
Modal Logics with Composition on Finite Forests:

Expressivity and Complexity

Bartosz Bednarczyk
TU Dresden & University of Wrocław

Stéphane Demri
LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay

Raul Fervari
FAMAF, Universidad Nacional de Córdoba & CONICET

Alessio Mansutti
LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay

Abstract

We study the expressivity and complexity of two modal log-
ics interpreted on finite forests and equipped with standard
modalities to reason on submodels. The logicML() extends
the modal logic K with the composition operator from am-
bient logic, whereasML(∗) features the separating conjunc-
tion ∗ from separation logic. Both operators are second-order
in nature. We show thatML() is as expressive as the graded
modal logic GML (on trees) whereas ML(∗) is strictly less
expressive than GML. Moreover, we establish that the sat-
isfiability problem is Tower-complete for ML(∗), whereas
it is (only) AExpPol-complete for ML(), a result which is
surprising given their relative expressivity. As by-products,
we solve open problems related to sister logics such as static
ambient logic and modal separation logic.

CCS Concepts: • Theory of computation→Modal and

temporal logics.

Keywords: modal logic on trees, separation logic, static am-
bient logic, gradedmodal logic, expressive power, complexity

ACM Reference Format:

Bartosz Bednarczyk, Stéphane Demri, Raul Fervari, and Alessio
Mansutti. 2020. Modal Logics with Composition on Finite Forests:
Expressivity and Complexity. In Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS ’20),
July 8–11, 2020, Saarbrücken, Germany. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3373718.3394787

1 Introduction

The ability to quantify over substructures to express prop-
erties of a model is often instrumental to perform modular
and local reasoning. Two well-known examples are provided

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
LICS ’20, July 8–11, 2020, Saarbrücken, Germany
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7104-9/20/07. . . $15.00
https://doi.org/10.1145/3373718.3394787

by separation logics [28, 35, 42], dedicated to reasoning on
pointer programs, and ambient (or more generally, spatial)
logics [9, 12, 14, 19], dedicated to reasoning on disjoint data
structures. In the realm of modal logics dedicated to knowl-
edge representation, submodel reasoning remains a key in-
gredient to express the dynamics of knowledge and belief,
as done in the logics of public announcement [5, 33, 37],
sabotage modal logics [4], refinement modal logics [11] and
relation-changing logics [1–3]. Though the models may be
of different nature (e.g. memory states for separation logics,
epistemic models for logics of public announcement or fi-
nite edge-labelled trees for ambient logics), all those logics
feature composition operators that enable to compose or
decompose substructures in a very natural way.

From a technical point of view, reasoning about submodels
requires a global analysis, unlike the local approach for clas-
sical modal and temporal logics (typically based on automata
techniques [47, 48]). This makes the comparison between
those formalisms quite challenging and often limited to a su-
perficial analysis on the different classes of models and com-
position operators. For instance, the composition operator
in ambient logics decomposes a tree into two disjoint pieces
such that once a node has been assigned to one submodel,
all its descendants belong to the same submodel. Instead,
the separating conjunction ∗ from separation logic decom-
poses the memory states into two disjoint memory states.
Obviously, these and other well-known operators are closely
related but no uniform framework investigates exhaustively
their relationships in terms of expressive power.
Most of these logics can be easily encoded in monadic

second-order logicMSO (or in second-order modal logics [24,
30]). Complexity-wise, if models are tree-like structures, we
can then infer decidability thanks to the celebrated Rabin’s
theorem [40]. However, most likely, this does not produce the
best decision procedures when it comes to solving simple
reasoning tasks (e.g. the satisfiability problem of MSO is
Tower-complete [43]). Thus, relying onMSO as a common
umbrella to capture and understand the differences between
those logical formalisms is often not satisfactory.

Our motivations. Our intention in this work is to provide
an in-depth comparison between the composition operator
from static ambient logic [12] and the separating conjunc-
tion ∗ from separation logics [42] by identifying a common

https://doi.org/10.1145/3373718.3394787
https://doi.org/10.1145/3373718.3394787

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Bednarczyk, Demri, Fervari & Mansutti

ground in terms of logical languages and models. As a con-
sequence, we are able to study the effects of having these op-
erators as far as expressivity and complexity are concerned.
We aim at defining two logics whose only differences rest on
their use of and ∗ syntactically and semantically (by consid-
ering the adequate composition operation). To do so, we pick
as our common class of models, the Kripke-style finite trees
(actually finite forests, so that the class is closed under taking
submodels), which provides an ubiquitous class of structures,
extremely well-studied in computer science. For the under-
lying logical language (i.e. apart from or ∗), we advocate
the use of the standard modal logic K (i.e. to have Boolean
connectives and the standard modality 3) so that the main
operations on the models amount to quantify over submod-
els or to move along the edges. This framework is sufficiently
fundamental to give us the possibility to take advantage of
model theoretical tools from modal logics [6, 8, 20]. The ben-
efits of settling a common ground for comparison may lead
to further comparisons with other logics and new results.

Our contributions. We introduce ML() and ML(∗), two
logics interpreted on Kripke-style forest models, equipped
with the standard modality3, and respectively with the com-
position operator from static ambient logic [12] and with
the separating conjunction ∗ from separation logic [42]. Both
logical formalisms can state non-trivial properties about sub-
models, but the binary modalities and ∗ operate differently:
whereas ∗ is able to decompose the models at any depth,
is much less permissive as the decomposition is completely
determined by what happens at the level of the children of
the current node. We study their expressive power and com-
plexity, obtaining surprising results. We show that ML() is
as expressive as the graded modal logicGML [6, 45] whereas
ML(∗) is strictly less expressive than GML. Interestingly,
this latter development partially reuses the result for ML(),
hence showing how our framework allows us to transpose
results between the two logics. To show that GML is strictly
more expressive than ML(∗), we define Ehrenfeucht-Fraïssé
games for ML(∗). In terms of complexity, the satisfiability
problem for ML() is shown AExpPol-complete1, interest-
ingly the same complexity as for the refinement modal logic
RML [11] handling a quantifier over refinements (generalis-
ing the submodel construction). The AExpPol upper bound
follows from an exponential-size model property, whereas
the lower bound is by reducing the satisfiability problem for
an AExpPol-complete team logic [27]. Much more surpris-
ingly, although ML(∗) is strictly less expressive than ML(),
its complexity is much higher (not even elementary). Pre-
cisely, we show that the satisfiability problem forML(∗) is
Tower-complete. The Tower upper bound is a consequence
of [40], whereas hardness is shown by reduction from a
Tower-complete tiling problem, adapting substantially the

1 Problems inAExpPol are decidable by an alternating Turing machine work-
ing in exponential-time and using polynomially many alternations [10].

Tower-hardness proof from [7] for second-order modal logic
K on finite trees. To conclude, we get the best of our results
on ML() and ML(∗) to solve several open problems. We
relate ML() with an intensional fragment of static ambient
logic SAL() from [12] by providing polynomial-time reduc-
tions between their satisfiability problems. Consequently,
we establish AExpPol-completeness of SAL(), refuting hints
from [12, Section 6]. Similarly, we show that the modal sepa-
ration logic MSL(3−1, ∗) from [21] is Tower-complete.
Omitted proofs can be found in the technical report on ArXiv.

2 Preliminaries

In this section, we introduce the logics ML() and ML(∗)
interpreted on tree-like structures equipped with operators
to split the structure into disjoint pieces. Due to the presence
of such operators, we are required to consider a class of
models that is closed under submodels, which we call Kripke-
style finite forests (or finite forests for short).
Let AP be a countably infinite set of atomic propositions.

A (Kripke-style) finite forest is a tripleM = (W ,R,V) where
W is a non-empty finite set of worlds, V : AP→ P(W) is a
valuation and R ⊆W ×W is a binary relation whose inverse
R−1 is functional and acyclic. Then, in particular the graph
described by (W ,R) is a finite collection of disjoint finite
trees (where R encodes the child relation).

We define R(w) def= {w ′ ∈W | (w,w ′) ∈ R}. Worlds in R(w)
are understood as children of w . We inductively define Rn :
R0 def
= {(w,w) | w ∈W }; Rn+1 def

= {(w,w ′′) | ∃w ′ (w,w ′) ∈ Rn
and (w ′,w ′′) ∈ R }. R+ denotes the transitive closure of R.

We define operators that chop a finite forest. It should be
noted that these operators, as well as the resulting logics, can
be cast under the umbrella of the logic of bunched implica-
tions BI [25, 39], with the exception that we do not explicitly
require them to have an identity element (as enforced on the
multiplicative operators of BI, see [25]). LetM = (W ,R,V)
andMi = (Wi ,Ri ,Vi) (for i ∈ {1, 2}) be three finite forests.

The separation logic composition. We introduce the bi-
nary operator + that performs the disjoint union at the level
of parent-child relation. Formally,
M = M1 +M2

def
⇔ R1 ⊎ R2 = R,W1 =W2 =W ,V1 = V2 = V.

This is the composition used in separation logic [21, 42]. The
figure below depicts possible instances forM,M1 andM2.

= +

The ambient logic composition. We introduce the oper-
ator +w , wherew ∈W , that constraints further +:
M = M1 +w M2

def
⇔ M = M1 +M2 and R+i (w

′) = R+(w ′)
holds for all i ∈ {1, 2} andw ′ ∈ Ri (w).

M is a disjoint union between M1 and M2 except that, as
soon as w ′ ∈ Ri (w), the whole subtree of w ′ in R belongs

Modal Logics with Composition on Finite Forests LICS ’20, July 8–11, 2020, Saarbrücken, Germany

toMi , like the composition in ambient logic [12]. Below, we
illustrate a model decomposed with +w .

w

=

w

+w

w

We say that M1 is a submodel of M, written M1 ⊑ M if
there isM2 such thatM = M1 +M2.

Modal logics on trees. The logicML() enriches the modal
logic K (a.k.a. ML) with a binary connective , called com-
position operator , that admits submodel reasoning via the
operator +w . Similarly, ML(∗) enriches ML with the con-
nective ∗, called separating conjunction (or star) that admits
submodel reasoning via the operator +. Both connectives
and ∗ are understood as binary modalities. As we show
throughout the paper, ML() and ML(∗) are strongly related
to the graded modal logic GML [20]. For conciseness, let us
define all these logics by considering formulae that contain
all of their ingredients. These formulae are built from

φ := ⊤ | p | φ ∧ φ | ¬φ | 3φ | 3≥k φ | φ ∗ φ | φ φ,

where p ∈ AP and k ∈ N (encoded in binary). A pointed
forest (M,w) is a finite forestM = (W ,R,V) together with
a world w ∈ W . The satisfaction relation |= is defined as
follows (standard clauses for ∧, ¬ and ⊤ are omitted):
M,w |= p ⇔w ∈ V (p);
M,w |= 3φ ⇔ there isw ′ ∈ R(w) s.t.M,w ′ |=φ;
M,w |= 3≥k φ ⇔ |{w

′ ∈ R(w) | M,w ′ |= φ}| ≥ k ;
M,w |= φ1 ∗ φ2⇔ there areM1,M2 s.t.M = M1 +M2,

M1,w |= φ1 andM2,w |= φ2;
M,w |= φ1 φ2 ⇔ there areM1,M2 s.t.M = M1 +w M2,

M1,w |= φ1 andM2,w |= φ2.

The formulae φ ⇒ ψ , φ ∨ ψ and ⊥ are defined as usual.
We use the following standard abbreviations: 2φ def

= ¬3¬φ,
3≤k φ

def
= ¬3≥k+1 φ and3=k φ def

= 3≥k φ ∧3≤k φ. We write
size(φ) to denote the size of φ with a tree representation of
formulae and with a reasonably succinct encoding of atomic
formulae. Besides, wewritemd(φ) to denote themodal degree
of φ understood as the maximal number of nested unary
modalities (i.e. 3 or 3≥k) in φ. Similarly, the graded rank
gr(φ) of φ is defined as max({k | 3≥k ψ ∈ subf(φ)} ∪ {0}),
where subf(φ) is the set of all the subformulae of φ.

Given the formulae φ andψ , φ ≡ ψ denotes that φ andψ
are logically equivalent; i.e., for every pointed forest (M,w),
M,w |= φ iffM,w |= ψ . For instance (k ≥ 1 and p ∈ AP):
1. 3φ ≡ 3≥1 φ; 2. (22⊥ 22⊥) . (22⊥ ∗22⊥);
3. 3≥k p ≡ 3p ∗ · · · ∗3p︸ ︷︷ ︸

k times

; 4. 3≥k φ ≡ 3φ · · · 3φ︸ ︷︷ ︸
k times

.

The modal logic ML is the logic restricted to formulae with
the unique modality3 [8]. Similarly, the graded modal logic
GML is restricted to the graded modalities 3≥k [20]. We

introduce the modal logicsML() andML(∗), which are re-
stricted to the suites of modalities (3,) and (3, ∗), respec-
tively. The two equivalences (3) and (4) already shed some
light onML() andML(∗): the two logics are similar when
it comes to their formulae of modal degree one.

Lemma 2.1. Let φ be a formula in ML() with md(φ) ≤ 1.
Then, φ ≡ φ[← ∗] where φ[← ∗] is the formula in ML(∗)
obtained from φ by replacing every occurrence of by ∗.

However, as shown by the non-equivalence (2), it is un-
clear how the two logics compare when it comes to formu-
lae of modal degree greater than one. Indeed, since M =
M1+wM2 impliesM = M1+M2, but not vice-versa, the sep-
arating conjunction ∗ is more permissive than the operator .
However, further connections between the two operators can
be easily established. Let us introduce the auxiliary operator
defined as φ def

= φ ∗2⊥. Formally,
(W ,R,V),w |= φ⇔ there is R′ ⊆ R s.t. R′(w) = R(w)

and (W ,R′,V),w |= φ.
Similar operators are studied in [2, 4, 11].We show that and
are sufficient to capture ∗ (essential property for Section 5).

Lemma 2.2. Let φ,ψ ∈ GML. We have φ ∗ψ ≡ (φ ψ).

Unlike , when ∗ splits a finite forestM intoM1 andM2, it
may disconnect in both submodels worlds that are otherwise
reachable, from the current world, inM. Applying before
allows us to imitate this behaviour. Indeed, even though
preserves reachability in eitherM1 orM2, deletes part ofM,
making some world inaccessible. This way of expressing the
separating conjunction allows us to reuse some methods
developed forML() in order to studyML(∗).

The logic QKt
. Both ML() and ML(∗) can be seen as frag-

ments of the logic QKt , which in turn is known to be a
fragment of monadic second-order logic on trees [7]. The
logic QKt extends ML with second-order quantification and
is interpreted on finite trees. Its formulae are defined accord-
ing to the following grammar:

φ := p | 3φ | φ ∧ φ | ¬φ | ∃p φ.
GivenM = (W ,R,V) andw ∈W , the satisfaction relation |=
ofML is extended as follows:
M,w |= ∃p φ iff ∃W ′ ⊆W s.t. (W ,R,V [p ←W ′]),w |= φ.

One can show logspace reductions from ML() and ML(∗)
to QKt , by simply reinterpreting the operators ∗ and as
restrictive forms of second-order quantification, and by rela-
tivising 3 to appropriate propositional symbols in order to
capture the notion of submodel (details are omitted).

Satisfiability problem. The satisfiability problem for a logic
L, written Sat(L), takes as input a formula φ in L and checks
whether there is a pointed forest (M,w) such thatM,w |= φ.

Note that any L among ML, GML, ML() or ML(∗) has
the tree model property, i.e. any satisfiable formula is also
satisfied in some tree structure. The problems Sat(ML) and

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Bednarczyk, Demri, Fervari & Mansutti

Sat(GML) are known to be PSpace-complete, see e.g. [8, 29,
44, 45], and therefore Sat(ML()) and Sat(ML(∗)) are PSpace-
hard. As an upper bound, by Rabin’s theorem [40], the sat-
isfiability problem for QKt is decidable in Tower, which
transfers directly to Sat(ML()) and Sat(ML(∗)).

Expressive power. Given two logics L1 and L2, we say that
L2 is at least as expressive as L1 (written L1 ⪯ L2) whenever
for every formula φ ofL1, there is a formulaψ ofL2 such that
φ ≡ ψ . L1 ≈ L2 denotes that L1 and L2 are equally expressive,
i.e. L1 ⪯ L2 and L2 ⪯ L1. Lastly, L1 ≺ L2 denotes that L2
is strictly more expressive than L1, i.e. L1 ⪯ L2 and L1 0 L2.
The equivalence (1) recalls us that ML ≺ GML [20]. From
the equivalence (4), we get GML ⪯ ML().

3 ML(): Expressiveness and Complexity

In this section, we study the expressive power of ML() and
the complexity of Sat(ML()). We show constructively that
ML() ⪯ GML, hence provingML() ≈ GML. Next, we show
that Sat(ML()) is AExpPol-complete. The upper bound is
achieved by proving an exponential-size model property. The
lower bound is by reduction from the satisfiability problem
for propositional team logic [27, Thm. 4.9].

3.1 ML() is not more expressive than GML

Establishing ML() ⪯ GML amounts to show that given φ1,
φ2 inGML, one can constructψ inGML such thatφ1 φ2 ≡ ψ .
For instance, a simple case analysis yields the equivalence
(p ∨3≥3 r) (q ∨3≤5 q) ≡ (p ∨3≥3 r). With this property,
the general algorithm consists in iteratively replacing in-
nermost subformulae of the form φ1 φ2 by a counterpart in
GML, allowing us to eliminate all the occurrences of and
obtain an equivalent formula inGML. The base case involves
subformulae φ1 and φ2 inML (a fragment of GML).
Let us provide a few definitions. Let φ be a formula in

GML. We write maxPC(φ) to denote the set of subformulaeψ
of φ that are maximal and modality-free, i.e.

1. ψ is modality-free: it does not contain modalities3≥k
and one of its occurrences is not in the scope of 3≥k ;

2. ψ is maximal: one of its occurrences does not belong
to a larger modality-free subformula of φ.

For instance, maxPC((p∨3≥3 r)∧(q∨p)) = {p,q∨p}. Similarly,
maxGM(φ) denotes the set of subformulaeψ of φ such thatψ
is of the form 3≥k ψ

′ and one of its occurrences in φ is not
in the scope of graded modalities 3≥k . For instance,
maxGM((p∨3≥3 r)∧ (q∨3≥5 3≥2 q)) = {3≥3 r ,3≥5 3≥2 q}.
Every formula φ in GML is a Boolean combination of formu-
lae from maxPC(φ) ∪ maxGM(φ). Lastly, φ is in good shape if the
properties (1) and (2) below hold:

1. maxPC(φ) ⊆ {⊥,⊤}. Consequently, every propositional
variable in φ occurs in the scope of a graded modality;

2. For all 3≥k ψ ,3≥k ′ ψ ′ in maxGM(φ) with ψ , ψ ′, the
conjunctionψ ∧ψ ′ is unsatisfiable.

Let φ1 and φ2 be GML formulae. First, we show that when
φ1 ∧ φ2 is in good shape, there is a GML formula ψ such
that φ1 φ2 ≡ ψ . To do so, we take a slight detour through
Presburger arithmetic (PA), see e.g. [26, 38]. Given two for-
mulae φ1,φ2 in GML, we will characterise the formula φ1 φ2
by using arithmetical constraints for the number of succes-
sors. Then, we will take advantage of basic properties of
PA in order to eliminate quantifiers, and obtain a GML for-
mula. Below, the variables x, y, z, . . ., possibly decorated and
occurring in formulae, are from PA and therefore they are
interpreted by natural numbers.
Let φ be in GML s.t. maxPC(φ) ⊆ {⊤,⊥} and {ψ1, . . . ,ψn}

contains the set {ψ | 3≥k ψ ∈ maxGM(φ)}. We define formulae
in PA that state constraints about the number of children
satisfying a formula ψj . The variable xj is intended to be
interpreted as the number of children satisfyingψj . We write
φPA(x1, . . . , xn) to denote the arithmetical formula obtained
from φ by replacing with xj ≥ k every occurrence of3≥k ψj
that it is not in the scope of a graded modality. For instance,
assuming that φ = 3≥5 (p ∧ q) ∨ ¬3≥4 ¬p, the expression
φPA(x1, x2) denotes the formula x1 ≥ 5 ∨ ¬(x2 ≥ 4).

Let φ1,φ2 be GML formulae such that φ1 ∧ φ2 is in good
shape and {ψ1, . . . ,ψn} = {ψ | 3≥k ψ ∈ maxGM(φ1 ∧ φ2)}.We
consider the formula [φ1,φ2]PA in PA defined below:

[φ1,φ2]
PA def
= ∃ y11, y

2
1, . . . , y

1
n , y

2
n (

∧n
j=1 xj = y1j + y

2
j)∧

φPA1 (y
1
1, . . . , y

1
n) ∧ φ

PA
2 (y

2
1, . . . , y

2
n).

The formula [φ1,φ2]PA states that there is a way to divide the
children in two distinct sets and each set allows to satisfy
φPA1 or φPA2 , respectively. As PA admits quantifier elimina-
tion [16, 38, 41], there is a quantifier-free formula χ equiva-
lent to [φ1,φ2]PA and its free variables are among x1, . . . , xn .
A priori, the atomic formulae of χ may not be of the simple
form xj ≥ k (e.g. ‘modulo constraints’ or constraints of the
form

∑
aixj ≥ k may be involved). However, if the atomic

formulae of χ are restricted to expressions of the form xj ≥ k ,
then we write χGML to denote the GML formula obtained
from χ by replacing every occurrence of xj ≥ k by 3≥k ψj .

Lemma 3.1. Let φ1, φ2 be in GML such that φ1 ∧ φ2 is in
good shape. [φ1,φ2]PA is equivalent to a quantifier-free PA
formula χ whose atomic formulae are only of the form xj ≥ k .
Moreover, φ1 φ2 ≡ χGML and gr(χGML) ≤ gr(φ1) + gr(φ2).

The bound on gr(χGML) stated in this key lemma is essen-
tial to obtain an exponential bound on the smallest model
satisfying a formula in ML() (see Section 3.2). Thanks to
Lemma 3.1, we can show thatGML is closed under the opera-
tor by reducing the occurrences of this operator to formulae
in good shape. In particular, we show that given two arbi-
trary formulae φ1 and φ2 in GML, φ1 φ2 is equivalent to a
disjunction of formulae of the form (ψ1 ψ2)∧ χ , where χ is a
Boolean combination of atomic propositions andψ1∧ψ2 is in
good shape (henceψ1 ψ2 is equivalent to a formula in GML

Modal Logics with Composition on Finite Forests LICS ’20, July 8–11, 2020, Saarbrücken, Germany

by Lemma 3.1). This is shown syntactically: atomic proposi-
tions are dealt with by propositional reasoning, whereas to
produceψ1 andψ2 we use axioms from GML [6] and rely on
the following equivalences:
(guess) 3≥k φ ≡ 3≥k

(
(φ ∧ψ) ∨ (φ ∧ ¬ψ)

);
(3≥k dist) if φ ∧ψ unsat., 3≥k (φ∨ψ) ≡

∨
k=k1+k2 (3≥k1φ ∧3≥k2ψ);

(dist) (φ ∨ψ) χ ≡ (φ χ) ∨ (ψ χ).
Notice that the conjunction of φ ∧ψ and φ ∧¬ψ from (guess)
is trivially unsatisfiable, allowing us to use (3≥kdist). AsGML
is shown to be closed under the operator , we conclude.

Theorem 3.2. ML() ⪯ GML. Therefore, ML() ≈ GML.

To prove ML() ⪯ GML, we iteratively put subformulae
in good shape and apply Lemma 3.1. This is done several
times, potentially causing an exponential blow-up each time
a formula is transformed. To provide an optimal complexity
upper bound, we need to tame this combinatorial explosion.

3.2 AExpPol-completeness

In order to show that Sat(ML()) is in AExpPol, the main
ingredient is to show that given φ inML(), we build φ ′ in
GML such that φ ′ ≡ φ and the models for φ ′ (if any) do not
require a number of children per node more than exponential
in size(φ). The proof of Theorem 3.2 needs to be refined to
improve the way φ ′ is computed. In particular, this requires
a strategy for the application of the equivalences used to put
a formula in good shape.
We need to introduce a few more simple notions. Let φ

be aGML formula with maxGM(φ) = {3≥k1 ψ1, . . . ,3≥kn ψn}.
We define bd(0,φ) def= k1 + · · · + kn . For allm ≥ 0, we define
bd(m + 1,φ) def= max{bd(m,ψ) | 3≥k ψ ∈ maxGM(φ)}. Hence,
bd(m,φ) can be understood as the maximal bd(0,ψ) for some
subformulaψ occurring at the modal depthm within φ. We
write maxbd(φ) for the valuemax{bd(m,φ) | m ∈ [0,md(φ)]}.
If φ is satisfiable, we can use maxbd(φ) to obtain a bound on
the smallest model satisfying it, as stated in Lemma 3.3 below.

Lemma 3.3. Every satisfiable φ in GML is satisfied by a
pointed forest with at most maxbd(φ)md(φ)+1 worlds.

To show that ML() has the exponential-size model prop-
erty, we establish that given φ in ML(), there is φ ′ in GML
such that φ ′ ≡ φ,md(φ ′) ≤ md(φ) and maxbd(φ ′) is exponen-
tial in size(φ). First, we consider the fragment F of ML():
φ ::= 3≥k ψ | p | φ φ | φ ∧ φ | ¬φ, where p ∈ AP and
3≥k ψ is a formula in GML (abusively assumed in ML()
but we know GML ⪯ ML()). Given φ inML() or in F, we
write cd(φ) to denote its composition degree, i.e. the maximal
number of imbrications of in φ. We extend the notion of bd
to formulae in F, so that bd(m,φ) = bd(m,φ[← ∧]), where
φ[← ∧] is the formula obtained from φ by replacing every
occurrence of by ∧. Similarly, maxGM(φ) def= maxGM(φ[← ∧]).

Letφ be in F such that maxGM(φ) = {3≥k1 χ1, . . . ,3≥kn χn}.
The key step to show the exponential-size model property
essentially manipulates the formulae in maxGM(φ) in order

to produce equivalent formulae ψ1, . . . ,ψn , so that for all
distinct i and j ,ψi ∧ψj is in good shape. Moreover, by replac-
ing in φ every 3≥ki χi with the equivalent formula ψi , we
only witness an exponential blow-up on bd(0,φ), whereas
for everym > 1, bd(m,φ) remains polynomially bounded by
the bd of the original formula. With the bound on the graded
rank found in Lemma 3.1, we derive Lemma 3.4.

Lemma 3.4. Let φ be a formula of the fragment F such that
maxGM(φ) = {3≥k1 χ1, . . . ,3≥kn χn} and k̂ = max{k1, . . . ,kn}.
There is a GML formulaψ such that φ ≡ ψ and,

1. md(ψ) ≤ md(φ); 2. bd(0,ψ) ≤ k̂ × 2n+cd(φ);
3. bd(1,ψ) ≤ n × bd(1,φ); 4. ∀m ≥ 2, bd(m,ψ) = bd(m,φ).

In the proof of Lemma 3.4, a first step essentially consists
in applying multiple times (guess) in order to derive, for
every i ∈ [1,n], an equivalence 3≥ki χi ≡ψ ′i where
ψ ′i

def
= 3≥ki

∨
f:[1,n]→{⊤,⊥}

(
χi ∧ [χ1]

f(1) ∧ · · · ∧ [χn]
f(n)) .

Here, [χj]⊤ def
= χj and [χj]⊥ def

= ¬χj . Roughly speaking, in
this step, we expand χi by considering all the possible truth
values for the formulae χ1, . . . , χn (the disjuncts where χi
is negated can be simply discharged from the disjunction,
as they are unsatisfiable). Substituting every 3≥ki χi byψ ′i
in φ leads to a formula φ ′ such that bd(1,φ ′) ≤ n × bd(1,φ)
(as in Lemma 3.4) and for everym , 1, bd(m,φ ′) = bd(m,φ).
Afterwards, we repeatedly apply (3≥k dist) toψ ′i and obtain
the formula ψi satisfying the aforementioned property, i.e.
for all distinct i and j,ψi ∧ψj is in good shape. With (dist),
this allows us to apply Lemma 3.1 until all the operators are
removed. Besides, replacing everyψ ′i byψi in φ

′ leads to a
formula having the same bd as the formulaψ in Lemma 3.4.

Applying adequately the transformation from Lemma 3.4
to a formula inML(), i.e. by considering maximal subformu-
lae of the fragment F, allows us to get a logically equivalent
GML formula having small models.

Lemma 3.5. Every satisfiable φ in ML() is satisfied by a
pointed forest of size at most exponential in size(φ).

The proof of Lemma 3.5 (relying on Lemma 3.4) consists
in showing that for all φ inML(), there is φ ′ in GML such
that φ ′ ≡ φ and maxbd(φ

′) is exponential in size(φ), which is
sufficient by Lemma 3.3 to get the exponential-size model
property, whence the upper bound AExpPol.

Theorem 3.6. Sat(ML()) is in AExpPol.

The (standard) proof consists in observing that to check
the satisfiability status of φ in ML(), first guess a pointed
forest of exponential-size (thanks to Lemma 3.5) and check
whether it satisfies φ. This can be done in exponential-time
using an alternating Turing machine with a linear amount of
alternations (between universal states and existential states)
by viewing ML() as a fragment of MSO.
It remains to establish AExpPol-hardness. We provide a

logspace reduction from the satisfiability problem for the
team logic PL[~] shown AExpPol-complete in [27, Thm. 4.9].

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Bednarczyk, Demri, Fervari & Mansutti

PL[~] formulae are defined by the following grammar:
φ := p | Û¬p | φ ∧ φ | ~φ | φ Û∨φ ,

where p ∈ AP and the connectives Û¬ and Û∨ are dotted to
avoid confusion with those ofML(). PL[~] is interpreted on
sets of (Boolean) propositional valuations over a finite subset
ofAP. They are called teams and are denoted by T,T1, A
model for φ is a team T over a set of propositional variables
including those occurring in φ and such that T |= φ with:
T |= p ⇔ for all v ∈ T, we have v(p) = ⊤;
T |= Û¬p ⇔ for all v ∈ T, we have v(p) = ⊥;
T |= φ1 Û∨φ2⇔∃T1,T2 s.t. T =T1 ∪T2, T1 |=φ1, T2 |=φ2.

The connectives ~ and ∧ are interpreted as the classical nega-
tion and conjunction, respectively. Notice that, in the clause
for Û∨, the teams T1 and T2 are not necessarily disjoint.

Let us discuss the reduction from Sat(PL[~]) to Sat(ML()).
A direct encoding of a team T into a pointed forest (M,w)
consists in having a correspondence between the proposi-
tional valuations in T and the propositional valuations of
the children of w . This would work fine if there were no
mismatch between the semantics for (disjointness of the
children) and the one for Û∨ (disjointness not required). To
handle this, when checking the satisfaction of φ in PL[~]
with n occurrences of Û∨, we impose that if a propositional
valuation occurs among the children ofw , then it occurs in
least n + 1 children. This property must be maintained after
applying Û∨ several times, always with respect to the number
of occurrences of Û∨ in the subformula of φ that is evalu-
ated. Non-disjointness of the teams is encoded by carefully
separating the children ofw having identical valuations.
We now formalise the reduction. Assume that we wish

to translate φ from PL[~], written with atomic propositions
in P = {p1, . . . ,pm} and containing at most n occurrences
of the operator Û∨. We introduce a set Q = {q1, . . . ,qn+1} of
auxiliary propositions disjoint from P. The elements of Q
are used to distinguish different copies of the same proposi-
tional valuation of a team. Thus, with respect to a pointed
forest (M,w), we require each child of w to satisfy exactly
one element of Q . This can be done with the formula

uni(Q) def= 2(
∧

i,i′∈[1,n+1] ¬(qi ∧ qi′) ∧
∨

i ∈[1,n+1] qi).
We require that if a child ofw satisfies a propositional val-
uation over (elements in) P, then there are n + 1 children
satisfying that valuation over P, each of them satisfying a
distinct symbol in Q . So, every valuation over P occurring in
some child ofw , occurs at least in n + 1 children ofw . How-
ever, as the translation of the operator Û∨ modifies the set of
copies of a propositional valuation, this property must be
extended to arbitrary subsets of Q . Given ∅ , X ⊆ [1,n + 1],
we require that for all k , k ′ ∈ X , if a children of w sat-
isfies qk , then there is a child satisfying qk ′ with the same
valuation over P. The formula cp(X) below does the job:∧
k,k ′∈X

¬
(
2qk (3=1 qk ∧ ¬(⊤ 3=1 qk ∧3=1 qk ′ ∧

∧
j ∈[1,m]

3pj ⇒ 2pj))
)
.

Lastly, before defining the translation map τ , we describe
how different copies of the same propositional valuation are
split. We introduce two auxiliary choice functions c1 and
c2 that take as arguments X ⊆ [1,n + 1], and n1,n2 ∈ N
with |X | ≥ n1 + n2 such that for each i ∈ {1, 2}, we have
ci (X ,n1,n2) ⊆ X , |ci (X ,n1,n2)| ≥ ni . Moreover c1(X ,n1,n2)⊎
c2(X ,n1,n2) = X . The maps c1 and c2 are instrumental to de-
cide how to split X into two disjoint subsets respecting basic
cardinality constraints. The translation map τ is designed as
follows (∅ , X ⊆ [1,n + 1]):

τ (p,X) def= 2((
∨
j ∈X qj) ⇒ p);

τ (Û¬p,X) def= 2((
∨
j ∈X qj) ⇒ ¬p);

τ (φ1 ∧ φ2,X)
def
= τ (φ1,X) ∧ τ (φ2,X); τ (~φ,X) def= ¬τ (φ,X);

τ (φ1 Û∨φ2,X)
def
= (τ (φ1,X1) ∧ cp(X1)) (τ (φ2,X2) ∧ cp(X2)),

where (i) |X | is greater or equal to the number of occurrences
of Û∨ in φ1 Û∨φ2 plus one; (ii) given n1,n2 such that n1 (resp.
n2) is the number of occurrences of Û∨ in φ1 (resp. φ2) plus
one, for each i ∈ {1, 2} we have ci (X ,n1,n2) = Xi .
Lemma 3.7 below guarantees that starting with a linear

number of children with the same propositional valuation is
sufficient to encode Û∨ withinML().

Lemma 3.7. Let φ be in PL[~] with n occurrences of Û∨ and
built upon p1, . . . , pm . Then, φ is satisfiable iff so is

uni(q1, . . . ,qn+1) ∧ cp([1,n + 1]) ∧ τ (φ, [1,n + 1]).

The ML() formula involved in Lemma 3.7 has modal
depth one. By Theorem 3.6, Sat(ML()) is AExpPol-complete
even restricted to formulae of modal depth at most one.

Corollary 3.8. Sat(ML()) is AExpPol-complete.

As we show in the next section, the complexity of ML(∗)
does not collapse to modal depth one: Sat(ML(∗)) restricted
to formulae of modal depth k is exponentially easier than
Sat(ML(∗)) restricted to formulae of modal depth k + 1.

4 ML(∗) is Tower-complete

We show that Sat(ML(∗)) is Tower-complete, i.e. complete
for the class of all problems of time complexity bounded
by a tower of exponentials whose height is an elementary
function [43]. Given k,n ≥ 0, we inductively define the
tetration function t as t(0,n) def= n and t(k + 1,n) = 2t(k,n).
Intuitively, t(k,n) defines a tower of exponentials of height
k . By k-NExpTime, we denote the class of all problems de-
cidable with a nondeterministic Turing machine (NTM) of
working timeO(t(k,p(n))) for some polynomial p(.), on each
input of length n. To show Tower-hardness, we design a uni-
form elementary reduction allowing us to get k-NExpTime-
hardness for all k greater than a certain (fixed) integer. In
our case, we achieve an exponential-space reduction from
the k-NExpTime variant of the tiling problem, for all k ≥ 2.
The tiling problem Tilek takes as input a triple TT =
(T ,H ,V) where T is a finite set of tile types,H ⊆ T × T
(resp.V ⊆ T × T) represents the horizontal (resp. vertical)

Modal Logics with Composition on Finite Forests LICS ’20, July 8–11, 2020, Saarbrücken, Germany

matching relation, and an initial tile type c ∈ T . A solution
for the instance (TT , c) is a mapping τ : [0, t(k,n) − 1] ×
[0, t(k,n) − 1] → T such that (first) τ (0, 0) = c, and

(hor&vert) for all i ∈ [0, t(k,n) − 1] and j ∈ [0, t(k,n) − 2],
(τ (j, i),τ (j + 1, i)) ∈ H and (τ (i, j),τ (i, j + 1)) ∈ V .

The problem of checking whether an instance of Tilek has
a solution is known to be k-NExpTime-complete (see [36]).
The reduction below from Tilek to Sat(ML(∗)) recycles

ideas from [7] to reduce Tilek to Sat(QKt). To provide the
adequate adaptation for ML(∗), we need to solve two ma-
jor issues. First, QKt admits second-order quantification,
whereas inML(∗), the second-order features are limited to
the separating conjunction ∗. Second, the second-order quan-
tification ofQKt essentially colours the nodes in Kripke-style
structures without changing the frame (W ,R). By contrast,
the operator ∗ modifies the accessibility relation, possibly
making worlds that were reachable from the current world,
unreachable in submodels. The Tower-hardness proof for
Sat(ML(∗)) becomes then much more challenging: we would
like to characterise the position on the grid encoded by a
worldw by exploiting properties of its descendants (as done
for QKt), but at the same time, we need to be careful and
only consider submodels wherew keeps encoding the same
position. In a sense, our encoding is robust: when the opera-
tor ∗ is used to reason on submodels, we can enforce that no
world changes the position of the grid that it encodes.

4.1 Enforcing t(j,n) children.

Let M = (W ,R,V) be a finite forest. We consider two dis-
joint sets of atomic propositions P = {p1, . . . ,pn , val} and
Aux = {x, y, l, s, r} (whose respective role is later defined).
Elements from Aux are understood as auxiliary propositions.
We call ax-node (resp. Aux-node) a world satisfying the propo-
sition ax ∈ Aux (resp. satisfying some proposition in Aux).We
call t-node a world that satisfies the formula t def=

∧
ax∈Aux ¬ax.

Every world ofM is either a t-node or an Aux-node. We say
thatw ′ is a t-child ofw ∈W ifw ′ ∈ R(w) andw ′ is a t-node.
We define the concepts of Aux-child and ax-child similarly.

The key development of our reduction is given by the
definition of a formula, of exponential size in j ≥ 1 and
polynomial size in n ≥ 1, that when satisfied by (M,w)
forces every t-node in Ri (w), where 0 ≤ i < j , to have exactly
t(j−i,n) t-children, each of them encoding a different number
in [0, t(j − i,n) − 1]. As we impose thatw is a t-node, it must
have t(j,n) t-children. We assume n to be fixed throughout
the section and denote this formula by type(j). From the
property above, if M,w |= type(j) then for all i ∈ [1, j−1]
and all t-nodesw ′ ∈ Ri (w) we haveM,w ′ |= type(j−i).

First, let us informally describe how numbers are encoded
in the model (M,w) satisfying type(j). Let i ∈ [1, j]. Given
a t-node w ′ ∈ Ri (w), ni (w ′) denotes the number encoded
by w ′. We omit the subscript i when it is clear from the
context. When i = j, we represent n(w ′) by using the truth

values of the atomic propositions p1, . . . ,pn . The proposition
pb is responsible for the b-th bit of the number, with the least
significant bit being encoded by p1. For example, for n = 3,
we have M,w ′ |= p3 ∧ p2 ∧ ¬p1 whenever n(w ′) = 6. The
formula type(1) forces the parent of w ′ (i.e. is a t-node in
R j−1(w)) to have exactly 2n t-children by requiring one t-
child for each possible valuation upon p1, . . . ,pn . Otherwise,
for i < j (and therefore j ≥ 2), the number ni (w ′) is repre-
sented by the binary encoding of the truth values of val on
the t-children ofw ′ which, since (M,w ′) |= type(j − i), are
t(j − i,n) children implicitly ordered by the number they, in
turn, encode. The essential property of type(j) is therefore
the following: the numbers encoded by the t-children of a
t-nodew ′′ ∈ Ri (w), represent positions in the binary repre-
sentation of the number ni (w ′′). Thanks to this property, the
formula type(j) forcesw to have exactly t(j,n) children, all
encoding different numbers in [0, t(j,n) − 1]. This is roughly
represented in the picture below, where “1” stands for val
being true whereas “0” stands for val being false.

.w

. . .
. . .

<<

. . .

<<

. . .

<<

1 1 1 0 0 1 0 0 0

type(j), has t(j,n) children

type(j−1)

type(j−2)

To characterise these trees in ML(∗), we simulate second-
order quantification by using Aux-nodes. Informally, we re-
quire a pointed forest (M,w) satisfying type(j) to be such
that (i) every t-node w ′ ∈ R(w) has exactly one x-child,
and one (different) y-child. These nodes do not satisfy any
other auxiliary proposition; (ii) for every i ≥ 2, every t-
nodew ′ ∈ Ri (w) has exactly five Aux-children, one for each
ax ∈ Aux. We can simulate second-order existential quan-
tification on t-nodes with respect to the symbol ax ∈ Aux
by using the operator ∗ in order to remove edges leading to
ax-nodes. Then, we evaluate whether a property holds on
the resulting model where a t-node “satisfies” ax ∈ Aux if
it has a child satisfying ax. To better emphasise the need to
move along t-nodes, given a formula φ, we write ⟨t⟩φ for the
formula 3(t ∧ φ). Dually, [t]φ def

= 2(t ⇒ φ). ⟨t⟩i and [t]i are
also defined, as expected.

Let us start to formalise this encoding. Let j ≥ 1. First, we
restrict ourselves to models where every t-node reachable
in at most j steps does not have two Aux-children satisfying
the same proposition. Moreover, these Aux-nodes have no
children and only satisfy exactly one ax ∈ Aux. We express
this condition with the formula init(j) below:

⊞j
∧

ax∈Aux

((
t ⇒ ¬(3ax ∗3ax)

)
∧2

(
ax⇒ 2⊥ ∧

∧
bx∈Aux\{ax}

¬bx
))
,

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Bednarczyk, Demri, Fervari & Mansutti

where ⊞0φ def
= φ and ⊞m+1φ def

= φ ∧2⊞m (φ). Notice that if
M,w |= init(j) andM′ ⊑ M, thenM′,w |= init(j).
Among the models ((W ,R,V),w) satisfying init(j), we

define the ones satisfying type(j) described below (see simi-
lar conditions in [7, Section IV]):
(subj) every t-node in R(w) satisfies type(j − 1);
(zeroj) there is a t-node w̃ ∈ R(w) such that n(w̃) = 0;
(uniqj) distinct t-nodes in R(w) encode different numbers;
(complj) for every t-nodew1 ∈ R(w), if n(w1) < t(j,n) − 1

then n(w2) = n(w1) + 1 for some t-nodew2 ∈ R(w);
(aux) w is a t-node, every t-node in R(w) has one x-child

and one y-child, and every t-node in R2(w) has three
children satisfying l, r and s, respectively.

We define type(0) def= ⊤, and for j ≥ 1, type(j) is defined as
type(j) def= sub(j) ∧ zero(j) ∧ uniq(j) ∧ compl(j) ∧ aux,

where each conjunct expresses its homonymous property.
The formulae for sub(j), aux and zero(j) can be defined as

sub(j) def= [t]type(j − 1);
aux def
= t ∧ [t](3x ∗3y) ∧ [t]2(3l ∗3s ∗3r);

zero(1) def= ⟨t⟩
∧

b ∈[1,n]¬pb ;
zero(j + 1) def= ⟨t⟩[t]¬val.
The challenge is therefore how to express uniq(j) and

compl(j), to guarantee that the numbers of children ofw span
all over [0, t(j,n) − 1]. The structural properties expressed by
type(j) lead to strong constraints, which permits to control
the effects of ∗ when submodels are constructed. This is a
key point in designing type(j) as it helps us to control which
edges are lost when considering a submodel.

Nominals, forks and number comparisons. In order to
define uniq(j) and compl(j) (completing the definition of
type(j)), we introduce auxiliary formulae, characterising
classes of models that emerge naturally when trying to cap-
ture the semantics of (uniqj) and (complj).
Let us consider a finite forestM = (W ,R,V) andw ∈W .

A first ingredient is given by the concept of local nominals,
borrowed from [7]. We say that ax ∈ Aux is a (local) nominal
for the depth i ≥ 1 if there is exactly one t-nodew ′ ∈ Ri (w)
having an ax-child. In this case,w ′ is said to be the world that
corresponds to the local nominal ax. The following formula
states that ax is a local nominal for the depth i:

nomi (ax)
def
= ⟨t⟩i3ax ∧

∧
k ∈[0,i−1]

[t]k¬
(
⟨t⟩i−k3ax ∗ ⟨t⟩i−k3ax

)
.

We define the formula@i
axφ

def
= ⟨t⟩i (3ax∧φ)which, under the

hypothesis that ax is a local nominal for the depth i , states
that φ holds on the t-node that corresponds to ax. Moreover,
we define nomi (ax,bx) def= nomi (ax) ∧ nomi (bx) ∧ ¬@i

ax3bx,
which states that ax and bx are two nominals for the depth i
with respect to two distinct t-nodes.

As a second ingredient, we introduce the notion of fork
that is a specific type of models naturally emerging when try-
ing to compare the numbers n(w1) and n(w2) of two worlds

w1,w2 ∈ R
i (w) (e.g. when checking whether n(w1) = n(w2)

or n(w2) = n(w1) + 1 holds). Given j ≥ i ≥ 1 we introduce
the formula forkij (ax, bx) that is satisfied by (M,w) iff:
• ax and bx are nominals for the depth i .
• w has exactly two t-children, saywU andwD .
• For every k ∈ [1, i − 1], both Rk (wU) and Rk (wD) con-
tain exactly one t-child.
• The only t-node in Ri−1(wU), saywax, corresponds to
the nominal ax. The only t-node in Ri−1(wD), saywbx,
corresponds to the nominal bx.
• If i < j, then (M,wax) and (M,wbx) satisfy

typelsr(j − i)
def
= type(j − i) ∧ [t](3l ∧3s ∧3r).

It should be noted that, whenever (M,w) satisfies the for-
mula forkij (ax, bx), we witness two paths of length i , both
starting atw and leading towax andwbx, respectively.Worlds
in this path may have Aux-children. Below, we schematise a
model satisfying forkij (ax, bx):

.

forkij (ax, bx)

w

typelsr(j−i)

typelsr(j−i)

ax

bx

i

Since the definition of forkij (ax, bx) is recursive on i and j
(due to type(j − i)), we postpone its formal definition to the
next two sections where we treat the base cases for i = j and
the inductive case for j > i separately.

The last auxiliary formulae are [ax< bx]ij and [bx=ax+1]j .
Under the hypothesis that (M,w) satisfies forkij (ax, bx), the
formula [ax< bx]ij is satisfied whenever the two (distinct)
worlds wax,wbx ∈ R

i (w) corresponding to the nominals ax
and bx are such that n(wax) < n(wbx). Similarly, under the
hypothesis that (M,w) satisfies fork1j (ax, bx), the formula
[bx = ax+1]j is satisfied whenever n(wbx) = n(wax)+1 holds.
Both formulae are recursively defined, with base cases for
i = j and j = 1, respectively.

For the base case, we define the formulae forkjj (ax, bx)
and [ax< bx]jj (for arbitrary j), as well as [bx = ax+1]1.
From these formulae, we are then able to define uniq(1) and
compl(1), which completes the characterisation of type(1)
and typelsr(1). Afterwards, we consider the case 1 ≤ i < j
and j ≥ 2, and define forkij (ax, bx), [ax< bx]ij , [bx = ax+1]j ,
as well as uniq(j) and compl(j), by only relying on formulae
that are already defined (by inductive reasoning).

Base cases: i = j or j = 1. In what follows, we consider
a finite forest M = (W ,R,V) and a world w . Following its
informal description, we have

forkjj (ax, bx)
def
= 3=2t ∧ [t]⊞j−2 (t⇒3=1t) ∧ nomj (ax,bx),

where ⊞jφ def
= ⊤ for j < 0. As previously explained, in the

base case, the number n(w ′) encoded by a t-nodew ′ ∈ R j (w)

Modal Logics with Composition on Finite Forests LICS ’20, July 8–11, 2020, Saarbrücken, Germany

is represented by the truth values of p1, . . . ,pn . Then, the
formula [ax< bx]jj is defined as

[ax< bx]jj
def
=
∨

u ∈[1,n]

(
@j

ax¬pu ∧@
j
bx pu ∧

∧
v ∈[u+1,n]

(@j
ax pv⇔@j

bx pv)
)
.

The satisfaction of (M,w) |= forkjj (ax, bx) enforces that the
distinct t-nodes wax,wbx ∈ R

j (w) corresponding to ax and
bx satisfy n(wax) < n(wbx), which can be shown by using
standard properties about bit vectors.

The formula [bx = ax+1]1 is similarly defined:∨
u ∈[1,n]

(
@1

ax(¬pu∧
∧

v ∈[1,u−1]

pv) ∧@1
bx(pu∧

∧
v ∈[1,u−1]

¬pv)∧
∧
v ∈[u+1,n]

(@1
axpv⇔@1

bxpv)
)
.

Assuming (M,w) |= fork11(ax, bx), this formula states that
the two distinct t-nodeswax,wbx ∈ R(w) corresponding to ax
and bx are such that n(wbx) = n(wax)+ 1. Again, correctness
is guaranteed by standard analysis on bit vectors.

To define uniq(1), we recall that amodel satisfying type(1)
satisfies the formula aux and hence every t-node in R(w) has
two auxiliary children, one x-node and one y-node. The idea
is to use these two Aux-children and rely on ∗ to state that
it is not possible to find a submodel of M such that w has
only two distinct childrenwx andwy corresponding to the
nominals x and y, respectively, and such that n(wx) = n(wy).
In a sense, the operator ∗ simulates a second-order quantifi-
cation on x and y. Let [x= y]11

def
= ¬([x< y]11 ∨ [y< x]

1
1). We

define uniq(1) def= ¬
(
⊤ ∗ (fork11(x, y) ∧ [x= y]

1
1)
)
.

To capture compl(1) we state that it is not possible to find
a submodel ofM that looses x-nodes from R2(w), keeps all
y-nodes, and is such that (i) x is a local nominal for the depth
1, corresponding to a worldwx encoding n(wx) < 2n − 1; (ii)
there is no submodel wherew has two t-children,wx and a
second worldwy, such thatwy corresponds to the nominal y
and n(wy) = n(wx)+1. Thus, compl(1) is defined as:
¬
(
2⊥∗

(
[t]3y∧@1

x¬11∧¬(⊤∗(fork
1
1(x, y)∧[y = x+1]1))

))
.

The subscript “1” in the formula 11 refers to the fact that we
are treating the base case of compl(j) with j = 1. We have
11

def
=
∧

i ∈[1,n] pi , reflecting the encoding of 2n − 1.
This concludes the definition of type(1) (and typelsr(1)),

which is established correct with respect to its specification.

Lemma 4.1. LetM,w |= init(1). We haveM,w |= type(1)
iff (M,w) satisfies (sub1), (zero1), (uniq1), (compl1) and (aux).

Inductive case: 1 ≤ i < j. As an implicit inductive hypoth-
esis used to prove that the formulae are well-defined, we
assume that [bx = ax+1]j′ and type(j ′) are already defined
for every j ′ < j, whereas forki

′

j′(ax, bx), and [ax< bx]
i′
j′ are

already defined for every 1 ≤ i ′ ≤ j ′ such that j ′ − i ′ < j − i .
Therefore, we define:

forkij (ax, bx)
def
= forkii (ax, bx) ∧ [t]

itypelsr(j − i).

It is easy to see that this formula is well-defined: forkii (ax, bx)
is from the base case, whereas typelsr(j−i) is defined by in-
ductive hypothesis, since we have j − i < j.

Consider now [ax< bx]ij . AssumingM,w |= forkij (ax, bx),
wewish to express n(wax)< n(wbx) for the two distinct worlds
wax,wbx ∈ R

i (w) corresponding to the nominals ax and bx,
respectively. As i < j, n(wax) (resp. n(wbx)) is encoded us-
ing the truth value of val on the t-children of wax (resp.
wbx). To rely on arithmetical properties of binary numbers
used to define [ax< bx]jj , we need to find two partitions
Pax = {Lax, Sax,Rax} and Pbx = {Lbx, Sbx,Rbx}, one for the t-
children ofwax and another one for those ofwbx s.t.:
(LSR): Given b ∈ {ax, bx}, Pb splits the t-children as follows:

• there is a t-child sb ofwb such that Sb = {sb };
• n(r) < n(sb) < n(l), for every r ∈ Rb and l ∈ Lb .

(LESS): Pax and Pbx have constraints to satisfy <:
• n(sax) = n(sbx),M, sax |= ¬val andM, sbx |= val;
• for every lax ∈ Lax and lbx ∈ Lbx, if n(lax) = n(lbx)
thenM, lax |= val iffM, lbx |= val.

It is important to notice that these conditions essentially
revolve around the numbers encoded by t-children, which
will be compared using the already defined (by inductive
reasoning) formulae [ax< bx]i′j′ , where j

′ − i ′ < j − i . Since
the semantics of [ax< bx]ij is given under the hypothesis that
M,w |= forkij (ax, bx), we can assume that every child of
wax andwbx has all the possible Aux-children. Then, we rely
on the auxiliary propositions in {l, s, r} in order to mimic
the reasoning done in (LSR) and (LESS).

We start by considering the constraints involved in (LSR)
and express them with the formula lsr(j), which is satisfied
by a pointed forest (M = (W ,R,V),w) whenever:
• (M,w) satisfies type(j).
• Every t-child ofw has exactly one {l, s, r}-child, and
only one of these t-children (sayw ′) has an s-child.
• Every t-child of w that has an l-child (resp. r-child)
encodes a number greater (resp. smaller) than n(w ′).

Despite this formula being defined in terms of type(j), we
only rely on lsr(j − i) (which is defined by inductive reason-
ing) in order to define [ax< bx]ij . The picture below schema-
tises a model satisfying lsr(j).

.w

.

<<< <

lsr(j), implies type(j)

ll s r r

The definition of lsr(j) follows closely its specification:
lsr(j) def= type(j) ∧ nom1(s) ∧¬(⊤∗(fork

1
j (s, l)∧¬[s< l]

1
j))

∧¬(⊤∗(fork1j (s, r)∧¬[r< s]
1
j)) ∧ [t]3=1(l∨ s∨ r).

We define the formula [ax< bx]ij as follows:

⊤ ∗
(
nomi (ax,bx) ∧ [t]ilsr(j − i) ∧ Sij (ax, bx) ∧ L

i
j (ax, bx)

)
,

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Bednarczyk, Demri, Fervari & Mansutti

where Sij (ax, bx) and Lij (ax, bx) check the first and second
condition in (LESS), respectively. In particular, by defining
[ax= bx]ij

def
= ¬([ax< bx]ij ∨ [bx< ax]

i
j), we have

Sij (ax, bx)
def
= ⊤ ∗

(
forki+1j (x, y) ∧@

i
ax⟨t⟩(3s ∧3x) ∧

@i
bx⟨t⟩(3s ∧3y) ∧ [x= y]i+1j ∧@

i+1
x ¬val ∧@

i+1
y val

)
Lij (ax, bx)

def
= ¬

(
⊤ ∗

(
forki+1j (x, y) ∧@

i
ax⟨t⟩(3l ∧3x) ∧

@i
bx⟨t⟩(3l ∧3y) ∧ [x= y]i+1j ∧¬(@

i+1
x val⇔ @i+1

y val)
))
.

Both forki+1j (x, y) and [x= y]i+1j used in these formulae are
defined recursively. The formula Sij (ax, bx) states that there
is a submodelM′ ⊑ M such that
I. M′,w |= forki+1j (x, y);
II. sax corresponds to the nominal x at depth i + 1;
III. sbx corresponds to the nominal y at depth i + 1;
IV-VI. n(sax) = n(sbx),M, sax ̸ |= val andM, sbx |= val.
(The enumeration I-VI refers to the conjuncts in the formula)

Sij (ax, bx) correctly models the first condition of (LESS).
Regarding Lij (ax, bx) and (LESS), a similar analysis can be
performed. We define LSij (ax, bx)

def
= Lij (ax, bx) ∧ S

i
j (ax, bx).

Let us consider [bx = ax+1]j . Under the hypothesis that
M,w |= forkij (ax, bx), this formula must express n(wbx) =

n(wax) + 1 for the two (distinct) worlds wax,wbx ∈ Ri (w).
Then, as done for defining [ax< bx]ij , we take advantage of
arithmetical properties on binary numbers and we search for
two partitions Pax = {Lax, Sax,Rax} and Pbx = {Lbx, Sbx,Rbx}

of the t-children ofwax andwbx, respectively, such that Pax
and Pbx satisfy (LSR) as well as the condition below:
(PLUS): Pax and Pbx have the arithmetical properties of +1 :

• Pax and Pbx satisfy (LESS);
• for every rax ∈ Rax, we haveM, rax |= val;
• for every rbx ∈ Rbx, we haveM, rax ̸ |= val,

where Sax = {sax} and Sbx = {sbx}, as required by (LSR).
The definition of [bx = ax+1]j is similar to [ax< bx]ij :
⊤∗

(
nom1(ax,bx) ∧ [t]lsr(j − 1) ∧ LS1j (ax, bx) ∧ R(ax, bx)

)
,

where R(ax, bx)def=@1
ax[t](3r⇒ val)∧@1

bx[t](3r⇒ ¬val)
captures the last two conditions of (PLUS).

To define uniq(j) and compl(j), we rely on forkij (ax, bx),
[ax< bx]ij and [bx = ax+1]j .

uniq(j) def= ¬
(
⊤ ∗ (fork1j (x, y) ∧ [x= y]

1
j)
)

compl(j) def= ¬
(
2⊥ ∗

(
[t](typelsr(j − 1) ∧3y) ∧ nom1(x)∧

@1
x¬1j ∧ ¬

(
⊤ ∗ (fork1j (x, y) ∧ [y = x+1]j)

)))
,

where 1j
def
= [t]val reflects the encoding of t(j,n) − 1 for

j > 1. The main difference between compl(1) and compl(j)
(j > 1) is that the conjunct [t]3y of compl(1) is replaced
by [t](typelsr(j − 1) ∧ 3y) in compl(j), as needed to cor-
rectly evaluate fork1j (x, y). Indeed, the difference between
fork11(x, y) and fork1j (x, y) is precisely that the latter re-
quires [t]typelsr(j − 1). The definition of type(j) is now
complete. We can state its correctness.

Lemma 4.2. LetM,w |= init(j). We haveM,w |= type(j)
iff (M,w) satisfies (subj), (zeroj), (uniqj), (complj) and (aux).

The size of type(j) is exponential in j > 1 and polynomial
in n ≥ 1. As its size is elementary, we can use this formula
as a starting point to reduce Tilek .

4.2 Tiling a grid [0, t(k,n) − 1] × [0, t(k,n) − 1]
Below, we briefly explain how to use previous developments
to define a uniform reduction from Tilek , for every k ≥ 2.
Several adaptations are needed to encode smoothly the grid
but the hardest part was the design of type(j). Let k ≥ 2
and (TT , c) be an instance of Tilek . We can construct a for-
mula tilingTT,c(k) that is satisfiable if and only if (TT , c)
as a solution. To represent [0, t(k,n) − 1]2 in some pointed
forest (M,w), whereM = (W ,R,V), we recycle the ideas for
defining type(k). From Lemma 4.2, we know that ifM,w |=
init(k) ∧ type(k) then the t-children of w encode the in-
terval [0, t(k,n) − 1]. A position in the grid is however a
pair of numbers, hence the crux of our encoding rests on
the fact that each w ′ ∈ R(w) encodes two numbers nH(w ′)
and nV(w ′). Similarly to type(k), these numbers are repre-
sented by the truth values on the t-children ofw ′, with the
help of new propositions valH and valV . We are in luck:
since both numbers are from [0, t(k,n) − 1], w ′ just needs
as many children as when encoding a single number, and
therefore if M,w |= tilingTT,c(k) then M,w ′ |= type(k−1).
In fact, the portion of tilingTT,c(k) that encodes the grid
can be described quite naturally by slightly updating the
characterisation of type(k). For example, (uniqj) becomes
(uniqTT,k) for all distinct t-nodesw1,w2 ∈ R(w)

nH(w1) , nH(w2) or nV(w1) , nV(w2).

The formula uniq(k) has to be updated accordingly, but with-
out major differences or complications. Of course, more is
required as tilingTT,c(k) must also encode the tiling condi-
tions (first) and (hor&vert). Fortunately, the kit of formulae
defined for type(k) allows us to have access to nH(w ′) and
nV(w

′) in such a way that both conditions can be expressed
rather easily. For example, to express vertical constraints, we
design a formula stating that for all t-nodes w1,w2 ∈ R(w),
if nV(w2) = nV(w1)+1 and nH(w2) = nH(w1) then there is
(c1, c2) ∈ V such that w1 ∈ V (c1) and w2 ∈ V (c2). Further
details are omitted by lack of space.

Theorem 4.3. Sat(ML(∗)) is Tower-complete.

5 ML(∗) Strictly Less Expressive Than GML
Below, we focus on the expressivity of ML(∗). We first show
ML(∗) ⪯ GML and then we prove the strictness of the inclu-
sion. The former result takes advantage of the notion of g-
bisimulation, i.e. the underlying structural indistinguishabil-
ity relation of GML, studied in [20]. To showML(∗) ≺ GML,
we define an ad hoc notion of Ehrenfeucht-Fraïssé games
for ML(∗), see e.g. classical definitions in [31] and similar

Modal Logics with Composition on Finite Forests LICS ’20, July 8–11, 2020, Saarbrücken, Germany

approaches in [13, 18]. Then, we design a simple formula in
GML that cannot be expressed inML(∗).

5.1 ML(∗) is not more expressive than GML

To establish thatML(∗) ⪯ GML, we proceed as in Section 3.1.
In fact, by Lemma 2.2, given φ1, φ2 in GML, the formula
φ1 ∗ φ2 is equivalent to (φ1 φ2). Moreover, we know that
given φ1, φ2 in GML, φ1 φ2 is equivalent to some formula in
GML, as shown in Section 3. So, to prove thatML(∗) ⪯ GML
by applying the proof schema of Theorem 3.2, it is sufficient
to show that given φ in GML, there is ψ in GML such that
φ ≡ ψ . To do so, we rely on the indistinguishability relation

of GML, called g-bisimulation [20].
A g-bisimulation is a refinement of the classical back-

and-forth conditions of a bisimulation (see e.g. [8]), tailored
towards capturing graded modalities. It relates models with
similar structural properties, but up to parametersm,k ∈ N
responsible for the modal degree and the graded rank, re-
spectively. The following invariance result holds: g-bisimilar
models are modally equivalent in GML (up to formulae of
modal degreem and graded rank at most k). For simplicity,
we present the construction of the above-mentioned for-
mula ψ by directly using the notion of model equivalence,
without going explicitly through g-bisimulations.

Given m,k ∈ N and P ⊆fin AP, we write GML[m,k,P]
to denote the set of GML formulae ψ having md(ψ) ≤ m,
gr(ψ) ≤ k and propositional variables from P. GML[m,k, P]
is finite up to logical equivalence [20]. Given pointed forests
(M,w) and (M′,w ′), we write (M,w) ≡Pm,k (M

′,w ′) when-
ever (M,w) and (M′,w ′) areGML[m,k, P]-indistinguishable,
i.e. for every ψ in GML[m,k,P], M,w |= ψ iff M′,w ′ |= ψ .
We write T P(m,k) to denote the quotient set induced by the
equivalence relation ≡Pm,k . As GML[m,k,P] is finite up to
logical equivalence, we get that T P(m,k) is finite.
To establish that GML is closed under , we show that

there is a function f : N2 → N such that for allm,k ∈ N and
P ⊆fin AP, if two models are in the same equivalence class
of ≡Pm, f(m,k), then they satisfy the same formulae of the form
φ, where φ is in GML[m,k, P]. By standard arguments and

using the fact that GML[m, f(m,k),P] is finite up to logical
equivalence, we then conclude that φ is equivalent to a
formula in GML[m, f(m,k),P]. Similar approaches are fol-
lowed in [22, 23, 34]. As we are not interested in the size of
the equivalent formula, we can simply use the cardinality of
T P(m,k) in order to inductively define a suitable function:
f(0,k) def= k , f(m + 1,k) def= k × (|T P(m, f(m,k))| + 1).

In conformity with the results in Section 4, the map f can
be shown to be a non-elementary function. To prove that
f satisfies the required properties, we start by showing a
technical lemma which essentially formalises a simulation
argument on the relation ≡Pm, f(m,k) with respect to the sub-
model relation. By taking submodels as with the operator,
equivalence in GML is preserved.

Lemma 5.1. Let (M,w) ≡Pm, f(m,k) (M
′,w ′) wherem,k ∈ N,

P ⊆fin AP,M = (W ,R,V) andM′ = (W ′,R′,V ′). Let R1 ⊆ R.
There is R′1 ⊆ R′ s.t. ((W ,R1,V),w) ≡

P
m,k ((W

′,R′1,V
′),w ′)

and if R1(w) = R(w), then R′1(w
′) = R′(w ′).

The proof of Lemma 5.1 is by induction on m. The last
condition about R1(w) = R(w) will serve in the proof of
Lemma 5.2, as it allows us to capture the semantics of , by
preserving the children of the world w ′. In the proof, we
rely on the properties of g-bisimulations [20] to define a
binary relation↔ between worlds of R(w) and R′(w ′). Every
w1 ↔ w ′1 is such that (M,w1) ≡

P
m−1, f(m−1,k) (M

′,w ′1). The
operator does not necessarily preserve the children ofw1
andw ′1, so that the induction hypothesis, naturally defined
from the statement of Lemma 5.1, is applied on models where
the condition R1(w1) = R(w1) may not hold. We show that
for allR1 ⊆ R, it is possible to constructR′1 ⊆ R′ such that, for
all w1 ↔ w ′1, ((W ,R1,V),w1) ≡

P
m−1,k ((W

′,R′1,V
′),w ′1). The

result is then lifted to ((W ,R1,V),w) ≡
P
m,k ((W

′,R′1,V
′),w ′),

again thanks to the properties of the g-bisimulation.
Intuitively, Lemma 5.1 states that given two models satis-

fying the same formulae up to the parametersm and f(m,k),
we can extract submodels satisfying the same formulae up to
m and k (reduced graded rank). This allows us to conclude
that if φ is in GML, there is some GML formula equivalent
to φ (Lemma 5.2). In other words, the operator can be
eliminated to obtain a GML formula. This, together with
Lemma 2.2 and Theorem 3.2 entail ML(∗) ⪯ GML.

Lemma 5.2. For every φ ∈ GML[m,k,P] there is a formula
ψ ∈ GML[m, f(m,k),P] such that φ ≡ ψ .

5.2 Showing ML(∗) ≺ GML with EF games forML(∗)

We tackle the problem of showing that ML(∗) is strictly
less expressive than GML. To do so, we adapt the notion
of Ehrenfeucht-Fraïssé games (EF games, in short) [31] to
ML(∗), and use it to design a GML formula that is not ex-
pressible in ML(∗). We write ML(∗)[m, s,P] for the set of
formulae φ of ML(∗) having md(φ) ≤ m, at most s nested ∗,
and atomic propositions from P ⊆fin AP. It is easy to see that
ML(∗)[m, s,P] is finite up to logical equivalence.
We introduce the EF games forML(∗). A game is played

between two players: the spoiler and the duplicator . A game
state is a triple made of two pointed forests (M,w) and
(M′,w ′) and a rank (m, s,P), wherem, s ∈ N and P ⊆fin AP.
The goal of the spoiler is to show that the two models are
different. The goal of the duplicator is to counter the spoiler
and to show that the two models are similar. Two models are
different whenever there is φ ∈ ML(∗)[m, s,P] that is satis-
fied by only one of the two models. The EF games forML(∗)
are formally defined in Figure 1. The exact correspondence
between the game and the logic is formalised in Lemma 5.3.
Using the standard definitions in [31], the duplicator has

a winning strategy for the game ((M,w), (M′,w ′), (m, s,P))

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Bednarczyk, Demri, Fervari & Mansutti

Game on [(M1=(W1, R1, V1), w1), (M2=(W2, R2, V2), w2), (m, s, P)].

if there is p ∈ P s.t. w1 ∈ V1(p) iff w2 < V2(p) then the spoiler wins.
else the spoiler chooses i ∈ {1, 2} and plays onMi . The duplicator replies
onMj where j , i . The spoiler must choose one of the following moves,
otherwise the duplicator wins:
modal move: ifm ≥ 1 and Ri (wi) , ∅ then the spoiler can choose to
play a modal move by selecting an element w ′i ∈ Ri (wi). Then,
• the duplicator must reply with a w ′j ∈ Rj (w j) (else, the spoiler wins);
• the game continues on [(M1, w ′1), (M2, w ′2), (m − 1, s, P)].
spatial move: if s ≥ 1 then the spoiler can choose to play a spatial move
by selecting two finite forestsM1

i andM
2
i s.t.M

1
i +M

2
i = Mi . Then,

• the duplicator replies with two forestsM1
j andM

2
j s.t.M

1
j +M

2
j = Mj ;

• The game continues on [(Mk
1 , w1), (Mk

2 , w2), (m, s − 1, P)], where
k ∈ {1, 2} is chosen by the spoiler.

Figure 1. Ehrenfeucht-Fraïssé games for ML(∗)

if she can play in a way that guarantees her to win regard-
less how the spoiler plays. When this is the case, we write
(M,w) ≈Pm,s (M

′,w ′). Similarly, the spoiler has a winning
strategy, written (M,w)0Pm,s (M

′,w ′), if he can play in a way
that guarantees him to win, regardless how the duplicator
plays. Lemma 5.3 guarantees that the games are well-defined.

Lemma 5.3. (M,w)0Pm,s (M
′,w ′) iff there is a formula φ in

ML(∗)[m, s,P] such thatM,w |= φ and M′,w ′ ̸ |= φ.

Lemma 5.3 is proven with standard arguments from [31],
for instance the left-to-right direction, i.e. the completeness of
the game, is by induction on the rank (m, s, P). Thanks to the
EF games, we are able to find a GML formula φ that is not
expressible in ML(∗). By Lemma 2.1 and as ML() ≈ GML,
such a formula is necessarily of modal degree at least 2.
Happily, φ = 3=2 3=1 ⊤ does the job and cannot be ex-
pressed inML(∗). For the proof, we show that for every rank
(m, s,P), there are two structures (M,w) and (M′,w ′) such
that (M,w) ≈Pm,s (M

′,w ′), M,w |= φ and M′,w ′ ̸ |= φ. The
inexpressibility of φ then stems from Lemma 5.3. The two
structures are represented below ((M,w) on the left).

w

.

≥ 2s + 1 ≥ 2s−1(s + 1)(s + 2) + 1

≈Pm,s

w ′

.

≥ 2s + 1 ≥ 2s−1(s + 1)(s + 2) + 1

In the following, we say that a world has type i if it has i
children. As one can see in the figure above, children of the
current worldsw andw ′ are of three types: 0, 1 or 2. When
the spoiler performs a spatial move in the game, a world of
type i can take, in the submodels, a type between 0 and i .
That is, the number of children of a world weakly monotoni-
cally decreases when taking submodels. This monotonicity,
together with the finiteness of the game, lead to bounds on
the number of children of each type, over which the duplica-
tor is guaranteed to win. For instance, the bound for worlds
of type 2 is given by the value 2s (s + 1)(s + 2), where s is the
number of spatial moves in the game. In the two presented

pointed forests, one child of type 0 and one of type 2 are
added with respect to these bounds, so that the duplicator
can make up for the different numbers of children of type 1.

Lemma 5.4. ML(∗) cannot characterise the class of models
satisfying the GML formula 3=2 3=1 ⊤.
Notice thatML(∗) is more expressive thanML.
Indeed, the formula 3⊤ ∗3⊤ distinguishes
the two models on the right, which are bisim-
ilar and hence indistinguishable in ML [46].

0

ByML(∗) ⪯ GML, Lemma 5.4 and Theorem 3.2, we conclude.

Theorem 5.5. ML ≺ ML(∗) ≺ GML ≈ ML().

6 ML(), ML(∗) and Sister Logics

Below, we show how our new results onML() andML(∗)
allow us to make substantial contributions for sister logics.

6.1 Static ambient logic

Static ambient logic (SAL) is a formalism proposed to reason
about spatial properties of concurrent processes specified in
the ambient calculus [15]. In [12], the satisfiability and valid-
ity problems for a very expressive fragment of SAL are shown
to be decidable and conjectured to be in PSpace (see [12,
Section 6]). We invalidate this conjecture by showing that
the intensional fragment of SAL (see [32]), herein denoted
SAL(), is already AExpPol-complete. More precisely, we de-
sign semantically faithful reductions between Sat(ML())
and Sat(SAL()) (in both directions), leading to the above-
mentioned result by Corollary 3.8. SAL() formulae are from

φ := ⊤ | 0 | n[φ] | φ ∧ φ | ¬φ | φ φ,
where n ∈ AP is an ambient name. Historically, the semantics
of SAL is given on a class of syntactically defined finite trees.
However, this class of models is isomorphic to the class
of finite trees M = (W ,R,V), such that each world inW
satisfies exactly one atomic proposition (its ambient name).
Then, the satisfaction relation |= for SAL() is standard for ⊤
and Boolean connectives,φ1 φ2 is as inML(), and otherwise
M,w |= 0 ⇔ R(w) = ∅;
M,w |= n[φ]⇔ there isw ′ ∈W such that R(w) = {w ′},

w ′ ∈ V (n) andM,w ′ |= φ.
With such a presentation, SAL() is a fragment of ML(),
where 0 and n[φ] correspond to 2⊥ and 3=1⊤∧3(n∧φ),
respectively. However, to reduce Sat(SAL()) to Sat(ML()),
we must deal with the constraint on V (uniqueness of the
ambient name). Let φ be in SAL() written with the ambient
names in N= {n1, . . . , nm}. It is known (see [12, Lemma 8])
that if φ is satisfiable, then it can be satisfied by a tree having
ambient names from N∪ {n}, where n is a fresh name. Thus,
we can show that φ is satisfiable iff so is theML() formula

φ ∧⊞md(φ)(
∨

n∈N∪{n}(n ∧
∧

n′∈(N∪{n})\{n} ¬n
′)),

where the right conjunct states thatV , restricted to the propo-
sitions in N ∪ {n}, forms a partition of the worlds reachable
from the current one in at most md(φ) steps.

Modal Logics with Composition on Finite Forests LICS ’20, July 8–11, 2020, Saarbrücken, Germany

Reducing Sat(ML()) to Sat(SAL()) requires a bit more
work. Let M = (W ,R,V) be a finite forest and w ∈ W .
Assume we want to check the satisfiability status of φ in
ML() having atomic propositions from P = {p1, . . . ,pm}
and with n occurrences of . We encode (M,w) into a model
(M′ = (W ′,R′,V ′),w) of SAL() as follows. Let rel and ap
be two ambient names not in P. The ambient name rel en-
codes the relation R whereas ap can be seen as a container for
propositional variables holding on the current world. (i) We
requireW ⊆ W ′, R ⊆ R′ and

⋃
i ∈[0,md(φ)] R

i (w) ⊆ V ′(rel),
i.e., every world reachable fromw in at mostmd(φ) steps has
the ambient name rel. Letw ′ be one of these worlds and sup-
pose that {p | w ′ ∈ V (p)} ∩ P = {q1, . . . ,ql }. (ii)We require
W ′ to contain n+1worldsw ′1, . . . ,w

′
n+1 ∈ R

′(w ′) \R(w ′), all
having ambient name ap. These worlds encode copies ofw ′’s
valuation, similarly to what is done in Section 3.2 to encode
teams from PL[~]. (iii) For all j ∈ [1,n + 1], R′(w ′j) contains
l worlds, all satisfying 0 and a distinct ambient name from
{q1, . . . ,ql }. Below we schematise the encoding (w.r.t.w ′).

w ′
{q1, . . . , ql }

w1
. . .
wk

⇝

w ′
rel

wk
rel ap

q1
0

ql
0

ap

q1
0

ql
0

. . . n+1 . . .
timesw1

rel

.

. . .

Let n ∈ AP. We define the modality ⟨n⟩φ def
= n[φ] ⊤ and its

dual [n]φ def
= ¬⟨n⟩¬φ. We write ∀[n] for ¬((¬0 ∧ ¬n[⊤]) ⊤),

so that (M,w) |= ∀[n] whenever every child of w has the
ambient name n. Moreover, [# ≥ 0] def= ⊤ and [# ≥ β+1] def=
¬0 [# ≥ β], so that (M,w) |= [# ≥ β]wheneverw has at least
β children. Lastly, [#= β]def= [# ≥ β]∧¬[# ≥ β+1]. The models
of SAL() encoding models of ML() are characterised by

Cφ
def
=
∧

j ∈[0,md(φ)]

[rel]j
(
∀[rel] (∀[ap] ∧ [#=n+1] ∧ [ap]((p1[0]∨0)

. . . (pm[0]∨0)
)
∧
∧

i ∈[1,m](⟨ap⟩⟨pi⟩⊤ ⇒ [ap]⟨pi⟩⊤)
))
.

Lastly, we define the translation of φ, written τ (φ), into
SAL(). It is homomorphic for Boolean connectives and ⊤,
τ (p) def= ⟨ap⟩⟨p⟩⊤ and otherwise it is inductively defined:

τ (3ψ) def= ⟨rel⟩τ (ψ);
τ (ψ1 ψ2)

def
=

(
τ (ψ1) ∧ ⟨ap⟩≥j⊤

) (
τ (ψ2) ∧ ⟨ap⟩≥k⊤

)
,

where in τ (ψ1 ψ2), j (resp. k) is the number of occurrences of
inψ1 (resp.ψ2) plus one and ⟨ap⟩≥α⊤ def

= (∀[ap] ∧ [#=α]) ⊤.
We show that φ is satisfiable in ML() iff Cφ ∧ τ (φ) is

satisfiable in SAL(), leading to the following results about
the complexity of static ambient logics.

Corollary 6.1. Sat(SAL()) is AExpPol-complete. Sat(SAL)
with SAL from [12] is AExpPol-hard.

6.2 Modal separation logic

The family of modal separation logics (MSL), combining sep-
arating and modal connectives, has been recently introduced
in [21]. Its models, inspired from the memory states used in

separation logic (see also [17]), are Kripke-style structures
M = (W ,R,V), whereW = N and R ⊆W ×W is finite and
functional. Hence, unlike finite forests,M may have loops.
Among the fragments studied in [21], the modal separa-

tion logic MSL(∗,3−1) was left with a huge complexity gap
(between PSpace and Tower). Its formulae are defined from

φ := p | 3−1φ | φ ∧ φ | ¬φ | φ ∗ φ .
The satisfaction relation is as inML(∗) for p ∈ AP, Boolean
connectives and φ1 ∗ φ2, otherwise
M,w |= 3−1φ⇔ ∃w ′ s.t. (w ′,w) ∈ R andM,w ′ |= φ.

SinceMSL(∗,3−1) is interpreted over a finite and functional
relation, 3−1 effectively works as the 3 modality ofML(∗).
Then, assume we want to check the satisfiability of φ in
ML(∗) by relying on an algorithm for Sat(MSL(∗,3−1)). We
simply need to consider the formula φ[3←3−1] obtained
fromφ by replacing every occurrence of3 by3−1, and check
if it can be satisfied by a locally acyclic model (M,w) ofMSL,
i.e. one wherew does not belong to a loop of length ≤ md(φ).
Local acyclicity can be enforced by the formula

locacycl def
= r ∧

∧
i ∈[1,md(φ)](2

−1)i¬r ,
where r ∈ AP is fresh. Then, φ in ML(∗) is satisfiable iff
φ[3←3−1]∧locacycl inMSL(∗,3−1) is satisfiable. Hence,
the results in Section 4 allow us to close the complexity gap.

Corollary 6.2. Sat(MSL(∗,3−1)) is Tower-complete.

7 Conclusion

We have studied and comparedML() andML(∗), two modal
logics interpreted on finite forests and featuring composition
operators. We have not only characterised the expressive
power and the complexity for both logics, but also identi-
fied remarkable differences and export our results to other
logics. ML() is shown as expressive as GML, and its satis-
fiability problem is found to be AExpPol-complete. Besides
the obvious similarities between ML() and ML(∗), these re-
sults are counter-intuitive: though the logicML(∗) is strictly
less expressive than GML (and consequently, than ML()),
Sat(ML(∗)) is Tower-complete. We also recalled that there
are logspace reductions fromML(∗) andML() to the second-
order modal logic QKt from [7].

Our proof techniques go beyond what is known in the lit-
erature. For instance, to design the Tower-hardness proof we
needed substantial modifications from the proof introduced
in [7] for QKt . On the other hand, to show the expressiv-
ity inclusion of ML(∗) within GML, we provided a novel
definition of Ehrenfeucht-Fraïssé games for ML(∗).
Lastly, our framework led to the characterisation of the

satisfiability problems for two sister logics . We proved that
the satisfiability problem for the modal separation logic
MSL(∗,3−1) is Tower-complete [21]. Moreover, the satisfia-
bility problem for the static ambient logic SAL() is AExpPol-
complete, solving open problems from [12, 21] and paving
the way to study the complexity of the full SAL.

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Bednarczyk, Demri, Fervari & Mansutti

Acknowledgements

We would like to thank the anonymous reviewers for their
comments and suggestions that helped us to improve the
quality of the document. B. Bednarczyk is supported by the
Polish Ministry of Science and Higher Education program
“DiamentowyGrant” no. DI2017 006447. S. Demri andA.Man-
sutti are supported by the Centre National de la Recherche
Scientifique (CNRS). R. Fervari is supported by ANPCyT-
PICTs-2017-1130 and 2016-0215, and by the Laboratoire In-
ternational Associé SINFIN.

References

[1] C. Areces, R. Fervari, and G. Hoffmann. 2012. Moving Arrows and Four
Model Checking Results. In WoLLIC’12 (LNCS), Vol. 7456. Springer,
142–153.

[2] C. Areces, R. Fervari, and G. Hoffmann. 2015. Relation-changing modal
operators. Logic Journal of the IGPL 23, 4 (2015), 601–627.

[3] G. Aucher, Ph. Balbiani, L. Fariñas del Cerro, and A. Herzig. 2009.
Global and Local Graph Modifiers. Electronic Notes in Theoretical
Computer Science 231 (2009), 293–307.

[4] G. Aucher, J. van Benthem, and D. Grossi. 2018. Modal logics of
sabotage revisited. JLC 28, 2 (2018), 269–303.

[5] Ph. Balbiani, A. Baltag, H. van Ditmarsch, A. Herzig, T. Hoshi, and
T. De Lima. 2008. ’Knowable’ as ’known after an announcement’.
Review on Symbolic Logic 1, 3 (2008), 305–334.

[6] M. Fattorosi Barnaba and F. De Caro. 1985. Graded Modalities. Studia
Logica 44, 2 (1985), 197–221.

[7] B. Bednarczyk and S. Demri. 2019. Why Propositional Quantification
Makes Modal Logics on Trees Robustly Hard?. In LiCS’19. IEEE, 1–13.

[8] P. Blackburn,M. de Rijke, and Y. Venema. 2001.Modal Logic. Cambridge
University Press.

[9] I. Boneva, J.-M. Talbot, and S. Tison. 2005. Expressiveness of a Spatial
Logic for Trees. In LiCS’05. IEEE Computer Society, 280–289.

[10] L. Bozzelli, A. Molinari, A. Montanari, and A. Peron. 2017. On the Com-
plexity of Model Checking for Syntactically Maximal Fragments of the
Interval Temporal Logic HS with Regular Expressions. In GandALF’17
(EPTCS), Vol. 256. 31–45.

[11] L. Bozzelli, H. van Ditmarsch, and S. Pinchinat. 2015. The complexity
of one-agent refinement modal logic. TCS 603 (2015), 58–83.

[12] C. Calcagno, L. Cardelli, and A.D. Gordon. 2003. Deciding validity in
a spatial logic for trees. In TLDI’03. ACM, 62–73.

[13] C. Calcagno, T. Dinsdale-Young, and Ph. Gardner. 2010. Adjunct
elimination in Context Logic for trees. Inf. Comput. 208, 5 (2010),
474–499.

[14] C. Calcagno, Ph. Gardner, and U. Zarfaty. 2005. Context logic and tree
update. In POPL’05. 271–282.

[15] L. Cardelli and A.D. Gordon. 2001. Formal Methods for Distributed
Processing. Cambridge University Press, New York, NY, USA, Chapter
Mobile Ambients, 198–229.

[16] D. Cooper. 1972. Theorem proving in arithmetic withoutmultiplication.
Machine Learning 7 (1972), 91–99.

[17] J.-R. Courtault and D. Galmiche. 2018. A modal separation logic for
resource dynamics. JLC 28, 4 (2018), 733–778.

[18] A. Dawar, Ph. Gardner, and G. Ghelli. 2004. Adjunct Elimination
Through Games in Static Ambient Logic. In FST&TCS’04 (LNCS),
Vol. 3328. Springer, 211–223.

[19] A. Dawar, Ph. Gardner, and G. Ghelli. 2007. Expressiveness and com-
plexity of graph logic. I&C 205, 3 (2007), 263–310.

[20] M. de Rijke. 2000. A Note on Graded Modal Logic. Studia Logica 64, 2
(2000), 271–283.

[21] S. Demri and R. Fervari. 2019. The power of modal separation logics.
JLC 29, 8 (2019), 1139–1184.

[22] S. Demri, R. Fervari, and A. Mansutti. 2019. Axiomatising Logics with
Separating Conjunction and Modalities. In JELIA’19 (LNAI), Vol. 11468.
Springer, 692–708.

[23] M. Echenim, R. Iosif, and N. Peltier. 2019. The Bernays-Schönfinkel-
Ramsey Class of Separation Logic on Arbitrary Domains. In FoSSaCS’19
(LNCS), Vol. 11425. Springer, 242–259.

[24] K. Fine. 1970. Propositional quantifiers in modal logic. Theoria 36
(1970), 336–346.

[25] D. Galmiche, D. Méry, and D. Pym. 2005. The Semantics of BI and
Resource Tableaux. Mathematical. Structures in Comp. Sci. 15, 6 (Dec.
2005), 1033–1088.

[26] Ch. Haase. 2018. A survival guide to Presburger arithmetic. SIGLOG
News 5, 3 (2018), 67–82.

[27] M. Hannula, J. Kontinen, J. Virtema, and H. Vollmer. 2018. Complexity
of Propositional Logics in Team Semantic. ACM ToCL 19, 1 (2018),
2:1–2:14.

[28] S. Ishtiaq and P. O’Hearn. 2001. BI as an assertion language for mutable
data structures. In POPL’01. 14–26.

[29] R. Ladner. 1977. The computational complexity of provability in sys-
tems of modal propositional logic. SIAM Journal of Computing 6, 3
(1977), 467–480.

[30] F. Laroussinie and N. Markey. 2014. Quantified CTL: Expressiveness
and Complexity. LMCS 10, 4:17 (2014).

[31] L. Libkin. 2004. Elements of Finite Model Theory. Springer.
[32] É. Lozes. 2004. Adjuncts elimination in the static ambient logic. Elec-

tronic Notes in Theoretical Computer Science 96 (2004), 51–72.
[33] C. Lutz. 2006. Complexity and succinctness of public announcement

logic. In AAMAS’06. ACM, 137–143.
[34] A. Mansutti. 2018. Extending Propositional Separation Logic for Ro-

bustness Properties. In FSTTCS (LIPIcs), Vol. 122. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 42:1–42:23.

[35] P.W. O’Hearn, J.C. Reynolds, and H. Yang. 2001. Local Reasoning
about Programs that Alter Data Structures. In CSL’01 (LNCS), Vol. 2142.
Springer, 1–19.

[36] C. H. Papadimitriou. 1994. Computational complexity. Addison-Wesley.
I–XV, 1–523 pages.

[37] J. Plaza. 1989. Logics of public communication. In ISMIS’89, Charlotte,
North Carolina, USA.

[38] M. Presburger. 1929. Über die Vollständigkeit eines gewissen Systems
der Arithmetik ganzer Zahlen, in welchem die Addition als einzige
Operation hervortritt. In Comptes Rendus du premier congrès de mathé-
maticiens des Pays Slaves, Warszawa. 92–101.

[39] D. Pym. 2002. The semantics and proof theory of the logic of bunched
implications. Applied Logic, Vol. 26. Kluwer Academic Publishers.

[40] M. Rabin. 1969. Decidability of second-order theories and automata
on infinite trees. Trans. Amer. Math. Soc. 41 (1969), 1–35.

[41] C. Reddy and W. Loveland. 1978. Presburger arithmetic with bounded
quantifier alternation. In STOC’78. ACM press, 320–325.

[42] J.C. Reynolds. 2002. Separation logic: a logic for shared mutable data
structures. In LiCS’02. IEEE, 55–74.

[43] S. Schmitz. 2016. Complexity Hierarchies beyond Elementary. TOCT
8, 1 (2016), 3:1–3:36.

[44] L. Schröder and D. Pattinson. 2006. PSPACE bounds for rank-1 modal
logics. In LiCS’06. IEEE, 231–240.

[45] S. Tobies. 2001. PSPACE Reasoning for Graded Modal Logics. JLC 11
(2001), 85–106.

[46] J. van Benthem. 1976. Modal Correspondence Theory. Ph.D. Dissertation.
University of Amsterdam.

[47] M. Vardi and P. Wolper. 1986. Automata-theoretic techniques for
modal logics of programs. JCSS 32 (1986), 183–221.

[48] M. Vardi and P. Wolper. 1994. Reasoning about Infinite Computations.
I&C 115 (1994), 1–37.

	Abstract
	1 Introduction
	2 Preliminaries
	3 ML (`3́9`42`"̇613A``45`47`"603A1.2pt2.1ex): Expressiveness and Complexity
	3.1 ML (`3́9`42`"̇613A``45`47`"603A1.2pt2.1ex) is not more expressive than GML
	3.2 AExpPol-completeness

	4 ML () is Tower-complete
	4.1 Enforcing t(j,n) children.
	4.2 Tiling a grid [0,t(k,n)-1] [0,t(k,n)-1]

	5 ML () Strictly Less Expressive Than GML
	5.1 ML () is not more expressive than GML
	5.2 Showing ML () GML with EF games for ML ()

	6 ML (`3́9`42`"̇613A``45`47`"603A1.2pt2.1ex), ML () and Sister Logics
	6.1 Static ambient logic
	6.2 Modal separation logic

	7 Conclusion
	References

