Complexity Theory
 NP-Complete Problems

Daniel Borchmann, Markus Krötzsch
Review
Computational Logic
2015-11-24
©(1)(0)

Towards More NP-Complete Problems

Starting with Sat, one can readily show more problems \mathcal{P} to be NP-complete, each time performing two steps:
(1) Show that $\mathcal{P} \in N P$
(2) Find a known NP-complete problem \mathcal{P}^{\prime} and reduce $\mathcal{P}^{\prime} \leq p \mathcal{P}$

Thousands of problem have now been shown to be NP-complete.
(See Garey and Johnson for an early survey)

In this course:

$$
\begin{array}{rll}
& \leq_{p} \text { Clique } & \\
\leq_{p} \text { Independent Set } \\
\text { Sat } & \leq_{p} 3 \text {-Sat } & \\
\leq_{p} \text { Dir. Hamlitonian Path } \\
\leq_{p} \text { Subset Sum } & \leq_{p} \text { Knapsack }
\end{array}
$$

NP-Completeness of Directed Hamlitonian Path

Directed Hamiltonian Path

Input: A directed graph G.
Problem: Is there a directed path in G containing every vertex exactly once?

Theorem 9.1

Directed Hamiltonian Path is NP-complete.
Proof.

- Directed Hamiltonian Path \in NP: Take the path to be the certificate.
- Directed Hamiltonian Path is NP-hard: 3-Sat \leq_{p} Directed Hamiltonian Path

©(O) 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-11-24	\#5
NP-Complete Problems	Further NP-complete Problems		

NP-Completeness of Directed Hamlitonian Path

Directed Hamlttonian Path

Input: A directed graph G.
Problem: Is there a directed path in G containing every vertex exactly once?

Theorem 9.1

Directed Hamiltonian Path is NP-complete.
Proof.

- Directed Hamlltonian Path \in NP:

Take the path to be the certificate.

- Directed Hamiltonian Path is NP-hard:

3 -Sat \leq_{p} Directed Hamiltonian Path

Digression: How to design reductions

Task: Show that problem \mathcal{P} (Dir. Hamiltonian Path) is NP-hard.

- Arguably, the most important part is to decide where to start from.

That is, which problem to reduce to Directed Hamlitonian Path?

- Considerations:
- Is there an NP-complete problem similar to \mathcal{P} ? (for example, Clique and Independent Set)
- It is not always beneficial to choose a problem of the same type (for example, reducing a graph problem to a graph problem)
- For instance, Clique, Independent Set are "local" problems (is there a set of vertices inducing some structure)
- Hamiltonian Path is a global problem (find a structure - the Hamiltonian path - containing all vertices)
- How to design the reduction:
- Does your problem come from an optimisation problem?

If so: a maximisation problem? a minimisation problem?

- Learn from examples, have good ideas.

```
@(@)2015 Daniel Borchmann, Markus Krötzsch
Complexity Theory
NP-Cor Further NP-complete Problems
```


NP-Completeness of Directed Hamlitonian Path

Proof idea: (see blackboard for details)
Let $\varphi:=\bigwedge_{i=1}^{k} C_{i}$ and $C_{i}:=\left(L_{i, 1} \vee L_{i, 2} \vee L_{i, 3}\right)$

- For each variable X occurring in φ, we construct a directed graph ("gadget") that allows only two Hamiltonian paths: "true" and "false"
- Gadgets for each variable are "chained" in a directed fashion, so that all variables must be assigned one value
- Clauses are represented by vertices that are connected to the gadgets in such a way that they can only be visited on a Hamiltonian path that corresponds to an assignment where they are true

Details are also given in [Sipser, Theorem 7.46].
Example 9.2 (see blackboard)
$\varphi:=C_{1} \wedge C_{2}$ where $C_{1}:=(X \vee \neg Y \vee Z)$ and $C_{2}:=(\neg X \vee Y \vee \neg Z)$

Towards More NP-Complete Problems

NP-Completeness of Subset Sum
Starting with Sat, one can readily show more problems \mathcal{P} to be NP-complete, each time performing two steps:
(1) Show that $\mathcal{P} \in \mathrm{NP}$
(2) Find a known NP-complete problem \mathcal{P}^{\prime} and reduce $\mathcal{P}^{\prime} \leq{ }_{p} \mathcal{P}$

Thousands of problem have now been shown to be NP-complete.

Subset Sum

Input: A collection of positive integers $S=\left\{a_{1}, \ldots, a_{k}\right\}$ and a target integer t.
Problem: Is there a subset $T \subseteq S$ such that $\sum_{\mathrm{a}_{i} \in T} a_{i}=t$? (See Garey and Johnson for an early survey)

In this course:

$$
\begin{array}{rlrl}
& \leq_{p} \text { Clique } & & \leq_{p} \text { Independent Set } \\
\text { Sat } & \leq_{p} 3 \text {-Sat } & & \leq_{p} \text { Dir. Hamlitonian Path } \\
& \leq_{p} \text { Subset Sum } & \leq_{p} \text { Knapsack }
\end{array}
$$

Theorem 9.3
Subset Sum is NP-complete.
Proof.

- Subset Sum \in NP: Take T to be the certificate.
- Subset Sum is NP-hard: Sat \leq_{p} Subset Sum

©(®) 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-11-24 \#9
NP-Complete Problems Further NP-complete Problems		

Example

$$
\begin{array}{rl}
\left(X_{1} \vee X_{2} \vee X_{3}\right) \wedge\left(\neg X_{1} \vee \neg X_{4}\right) \wedge\left(X_{4} \vee X_{5} \vee \neg X_{2} \vee \neg X_{3}\right) \\
& \\
& X_{1} X_{2} X_{3} X_{4} X_{5} C_{1} C_{2} C_{3} \\
t_{1} & = \\
t_{1} & 0 \\
0 & 0
\end{array} 0
$$

Example

$$
\begin{array}{rl}
\left(X_{1} \vee X_{2} \vee X_{3}\right) \wedge\left(\neg X_{1} \vee \neg X_{4}\right) \wedge\left(X_{4} \vee X_{5} \vee \neg X_{2} \vee \neg X_{3}\right) \\
& X_{1} X_{2} X_{3} X_{4} X_{5} C_{1} C_{2} C_{3} \\
t_{1} & = \\
1 & 0 \\
0 & 0
\end{array} 0
$$

Sat $\leq p$ Subset Sum

Further, for each clause C_{i} take $r:=\left|C_{i}\right|-1$ integers $m_{i, 1}, \ldots, m_{i, r}$
where $m_{i, j}:=c_{i} \ldots c_{k}$ with $c_{\ell}:= \begin{cases}1 & \ell=i \\ 0 & \ell \neq i\end{cases}$
Definition of S : Let

$$
S:=\left\{t_{i}, f_{i} \mid 1 \leq i \leq n\right\} \cup\left\{m_{i, j}\left|1 \leq i \leq k, \quad 1 \leq j \leq\left|C_{i}\right|-1\right\}\right.
$$

Target: Finally, choose as target

$$
t:=a_{1} \ldots a_{n} c_{1} \ldots c_{k} \text { where } a_{i}:=1 \text { and } c_{i}:=\left|C_{i}\right|
$$

Claim: There is $T \subseteq S$ with $\sum_{a_{i} \in T} a_{i}=t$ iff φ is satisfiable.

Example

$$
\begin{array}{rl}
\left(X_{1} \vee X_{2} \vee X_{3}\right) \wedge\left(\neg X_{1} \vee \neg X_{4}\right) \wedge\left(X_{4} \vee X_{5} \vee \neg X_{2} \vee \neg X_{3}\right) \\
& X_{1} X_{2} X_{3} X_{4} X_{5} C_{1} C_{2} C_{3} \\
t_{1} & = \\
1 & 0 \\
0 & 0
\end{array} 0
$$

NP-Completeness of SubsetSum

Let $\varphi:=\wedge C_{i}$
C_{i} : clauses

Show: If φ is satisfiable, then there is $T \subseteq S$ with $\sum_{s \in T} S=t$.
Let β be a satisfying assigment for φ

Set $T_{1}:=\left\{t_{i} \mid \beta\left(X_{i}\right)=1 \quad 1 \leq i \leq m\right\} \cup$
$\left\{f_{i} \mid \beta\left(X_{i}\right)=0 \quad 1 \leq i \leq m\right\}$
Further, for each clause C_{i} let r_{i} be the number of satisfied literals in C_{i} (with resp. to β).

Set $T_{2}:=\left\{m_{i, j}\left|1 \leq i \leq k, \quad 1 \leq j \leq\left|C_{i}\right|-r_{i}\right\}\right.$
and define $T:=T_{1} \cup T_{2}$.
It follows: $\sum_{s \in T} s=t$

NP-Completeness of Subset Sum

Show: If there is $T \subseteq S$ with $\sum_{s \in T} S=t$, then φ is satisfiable.
Let $T \subseteq S$ such that $\sum_{s \in T} S=t$
Define $\beta\left(X_{i}\right)= \begin{cases}1 & \text { if } t_{i} \in T \\ 0 & \text { if } f_{i} \in T\end{cases}$

Knapsack and Strong NP-Completeness

This is well defined as for all $i: t_{i} \in T$ or $f_{i} \in T$ but not both.
Further, for each clause, there must be one literal set to 1 as for all i, the $m_{i, j} \in S$ do not sum up to the number of literals in the clause.

Starting with Sat, one can readily show more problems \mathcal{P} to be NP-complete, each time performing two steps:
(1) Show that $\mathcal{P} \in N P$
(2) Find a known NP-complete problem \mathscr{P}^{\prime} and reduce $\mathscr{P}^{\prime} \leq_{p} \mathcal{P}$

Thousands of problem have now been shown to be NP-complete.
(See Garey and Johnson for an early survey)

Knapsack

Input: A set $l:=\{1, \ldots, n\}$ of items
each of value v_{i} and weight w_{i} for $1 \leq i \leq n$, target value t and weight limit ℓ

Problem: Is there $T \subseteq I$ such that

$$
\sum_{i \in T} v_{i} \geq t \text { and } \sum_{i \in T} w_{i} \leq \ell ?
$$

Theorem 9.4
Knapsack is NP-complete.
Proof.

- Knapsack \in NP: Take T to be the certificate.
- Knapsack is NP-hard: Subset Sum \leq_{p} Knapsack

NP-Complete Problems
Knapsack and Strong NP-Completeness

Subset Sum $\leq{ }_{p}$ Knapsack

A Polynomial Time Algorithm for Knapsack

Subset Sum:

Given: $\quad S:=\left\{a_{1}, \ldots, a_{n}\right\} \quad$ collection of positive integers
t target integer
Problem: Is there a subset $T \subseteq S$ such that $\sum_{\mathrm{a}_{i} \in T} a_{i}=t$?
Reduction: From this input to Subset Sum construct

- set of items $I:=\{1, \ldots, n\}$
- weights and values $v_{i}=w_{i}=a_{i}$ for all $1 \leq i \leq n$
- target value $t^{\prime}:=t$ and weight limit $\ell:=t$

Clearly: For every $T \subseteq S$

$$
\sum_{a_{a} \in T} a_{i}=t \quad \text { iff } \quad \begin{aligned}
& \sum_{a_{i} \in T} \in v_{i} \geq t^{\prime}=t \\
& \\
& \sum_{a, i \in T} w_{i} \leq \ell=t
\end{aligned}
$$

Hence: The reduction is correct and in polynomial time.

Example

Input $I=\{1,2,3,4\}$ with

Values:	$v_{1}=1$	$v_{2}=3$	$v_{3}=4$	$v_{4}=2$
Weight:	$w_{1}=1$	$w_{2}=1$	$w_{3}=3$	$w_{4}=2$

Weight limit: $\ell=5 \quad$ Target value: $t=7$

weight	max. total value from first i items				
	$i=0$	$i=1$	$i=2$	$i=3$	$i=4$
0	0	0	0	0	0
1	0	1	3	3	3
2	0	1	4	4	4
3	0	1	4	4	5
4	0	1	4	7	7
5	0	1	4	8	8

Set $M(w, 0):=0$ for all $1 \leq w \leq \ell$ and $M(0, i):=0$ for all $1 \leq i \leq n$ For $i=0,1, \ldots, n-1$ set $M(w, i+1):=\max \left\{M(w, i), M\left(w-w_{i+1}, i\right)+v_{i+1}\right\}$

KnAPSACK can be solved in time $O(n \ell)$ using dynamic programming Initialisation:

- Create an $(\ell+1) \times(n+1)$ matrix M
- Set $M(w, 0):=0$ for all $1 \leq w \leq \ell$ and $M(0, i):=0$ for all $1 \leq i \leq n$

Computation: Assign further $M(w, i)$ to be the largest total value obtainable by selecting from the first i items with weight limit w :

For $i=0,1, \ldots, n-1$ set $M(w, i+1)$ as

$$
M(w, i+1):=\max \left\{M(w, i), M\left(w-w_{i+1}, i\right)+v_{i+1}\right\}
$$

Here, if $w-w_{i+1}<0$ we always take $M(w, i)$.
Acceptance: If M contains an entry $\geq t$, accept. Otherwise reject.
©๑๑ 2015 Daniel Borchmann, Markus Krötzsch
Complexity Theory
2015-11-24 \#22

A Polynomial Time Algorithm for Knapsack

Knapsack can be solved in time $O(n \ell)$ using dynamic programming Initialisation:

- Create an $(\ell+1) \times(n+1)$ matrix M
- Set $M(w, 0):=0$ for all $1 \leq w \leq \ell$ and $M(0, i):=0$ for all $1 \leq i \leq n$

Computation: Assign further $M(w, i)$ to be the largest total value obtainable by selecting from the first i items with weight limit w :
For $i=0,1, \ldots, n-1$ set $M(w, i+1)$ as

$$
M(w, i+1):=\max \left\{M(w, i), M\left(w-w_{i+1}, i\right)+v_{i+1}\right\}
$$

Here, if $w-w_{i+1}<0$ we always take $M(w, i)$.
Acceptance: If M contains an entry $\geq t$, accept. Otherwise reject.

Example

Did we prove $\mathrm{P}=\mathrm{NP}$?

Input $I=\{1,2,3,4\}$ with
$\begin{array}{lllll}\text { Values: } & v_{1}=1 & v_{2}=3 & v_{3}=4 & v_{4}=2 \\ \text { Weight: } & w_{1}=1 & w_{2}=1 & w_{3}=3 & w_{4}=2\end{array}$
Weight limit: $\ell=5 \quad$ Target value: $t=7$

weight	max. total value from first i items				
	$i=0$	$i=1$	$i=2$	$i=3$	$i=4$
0	0	0	0	0	0
1	0	1	3	3	3
2	0	1	4	4	4
3	0	1	4	4	5
4	0	1	4	7	7
5	0	1	4	8	8

Set $M(w, 0):=0$ for all $1 \leq w \leq \ell$ and $M(0, i):=0$ for all $1 \leq i \leq n$ For
$i=0,1, \ldots, n-1 \operatorname{set} M(w, i+1):=\max \left\{M(w, i), M\left(w-w_{i+1}, i\right)+v_{i+1}\right\}$

©(O) 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-11-24	\#25
NP-Complete Problems	Knapsack and Strong NP-Completeness		

Pseudo-Polynomial Time

The previous algorithm is not sufficient to show that Knapsack is in P

- The algorithm fills a $(\ell+1) \times(n+1)$ matrix M
- The size of the input to Knapsack is $O(n \log \ell)$
\leadsto the size of M is not bounded by a polynomial in the length of the input!
Definition 9.5 (Pseudo-Polynomial Time)
Problems decidable in time polynomial in the sum of the input length and the value of numbers occurring in the input.
Equivalently: Problems decidable in polynomial time when using unary encoding for all numbers in the input.
- If Knapsack is restricted to instances with $\ell \leq p(n)$ for a polynomial p, then we obtain a problem in P.
- Knapsack is in polynomial time for unary encoding of numbers.

Summary:

- Theorem 9.4: Knapsack is NP-complete
- Knapsack can be solved in time $O(n \ell)$ using dynamic programming

What went wrong?

Knapsack

Input: A set $I:=\{1, \ldots, n\}$ of items each of value v_{i} and weight w_{i} for $1 \leq i \leq n$, target value t and weight limit ℓ
Problem: Is there $T \subseteq I$ such that

$$
\sum_{i \in T} v_{i} \geq t \text { and } \sum_{i \in T} w_{i} \leq \ell ?
$$

```
@(@)2015 Daniel Borchmann, Markus Krötzsch
Complexity Theory
2015-11-24 \#26
NP-Complete Problems
Knapsack and Strong NP-Completeness
```


Strong NP-completeness

Pseudo Polynomial time: Algorithms polynomial in the maximum of the input length and the value of numbers occurring in the input.

Examples:

- Knapsack
- Subset Sum

Strong NP-completeness: Problems which remain NP-complete even if all numbers are bounded by a polynomial in the input length (equivalently: even for unary coding of numbers).
Examples:

- Clique
- Sat
- Hamiltonian Cycle
- ...

Note: Showing Sat \leq_{p} Subset Sum required exponentially large numbers.

The Class coNP

Recall that coNP is the complement class of NP.
Definition 9.6

- For a language $\mathcal{L} \subseteq \Sigma^{*}$ let $\overline{\mathcal{L}}:=\Sigma^{*} \backslash \mathcal{L}$ be its complement
- For a complexity class C , we define $\mathrm{CoC}:=\{\mathcal{L} \mid \overline{\mathcal{L}} \in \mathrm{C}\}$
- In particular coNP $=\{\mathcal{L} \mid \overline{\mathcal{L}} \in \mathrm{NP}\}$

A problem belongs to CONP, if no-instances have short certificates.
Examples:

- No Hamlitonian Path: Does the graph G not have a Hamiltonian path?
- Tautology: Is the propositional logic formula φ a tautology (true under all assignments)?
- ... CONP

coNP-completeness

Definition 9.7
A language $C \in \mathrm{CoNP}$ is coNP-complete, if $\mathcal{L} \leq_{p} C$ for all $\mathcal{L} \in \operatorname{coNP}$.
Theorem 9.8

- $\mathrm{P}=\mathrm{CoP}$
- Hence, $\mathrm{P} \subseteq \mathrm{NP} \cap \mathrm{coNP}$

Open questions:

- $\mathrm{NP}=\mathrm{coNP}$?

Most people do not think so.

- $P=\mathrm{NP} \cap \mathrm{CoNP}$?

Again, most people do not think so.

