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NP-Complete Problems Further NP-complete Problems

Towards More NP-Complete Problems

Starting with Sar, one can readily show more problems % to be
NP-complete, each time performing two steps:

(1) Show that # € NP
(2) Find a known NP-complete problem #” and reduce ¥’ <,

Thousands of problem have now been shown to be NP-complete.
(See Garey and Johnson for an early survey)

In this course:
<p Crique <p INDEPENDENT SET
SAT <, 3-Sar <p DIR. HAmILTONIAN PATH

<p SusseT SuMm <, KNAPSACK
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NP-Completeness of DirecTeD HAMILTONIAN PATH Digression: How to design reductions

Task: Show that problem % (Dir. HamiLtonian PatH) is NP-hard.
» Arguably, the most important part is to decide where to start from.

DirecTep HaMiLTONIAN PATH

Input: A directed graph G.

. . o That is, which problem to reduce to DirecTED HAMILTONIAN PATH?
Problem: Is there a directed path in G containing every

» Considerations:
vertex exactly once?

> |s there an NP-complete problem similar to £?
(for example, CLique and INDEPENDENT SET)
» It is not always beneficial to choose a problem of the same type

Theorem 9.1 (for example, reducing a graph problem to a graph problem)
DirecTep HamiLtonian PatH is NP -complete. » For instance, Cuiaue, INDepENDENT SET are “local” problems
(is there a set of vertices inducing some structure)
Proof. » Hamiltonian Path is a global problem
» DIRecTED HAMILTONIAN Path € NP: (find a structure — the Hamiltonian path — containing all vertices)
Take the path to be the certificate. > How to design the reduction:
. ) » Does your problem come from an optimisation problem?
> DirecTeD HamiLToNIAN ParH is NP-hard: If so: a maximisation problem? a minimisation problem?
3-Sar <;, DIRecTED HAMILTONIAN PATH » Learn from examples, have good ideas.
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NP-Completeness of DIRECTED HAMILTONIAN PATH NP-Completeness of DIRecTED HAMILTONIAN PATH
Directep HAmiLTONIAN PaTH Proof idea: (see blackboard for details)
. Ak .
Input: A directed graph G. Lety = AiLy Ciand Gi:= (Li1 V Liz2 V L)

» For each variable X occurring in ¢, we construct a directed graph

Problem: Is there a directed path in G containing every e
(“gadget”) that allows only two Hamiltonian paths: “true” and “false”

vertex exactly once?

» Gadgets for each variable are “chained” in a directed fashion, so that
all variables must be assigned one value

Theorem 9.1 » Clauses are represented by vertices that are connected to the
Directep HamiLtonian Path is NP -complete. gadgets in such a way that they can only be visited on a Hamiltonian
Broof path that corresponds to an assignment where they are true
roof.
Detail I iven in [Si Th 7.46].
» Directen HAMILTONIAN Parii € NP etails are also given in [Sipser, Theorem 7.46]
Take the path to be the certificate. Example 9.2 (see blackboard)
> DirecTep HamiLTONIAN PaH is NP-hard: ¢ := Cy A Cawhere Gy := (X VYV Z)and Gy := (=X VYV =2Z)

3-Sar <p DIRECTED HAMILTONIAN PATH
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Towards More NP-Complete Problems

Starting with Sar, one can readily show more problems # to be
NP-complete, each time performing two steps:

(1) Show that ¥ € NP
(2) Find a known NP-complete problem #’" and reduce ' <,

Thousands of problem have now been shown to be NP-complete.
(See Garey and Johnson for an early survey)

In this course:
<p Cuaque <p INDEPENDENT SET
SAT <, 3-Sar <p DIr. HAmILTONIAN PaTH

<p SusseT Sum <, KNAPSACK
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Example

(X1 VXoVX3)A(=Xi V=X) A(Xe VXV =XoV=X3)

Xy Xo Xz X4 X5 C1 C2 C3

4 =10000 100
fi =10000 010
I3 = 1000 100
f = 1000 OO 1
t3 = 100 100
fa = 100 0O 1
Iy = 10 00 1
fa = 10 010
Is = 1 0 0 1
fs = 1 00O
m 1 = 100
my 2 = 100
ma 1 = 010
mg 1 = 0 0 1
ms o = 0 0 1
mss = 001
t =11111 32 4
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NP-Completeness of Sussetr Sum

SusseT Sum
Input: A collection of positive integers
S ={ay,..

Is there a subset T C S suchthat ), .t a; = t?

., ax} and a target integer t.
Problem:

Theorem 9.3
SusseT Sum is NP-complete.

Proof.
» SusseT Sum € NP: Take T to be the certificate.

> SusseT Sum is NP-hard: Sar <, Susset Sum
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SAT <, SUBSET Sum

Given: ¢ := Cy A --- A Cx in conjunctive normal form.

#10

(w.l.o.g. at most 9 literals per clause)

Let Xi,..., X, be the variables in ¢. For each X; let
1 i=j 1 Xjoccurs in G
ti:=ay...anC1...ck Where g; := .. andg = ,
I # ] 0 otherwise
1 i=j 1 —X; occurs in G;
fi:=ajy...anC1...Ccx Where g; := . andg = ,
[ 0 otherwise
#11 Complexity Theory 2015-11-24  #12
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Example SAT <, SUBSET SuM

(X1 V Xe v Xa) A (=Xi V=Xa) A (Xe v Xs V= Xo V2 Xs) Further, for each clause C; take r := |Cj| — 1 integers mj+, ..., m;,

X1X2X3X4X5C1C203 . 1 fil

t, - 10000 100 where m;; := ¢;...cx with ¢, := ]
fi =10000 010 0 (i
t> = 1000 100 Definition of S: Let
f = 1000 OO 1
I3 = 100 100
Bz 1900 0901 S={tfilt<i<nu{m;l1<i<k, 1<j<|Cl-1)
fa = 10 010
I5 = 1 00 1
fs = 1000 Target: Finally, choose as target
m 1 = 100
%f _ (1) (1) 8 t:=ay...anc1...ck Where a; := 1 and ¢; := |Cj|
m3:1 = 0 0 1
Mgp = 001 . . . e -
Ma3 = 0 01 Claim: There is T € S with ), .7 a; = t iff ¢ is satisfiable.
t =11111324
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Example NP-Completeness of SusseTSum

(Xi VXV Xg) A (= Xy V=Xa) A (Xe v Xs V= Xo V= Xs) Lety := A C; Ci: clauses
Xi X2 X3 X4 X5 C1 C2 Ca Show: If ¢ is satisfiable, then there is T € S with Y..7s = t.

4 =10000 100
g - 1 ? 8 8 8 ? 6 8 Let B be a satisfying assigment for ¢
fo = 1000 OO 1
Pz 196 1000 Set Ty:= {|B(X)=1 1<i<mju
%1 Z 100190 (fi1B(X)=0 1<i<m)
;g _ 1 8 8 8 Further, for each clause C; let r; be the number of satisfied literals in C;
my, = 100 (with resp. to ).
Mo = 100 Set To:={mjj|1<i<k, 1<j<I|Cl-rn
Moy = 010 etTo:={mj|1<i<k, <j<|Cjl -}
w2 0o and define T := Ty U To.
Mss = 001 It follows: Y cc78 =1t
t =11111 324
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NP-Completeness of Sussetr Sum

Show: If thereis T € S with } ;.7 s =, then ¢ is satisfiable.

Let T C Ssuchthat Y scrs =1

1 ifteT Knapsack and Strong NP-Completeness

Define B(Xj) = {O tr T
]

This is well defined as for all i: tj € T or fi € T but not both.

Further, for each clause, there must be one literal set to 1 as for all i,

the m;j € S do not sum up to the number of literals in the clause. O
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Knapsack and Strong NP-Completeness

Towards More NP-Complete Problems NP-completeness of KNAPsAck

Starting with Sar, one can readily show more problems # to be

NP-complete, each time performing two steps: ,
Input: Asetl:={1,...,n}of items

(1) Showthat#> € NP each of value v; and weight w; for 1 <i < n,

target value t and weight limit £

Thousands of problem have now been shown to be NP-complete. Problem: Is there T C I such that

(See Garey and Johnson for an early survey) SierVi>tand Yt w; < £?

KNAPSACK

(2) Find a known NP-complete problem #” and reduce ¥’ <,

In this course: Theorem 9.4
<p CLique <p INDEPENDENT SET Knapsack is NP -complete.
Sar <p 3-Sar <p DIR. HAmiLTONIAN PATH Proof.

» Knapsack € NP: Take T to be the certificate.
> Knapsack is NP-hard: Susset Sum <, KNAPsACK

<p SusseT Sum <, KNaPsAcK
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SUBSET SuM <, KNAPSACK
Subset Sum:
Given: S :={ay,...,an} collection of positive integers
t target integer

Problem: Isthere asubset T C S suchthat } ,.ra = t?

Reduction: From this input to Sueser Sum construct

» setofitems | :={1,...,n}
» weights and values vi = w; = g;forall1 <i<n
» target value t’ := t and weight limit £ :=t

Clearly: Forevery TC S

Za;:t iff

aeT Za;eT wi<t =t

ZaieT izt =t

Hence: The reduction is correct and in polynomial time.
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Example

Input | = {1, 2,3, 4} with
Values: vi=1 w=3 wv3=4 v,=2
Welght wi=1 w, =1 W3 = 3 w,=2

Weight limit: £=5 Target value: t =7

weight max. total value from first i items

limtw | i=0|i=1]i=2|i=3|i=4
0 0 0 0 0 0
1 0 1 3 3 3
2 0 1 4 4 4
3 0 1 4 4 5
4 0 1 4 7 7
5 0 1 4 8 8

Set M(w,0) :=0forall1 <w < ¢and M(0,i) :=0forall 1 <i<nFor
i=01,....n—1set M(w,i+ 1) := max{M(w,i), M(W = Wi;1,1) + Vi1
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A Polynomial Time Algorithm for KNAPSACK

Knapsack can be solved in time O(n¢) using dynamic programming

Initialisation:
» Create an (£ + 1) x (n+ 1) matrix M
» Set M(w,0) :=0forall1 <w < fand M(0,/) :=0forall1<i<n

Computation: Assign further M(w, i) to be the largest total value
obtainable by selecting from the first j items with weight limit w:

Fori=0,1,...,n—1set M(w,i+ 1) as
M(w,i+1):= max{M(W, N, M(w—witq,i)+ v,-+1}
Here, if w — wj < 0 we always take M(w, /).

Acceptance: If M contains an entry > t, accept. Otherwise reject.
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A Polynomial Time Algorithm for KNAPSACK

Knapsack can be solved in time O(n¢) using dynamic programming

Initialisation:
» Create an (£ + 1) x (n+ 1) matrix M
» Set M(w,0) :=0forall1 <w < ¢and M(0,i) :=0forall1<i<n

Computation: Assign further M(w, i) to be the largest total value
obtainable by selecting from the first j items with weight limit w:

Fori=0,1,....n—1set M(w,i+ 1) as
M(w,i+1):= max{M(w, N, M(w—witq,i) + v,-+1}
Here, if w — wj11 < 0 we always take M(w, i).

Acceptance: If M contains an entry > t, accept. Otherwise reject.
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Example Did we prove P =NP?
Input | = {1, 2,3, 4} with
Values: vi=1 w=3 vz=4 v,=2 Summary:
Weight: wi =1 wo=1 w3 =3 w, =2 » Theorem 9.4: Knapsack is NP-complete
Weight limit: ¢ =5  Targetvalue: t =7 » KNAPsack can be solved in time O(n¢) using dynamic programming
weight max. total value from first i items What went wrong?
limitw | i=0|i=1|i=2|i=3|i=4
0 0 0 0 0 0 KNAPSACK
1 0 1 3 3 3 Input: Asetl:={1,...,n}ofitems
2 0 1 4 4 4 each of value v; and weight w; for 1 < i < n,
3 0 1 4 4 5 target value t and weight limit £
AN N L . A A N Problem: s there T C I such that
5 0 1 4 8 8
ieTViztand YT w < (7
Set M(w,0) :=0forall1 <w < ¢and M(0,i) :=0forall 1 <i<nFor

i=0.1,....n—1set M(w,i+ 1) := max{M(w, i), M(W = Wis1.1) + Vi1
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Pseudo-Polynomial Time Strong NP-completeness
The previous algorithm is not sufficient to show that Knapsack is in P Pseudo Polynomial time: Algorithms polynomial in the maximum of the
> The algorithm fills a (£ + 1) x (n + 1) matrix M input length and the value of numbers occurring in the input.
» The size of the input to Knapsack is O(nlog ¢) Examples:
~» the size of M is not bounded by a polynomial in the length of the input! > KNAPSACK

» SuBsSeET Sum

Definition 9.5 (Pseudo-Polynomial Time) Strong NP-completeness: Problems which remain NP-complete even if all

numbers are bounded by a polynomial in the input length (equivalently:
even for unary coding of numbers).

Problems decidable in time polynomial in the sum of the input length and
the value of numbers occurring in the input.

Equivalently: Problems decidable in polynomial time when using unary

. . : Examples:
encoding for all numbers in the input.

» CLiQuE

> SAT

» HamitoNian CYcLE
> e

Note: Showing Sar <, SusseT Sum required exponentially large numbers.
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> If Knapsack is restricted to instances with ¢ < p(n) for a polynomial p,
then we obtain a problem in P.

» KNapsack is in polynomial time for unary encoding of numbers.
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CONP
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coNP-completeness

Definition 9.7

2015-11-24

A language C € CONP is cONP-complete, if L <, C for all £ € cONP.

Theorem 9.8
» P =coP
» Hence, P € NP n coNP

Open questions:
» NP = coNP?
Most people do not think so.

» P=NP ncoNP?
Again, most people do not think so.
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The Class cONP

Recall that cONP is the complement class of NP.

Definition 9.6
» For alanguage £ C Y* let £ := ¥*\ £ be its complement
» For a complexity class C, we define coC := {/L | LeC}
» In particular CONP = {£ | £ € NP}

A problem belongs to CONP, if no-instances have short certificates.

Examples:
» No Hamitonian Pat: Does the graph G not have a Hamiltonian path?

» TautoLoay: Is the propositional logic formula ¢ a tautology (true under
all assignments)?
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