Exercise 0.1. Make sure that git¹ and git-lfs² are installed in your computer.

Exercise 0.2. Find a Python 3 interpreter and a suitable code editor for your platform and make sure they are installed on your computer.

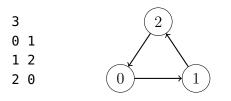
Exercise 0.3. Write a (Python) program that takes as input a directed graph in the format given below, and prints out all vertices that have maximal out-degree. The input should be read from a file given as a command-line argument.

The file format is as follows:

$$n$$

$$s_1 \quad t_1$$

$$s_2 \quad t_2$$


$$s_3 \quad t_3$$

$$\vdots \quad \vdots$$

$$s_m \quad t_m$$

The first line consists of a single integer n, the number of vertices of the graph. Each of the following lines consists of two integers s_i and t_i , specifying an edge from vertex s_i to vertex t_i , separated by a space. Vertices are numbered $0, 1, \ldots, n-1$.

As an example, the following input encodes a directed triangle:

Data files are available on Github³.

Exercise 0.4. Modify your program to compute the vertices of minimal in-degree instead.

¹https://git-scm.com/

²https://git-lfs.github.com/

³https://github.com/knowsys/Course-Knowledge-Graphs/tree/master/data/simple-graphs