TECHNISCHE
@ UNIVERSITAT
DRESDEN

DATABASE THEORY

Lecture 9: First-Order Expressiveness /
Introduction to Datalog

Markus Krotzsch

TU Dresden, 9 June 2016

https://ddll.inf.tu-dresden.de/web/Database_Theory_%28SS2016%29/en
https://ddll.inf.tu-dresden.de/web/Database_Theory_%28SS2016%29/en
http://korrekt.org/

Overview

© N ok~

Introduction | Relational data model

First-order queries

Complexity of query answering

Complexity of FO query answering

Conjunctive queries

Tree-like conjunctive queries

Query optimisation

Conjunctive Query Optimisation / First-Order Expressiveness
First-Order Expressiveness / Introduction to Datalog
Expressive Power and Complexity of Datalog
Optimisation and Evaluation of Datalog

Evaluation of Datalog (2)

Graph Databases and Path Queries

Outlook: database theory in practice

See course homepage [= link] for more information and materials

Markus Krétzsch, 9 June 2016 Database Theory slide 2 of 32

https://ddll.inf.tu-dresden.de/web/Database_Theory_%28SS2016%29/en

Review: EF Games

Ehrenfeucht-Fraissé games characterise expressivity of FO formulas:

e the quantifier rank needed to distinguish structure
corresponds to

e the number of rounds needed by Spoiler to win the game

*—0

Duplicator

Markus Krétzsch, 9 June 2016 Database Theory slide 3 of 32

Using EF Games to Show FO-Undefinability

How to show that a query mapping M can not be FO-defined:
e Let Cy be the class of all databases recognised by M

e Find sequences of databases 7, 7,, I3, ... € Cy and
databases 1, 92, 93, ... € Cy, such that 7; ~; 7;

~> for any formula ¢ (however large its quantifier rank r), there is a
counterexample 7, € Cy and 7, ¢ Cy that ¢ cannot distinguish

Problems:

e How to find such sequences of 7; and J;?
~> No general strategy exists

e Given suitable sequences, how to show that 7; ~; ;7
~» Can be difficult, but doable for some special cases

Markus Krétzsch, 9 June 2016 Database Theory slide 4 of 32

Expressiveness on Linear Orders

Let’s look at some very simple structures:

Definition

A structure 7 is a linear order if it has a single binary predicate <
interpreted as a total, transitive, reflexive and asymmetric relation.

Example:
Ls:1<2<3<4<5<6
L7:1<2<3<4<5<6<7

Spoiler can win the 3-round EF game:

Spoiler plays 4 in L7
Duplicator plays 4 in Le: Spoiler plays 6 in £7
Duplicator plays 5 in Ls: Spoiler plays 5 in £7 and wins
Duplicator plays 6 in Ls: Spoiler plays 7 in £7 and wins
Duplicator plays 3 in Ls: symmetric game (flipped horizontally)

Markus Krétzsch, 9 June 2016 Database Theory slide 5 of 32

Expressiveness on Linear Orders

Let’s look at some very simple structures:

Definition

A structure 7 is a linear order if it has a single binary predicate <
interpreted as a total, transitive, reflexive and asymmetric relation.

Example:
L7:1<2<3<4<5<6<7
L3:1<2<3<4<5<6<7<8

Spoiler cannot win the 3-round EF game:

Spoiler plays 4 in Lg: Duplicator plays 4 in £7
Spoiler plays 6 in Lg: Duplicator plays 6 in L7; spoiler cannot win
Spoiler plays 7 in Lg: Duplicator plays 6 in L7; spoiler cannot win
Other cases similar: Spoiler never wins

Markus Krétzsch, 9 June 2016 Database Theory slide 6 of 32

EF Games and Linear Orders

The following are equivalent:
L4 -Em ~r -En

e ecither(1)m=n,or(2m=>2"-1landn>2"-1

Proof: see board

Markus Krétzsch, 9 June 2016 Database Theory slide 7 of 32

FO-Definability of PARITY

PARITY is not FO-definable for linear orders, hence it is not
FO-definable for arbitrary databases.

Proof:

e Suppose for a contradiction that PArITY is FO-definable by
some query ¢.

e Let r be the quantifier rank of ¢.

e Consider databases £,, and £, withm =2"andn =2" + 1.
e We know that £,, ~,. £, and therefore £, =, L,.

e Hence, £, E ¢ifandonly if £, E ¢.

e But £, € PARITY while £, ¢ PARITY.

e Therefore, ¢ does not FO-define PARITY. Contradiction.

Markus Krétzsch, 9 June 2016 Database Theory slide 8 of 32

FO-Definability of CONNECTIVITY

The CONNECTIVITY problem over finite graphs is as follows:
e Input: A finite graph (relational structure with one binary
relation “edge”)
e Output: “true” if there is an (undirected) path between any pair
of vertices

CONNECTIVITY is not FO-definable. l

Proof:
e Suppose for a contradiction that CONNECTIVITY is
FO-definable using a query ¢.
e We show that this would make PArITY FO-definable on linear
orders.
e For a linear order £ with order predicate <, we define a finite
graph G(£) over a binary predicate “edge” such that G(£) is

connected if and only if £ has an even number of elements.
Markus Krétzsch, 9 June 2016 Database Theory slide 9 of 32

Defining a Graph From a Linear Order

We use abbreviations for the following FO formulas:

succlx,y] = (x <y) A=y <x) A y is the successor of x
Vz.(z<xVy<2)

min[x] = Vzx <z x is the first element

max[x] = Vz.z < x x is the last element

succ’[x, y] = succlx, y] V (max[x] A min[y]) circular version of succ
We now define the formula y that derives edges from a linear order:

Vx, y.edge(x, y) « dz.succ’[x, z] A succ’[z, y]

Markus Krétzsch, 9 June 2016 Database Theory slide 10 of 32

lllustration: Graphs From Linear Orders

Markus Krotzsch, 9 June 2016 Database Theory slide 11 of 32

Completing the Proof

Observation:
The graph G(£) is connected if and only if £ has odd parity.

Therefore, if ¢ FO-defines CONNECTIVITY on graphs with

predicate edge, then —(¢ A) FO-defines PARITY on linear orders.

Since PARITY is not FO-definable, no such ¢ can exist.

Markus Krétzsch, 9 June 2016 Database Theory slide 12 of 32

Beyond Linear Orders: Locality

Intuition: Duplicator can win an EF game if selected nodes have
the same “neighbourhood”
~» let’s define this for graphs (structures with binary predicates)

Definition
Consider a graph G. For a natural number d > 0 and a vertex v, the
d-neighbourhood of v, N(v, d), is defined inductively:
e N(v,0) = {v}
e Nv,d+1)=N(v,d)U
{w | wis a direct neighbour of some w’ € N(v, d)}

Two vertices v and w have the same d-type if the subgraphs Gly,«)
and Gly.,a) are isomorphic.

Two graphs are d-equivalent if, for every d-type, they have the
same number of d-neighbourhoods of this type.

Markus Krétzsch, 9 June 2016 Database Theory slide 13 of 32

Locality and FO-definability

A special case of Gaifman’s Locality Theorem of first-order logic:

For every integer r > 1:

e if G, is 3 !-equivalent to G,
e then G| ~, G», and thus G| =, G»

~» Intuition: FO can only express local properties

How to show that a query mapping M can not be FO-defined:
e Let Cy be the class of all databases recognised by M

e Find sequences of graphs 7, 15, I3, ... € Cy and graphs
J1, 92,93, ... ¢ Cy, such that 7; is i-equivalent to 7;

~> for any formula ¢ (however large its quantifier rank r), there is a
counterexample Z753-1 € Cy and J3-1 ¢ Cyy that ¢ cannot distinguish

Markus Krétzsch, 9 June 2016 Database Theory slide 14 of 32

CONNECTIVITY is not FO-definable (Proof 2)

CONNECTIVITY is not FO-definable. \

Proof: counterexample for quantifier rank r: set d = 3"

Do4d+n - 2+ 1) D2d+ D)
\\// e
I, Ja

e the only d-type is a path of 2d + 1 nodes
e J,and 9, are d-equivalent

Markus Krétzsch, 9 June 2016 Database Theory slide 15 of 32

2-COLOURABILITY

2-COLOURABILITY is not FO-definable. \

Proof: counterexample for quantifier rank r: set d = 3" (odd number)

: 6d - 3d 3d
\\// et
Id jd

e the only d-type is a path of 2d + 1 nodes
e [, and 9, are d-equivalent

Markus Krétzsch, 9 June 2016 Database Theory slide 16 of 32

ACYCLICITY

AcycLIcITY is not FO-definable. \

Proof: counterexample for quantifier rank r: set d = 3"

e (J-types are paths of < 2d + 1 nodes
e J,and 9, are d-equivalent

Markus Krétzsch, 9 June 2016 Database Theory slide 17 of 32

Summary: Limits of FO-Queries

FO queries (and hence Relational Calculus) cannot express
properties that require a “global” view:

e properties where one needs to follow paths
e properties where one needs to count elements

Remember Lecture 1?
“Stops at distance 2 from Helmholtzstr.”
Ry = 670-From(m1o(CoNnect »< Ry))

What about all stops reachable from Helmholtzstr.?

Markus Krétzsch, 9 June 2016 Database Theory slide 18 of 32

Summary: Limits of FO-Queries

FO queries (and hence Relational Calculus) cannot express
properties that require a “global” view:

e properties where one needs to follow paths
e properties where one needs to count elements

Remember Lecture 1?
“Stops at distance 2 from Helmholtzstr.”
Ry = 670-From(m1o(CoNnect »< Ry))

What about all stops reachable from Helmholtzstr.?

~> Not expressible in Relational Calculus

Yet, all examples we saw are in P

~» |s there another query language that could help us?
Markus Krétzsch, 9 June 2016 Database Theory slide 19 of 32

Introduction to Datalog

Markus Krétzsch, 9 June 2016 Database Theory slide 20 of 32

Introduction to Datalog

Datalog introduces recursion into database queries
e Use deterministic rules to derive new information from given facts
e Inspired by logic programming (Prolog)
e However, no function symbols and no negation
e Studied in Al (knowledge representation) and
in databases (query language)

Example: transitive closure C of a binary relation r

Clx,y) < r(x,y)
Clx,z2) « Clx,y) A 1(y, 2)

Intuition:
e some facts of the form r(x, y) are given as input, and the rules
derive new conclusions C(x, y)
e variables range over all possible values (implicit universal

quantifier)
Markus Krétzsch, 9 June 2016 Database Theory slide 21 of 32

Syntax of Datalog

Recall: A term is a constant or a variable. An atom is a formula of
the form R(z4, ..., t,) with R a predicate symbol (or relation) of arity
n,and t,..., t, terms.

Definition
A Datalog rule is an expression of the form:

H< B/ AN...AB,

where H and By, .. ., B,, are atoms. H is called the head or
conclusion; By A ... A B,, is called the body or premise. A rule with
empty body (m = 0) is called a fact. A ground rule is one without
variables (i.e., all terms are constants).

A set of Datalog rules is a Datalog program.

Markus Krétzsch, 9 June 2016 Database Theory slide 22 of 32

Datalog: Example

father(alice, bob)
mother(alice, carla)
mother(evan, carla)
father(carla, david)
Parent(x, y) « father(x, y)
Parent(x, y) < mother(x, y)
Ancestor(x, y) « Parent(x, y)
Ancestor(x, z) « Parent(x, y) A Ancestor(y, z)
SameGeneration(x, x)
SameGeneration(x, y) « Parent(x, v) A Parent(y, w) A SameGeneration(v, w)

Markus Krétzsch, 9 June 2016 Database Theory slide 23 of 32

Datalog Semantics by Deduction

What does a Datalog program express?
Usually we are interested in entailed ground atoms

What can be entailed? Informally:

e Restrict to set of constants that occur in program (finite)
~> universe U

e Variables can represent arbitrary constants from this set
~> ground substitutions map variables to constants

e Arule can be applied if its body is satisfied for some ground
substitution
Example: rule Parent(x, y) « mother(x, y) can be applied to
mother(alice, carla) under substitution {x + alice, y + carla}

e If a rule is applicable under some ground substitution, then
the according instance of the rule head is entailed.

Markus Krétzsch, 9 June 2016 Database Theory slide 24 of 32

Datalog Semantics by Deduction (2)

An inductive definition of what can be derived:
Definition
Consider a Datalog program P. The set of ground atoms that can

be derived from P is the smallest set of atoms A for which there is a
rule H < By A ... A B, and a ground substitution 6 such that

e A =H0, and
e foreachie{l,..., n}, B;6 can be derived from P.

Notes:

e n =0 for ground facts, so they can always be derived
(induction base)

e if variables in the head do not occur in the body, they can be
any constant from the universe

Markus Krétzsch, 9 June 2016 Database Theory slide 25 of 32

Datalog Deductions as Proof Trees

We can think of deductions as tree structures:

Ancestor(alice, david)

(®)
{x > alice, y carla, z > david}
Parent(alice, carla) Ancestor(carla, david)

7
{x & carla, y — david}

6)
{x > alice, y — carla}

mother(alice, carla) Parent(carla, david)
@)
5)

{x - carla, y — david}

(1) father(alice, bob)

) father(carla, david)
(2) mother(alice, carla)

“
(3) mother(evan, carla)

(4) father(carla, david)

5) Parent(x, y) « father(x, y)

(6) Parent(x, y) «<— mother(x, y)

(7) Ancestor(x, y) < Parent(x, y)

8) Ancestor(x, z) < Parent(x, y) A Ancestor(y, z)

Markus Krétzsch, 9 June 2016 Database Theory slide 26 of 32

Datalog Semantics by Least Fixed Point

Instead of using substitutions, we can also ground programs:

Definition

The grounding ground(P) of a Datalog program P is the set of all
ground rules that can be obtained from rules in P by uniformly
replacing variables with constants from the universe.

Derivations are described by the immediate consequence operator
Tr that maps sets of ground facts I to sets of ground facts Tr(1):

e Tp(l)={H|H < By A...\B, € ground(P) and By, ..., B, el}

e | east fixed point of Tp: smallest set L such that Tp(L) = L

e Bottom-up computation: Ty = 0 and 74" = Tp(T}

e The least fixed point of Tp is T’ = ;s T (eXercise)
Observation: Ground atom A is derived from P if and only if A € T}

Markus Krétzsch, 9 June 2016 Database Theory slide 27 of 32

Datalog Semantics by Least Model

We can also read Datalog rules as universally quantified
implications

Example: Ancestor(x, z) « Parent(x, y) A Ancestor(y, z)
corresponds to implication

Vx,y, z.Parent(x, y) A Ancestor(y, z) — Ancestor(x, z).

A set of FO implications may have many models
~> consider least model over the domain defined by the universe

A fact is entailed by the least model of a Datalog program if and
only if it can be derived from the Datalog program.

Markus Krétzsch, 9 June 2016 Database Theory slide 28 of 32

Datalog Semantics: Overview

There three equivalent ways of defining Datalog semantics:
e Proof-theoretic: What can be proven deductively?
e Operational: What can be computed bottom up?
e Model-theoretic: What is true in the least model?

In each case, we restrict to the universe of given constants.
~» similar to active domain semantics in databases

Markus Krétzsch, 9 June 2016 Database Theory slide 29 of 32

Datalog as a Query Language

How can we use Datalog to query databases?
~» View database as set of ground facts
~» Specify which predicate yields the query result

Definition

A Datalog query is a pair (R, P), where P is a Datalog program and
R is the answer predicate.
Results of the query: R-facts entailed by P

Datalog queries distinguish “given” relations from “derived” ones:

e predicates that occur in a head of P are
intensional database (IDB) predicates

e predicates that only occur in bodies are
extensional database (EDB) predicates

Requirement: database relations used as EDB predicates only

Markus Krétzsch, 9 June 2016 Database Theory slide 30 of 32

Datalog as a Generalisation of CQs

A conjunctive query yy, ..., YAl A ... AN Ay with answer variables
x1,...,X, can be expressed as a Datalog query (Ans, P) where P
has the single rule:

Ans(xy, ..., Xp) — AL AN...NAy
Unions of CQs can also be expressed (exercise)
Intuition: Datalog generalises UCQs with recursion

Open questions:
e How hard is it to answer Datalog queries?
e Can Datalog express all queries in P?
e What about query containment and equivalence?

Markus Krétzsch, 9 June 2016 Database Theory slide 31 of 32

Summary and Outlook

FO-queries can only express “local” properties

Possible proof techniques:
e Ehrenfeucht-Fraissé Games
e Locality Theorems

e For more approaches see
Chapter 17 of [Abiteboul, Hull, Vianu 1994]

Datalog can overcome some of these limitations

Next topics:
e Complexity and expressive power of Datalog
e Implementation techniques for Datalog

Markus Krétzsch, 9 June 2016 Database Theory slide 32 of 32

