2015 Daniel Borchmann, Markus Krötzsch

<u>►</u> ...

2015-11-24

#27

Note: Showing SAT \leq_{ρ} SUBSET SUM required exponentially large numbers.

Complexity Theory

NP-Complete Problems CONP

Definition 9.7

A language $C \in \text{coNP}$ is coNP-complete, if $\mathcal{L} \leq_p C$ for all $\mathcal{L} \in \text{coNP}$.

Theorem 9.8

- ▶ P = coP
- ▶ Hence, $P \subseteq NP \cap coNP$

Open questions:

▶ NP = coNP?

Most people do not think so.

▶ $P = NP \cap coNP$?

Again, most people do not think so.