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Decision Problems on AFs

Credulous Acceptance
Credσ : Given AF F = (A, R) and a ∈ A; is a contained in at least one
σ-extension of F?

Skeptical Acceptance
Skeptσ : Given AF F = (A, R) and a ∈ A; is a contained in every σ-extension of
F?

If no extension exists then all arguments are skeptically accepted and no
argument is credulously accepted1.

Hence we are also interested in the following problem:

Skeptically and Credulously accepted
Skept′σ : Given AF F = (A, R) and a ∈ A; is a contained in every and at least one
σ-extension of F?

1
This is only relevant for stable semantics.
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Further Decision Problems

Verifying an extension
Verσ : Given AF F = (A, R) and S ⊆ A; is S a σ-extension of F?

Does there exist an extension?
Existsσ : Given AF F = (A, R); Does there exist a σ-extension for F?

Does there exist a nonempty extensions?
Exists¬∅

σ : Does there exist a non-empty σ-extension for F?
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Complexity Results (Summary)

Complexity of decision problems in AFs.

σ Credσ Skeptσ Verσ Existsσ Exists¬∅
σ

cf in L trivial in L trivial in L
naive in L in L in L trivial in L
ground P-c P-c P-c trivial P-c
stable NP-c co-NP-c in L NP-c NP-c
adm NP-c trivial in L trivial in L
comp NP-c P-c in L trivial NP-c
cf2 NP-c co-NP-c in P trivial in L
ideal ΘP

2 -c ΘP
2 -c ΘP

2 -c trivial ΘP
2 -c

pref NP-c ΠP
2 -c co-NP-c trivial NP-c

semi ΣP
2 -c ΠP

2 -c co-NP-c trivial NP-c
stage ΣP

2 -c ΠP
2 -c co-NP-c trivial in L

see [Baroni et al.2011, Coste-Marquis et al.2005, Dimopoulos and Torres1996, Dung1995, Dunne2008,

Dunne and Bench-Capon2002, Dunne and Bench-Capon2004, Dunne and Caminada2008, Dvořák et

al.2011, Dvořák and Woltran2010a, Dvořák and Woltran2010b]
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Intractable problems in Abstract
Argumentation

Most problems in Abstract Argumentation are computationally intractable, i.e. at
least NP-hard. To show intractability for a specific reasoning problem we follow
the schema given below:

Goal: Show that a reasoning problem is NP-hard.

Method: Reducing the NP-hard SAT problem to the reasoning problem.

• Consider an arbitrary CNF formula Φ

• Give a reduction that maps Φ to an Argumentation Framework FΦ

containing an argument Φ.
• Show that Φ is satisfiable iff the argument Φ is accepted.
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Canonical Reduction

Definition
For Φ =

∧m
i=1 li1 ∨ li2 ∨ li3 over atoms Z, build FΦ = (AΦ, RΦ) with

AΦ = Z ∪ Z̄ ∪ {C1, . . . , Cm} ∪ {Φ}
RΦ = {(z, z̄), (̄z, z) | z ∈ Z} ∪ {(Ci, Φ) | i ∈ {1, . . . , m}} ∪

{(z, Ci) | i ∈ {1, . . . , m}, z ∈ {li1, li2, li3}} ∪
{(̄z, Ci) | i ∈ {1, . . . , m},¬z ∈ {li1, li2, li3}}

Example
Let Φ = (z1 ∨ z2 ∨ z3) ∧ (¬z2 ∨ ¬z3 ∨ ¬z4) ∧ (¬z1 ∨ z2 ∨ z4).

Φ

C1 C2 C3

z1 z̄1 z2 z̄2 z3 z̄3 z4 z̄4
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Canonical Reduction: CNF⇒ AF (ctd.)

Theorem
The following statements are equivalent:

1 Φ is satisfiable

2 FΦ has an admissible set containing Φ

3 FΦ has a complete extension containing Φ

4 FΦ has a preferred extension containing Φ

5 FΦ has a stable extension containing Φ
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Complexity Results

Theorem
1 Credstable is NP-complete

2 Credadm is NP-complete

3 Credcomp is NP-complete

4 Credpref is NP-complete

Proof.
(1) The hardness is immediate by the last theorem.
For the NP-membership we use the following guess & check algorithm:
• Guess a set E ⊆ A

• verify that E is stable
• for each a, b ∈ E check (a, b) 6∈ R
• for each a ∈ A \ E check if there exists b ∈ E with (b, a) ∈ R

As this algorithm is in polynomial time we obtain NP-membership.

TU Dresden, ICCL Summer School 2017 Abstract Argumentation slide 13 of 50



Outline

1 Complexity of Abstract Argumentation

2 Extending Dung’s Framework

3 Abstract Dialectical Frameworks

TU Dresden, ICCL Summer School 2017 Abstract Argumentation slide 14 of 50



Motivation

Observations
For many scenarios, limitations of abstract AFs become apparent
• “positive” (support) links between arguments
• “joint attacks”
• making attacks also subject of evaluation
• weights, priorities, etc.

In the literature
• BAFs: Bipolar Argumentation Frameworks (Attack and Support) [1]
• EAFs: Extended Argumentation Frameworks (Attack on Attacks) [6]
• AFRAs: Argumentation Frameworks with Recursive Attacks [2]

In the lecture
• ADFs: Abstract Dialectical Frameworks [3]
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ADFs

Basic Idea
Abstract Dialectical Framework

=
Dependency Graph + Acceptance Conditions
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ADFs - Basic idea

c

a

d

b

An Argumentation Framework
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ADFs - Basic idea (ctd.)

c

a

d

b

> ¬a

¬b ¬b ∧ ¬c

An Argumentation Framework
with explicit acceptance conditions
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ADFs - Basic idea (ctd.)

c

a

d

b

> a

¬b b ∨ c

A Dialectical Framework
with flexible acceptance conditions
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ADFs - The Formal Framework

• Like AFs, use graph to describe dependencies among nodes.
• Unlike AFs, allow individual acceptance condition for each node.
• Assigns t(rue) or f(alse) depending on status of parents.

ADF [Brewka and Woltran 2010]
An abstract dialectical framework (ADF) is a tuple D = (S, L, C) where
• S is a set of statements (positions, nodes),
• L ⊆ S× S is a set of links,
• C = {Cs}s∈S is a set of total functions Cs : 2par(s) → {t, f}, one for each

statement s. Cs is called acceptance condition of s.

Propositional formula representing Cs denoted Fs. In the remainder: (S, C)
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Example

Person innocent, unless she is a murderer.
A killer is a murderer, unless she acted in self-defense.
Evidence for self-defense needed, e.g. witness not known to be a liar.

l w

s k

m i

− +

− +
−

Propositionally:
w : >, k : >, l : ⊥, s : w ∧ ¬l, m : k ∧ ¬s, i : ¬m
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Argumentation frameworks: a special case

• AFs have attacking links only and a single type of nodes.

• Can easily be captured as ADFs.

• A = (AR, attacks). Associated ADF DA = (AR, C)

• Cs as propositional formula:
Fs = ¬r1 ∧ . . . ∧ ¬rn, where ri are the attackers of s.
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ADF Semantics

• AF semantics specify for an AF = (A,R) subsets of A: S ⊆ A

• We begin with a basic semantics of ADF using interpretations
v : S→ {t, f}

Definition
Let D = (S, C) be an ADF. An interpretation v is a model of D if for all s ∈ S:
v(s) = v(Cs).

Less formally: a node is accepted (resp. true) iff its acceptance condition says
so.

Notation: v(ϕ) is the evaluation of ϕ under v, i.e. v(ϕ) =

{
t if v |= ϕ

f if v 6|= ϕ
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Example

Consider D = (S, C) with S = {a, b}:

a b

• For Ca = ¬b, Cb = ¬a (AF): two models, v1, v2

• For Ca = b, Cb = a (mutual support): two models, v3, v4

• For Ca = b and Cb = ¬a (a attacks b, b supports a): no model.

a b
v1 t f
v2 f t
v3 f f
v4 t t

When C is represented as set of propositional formulas, then models are just
propositional models of {s ≡ Cs | s ∈ S}.
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A Short Excursion to Labeling of AFs

• Classical interpretations are not suited for remaining semantics of ADFs
• Extensions of AFs inherently assign to every argument two values: in or

out

• Equivalently one can use labelings [5], which assign three values: in (t),
out (f) and undecided (u)

Definition
Given an AF F = (A, R), a function L : A→ {t, f, u} is a complete labeling if the
following conditions hold:
• L(a) = t iff for each b with (b, a) ∈ R, L(b) = f
• L(a) = f iff there exists b with (b, a) ∈ R, L(b) = t

TU Dresden, ICCL Summer School 2017 Abstract Argumentation slide 28 of 50



Example Labeling

Example
Given the following AF

a b c

Then its complete labelings are given by

a b c
L1 u u u
L2 t f u
L3 f t u
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Characteristic Function of AF Semantics

• Characteristic function of AFs gives easy definition of semantics via fixed
points and is based on defense

Definition
Given an AF F = (A, R). The characteristic function FF : 2A → 2A of F is
defined as
FF(E) = {x ∈ A | x is defended by E}

• For an AF F = (A, R) we have a conflict-free set E ⊆ A is
• admissible if E ⊆ FF(E)
• grounded if E is lfp of FF
• complete if E = FF(E)
• preferred if E is ⊆-maximal admissible

• Our goal now: define char. function for ADFs with three-valued
interpretations

• For three-values, what does “⊆” mean? How to compare?
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Information Ordering

• In ADFs three-valued interpretations v : S→ {t, f, u} are well-suited for
defining semantics

• We can define an information ordering: u <i t and u <i f

Information Ordering

u

t f

Example

a b c
v1 u u u
v2 t f u
v3 f t u

v1

v2 v3
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A Characteristic Function for ADFs

• Our goal: define a characteristic function for ADFs [7] like for AFs
• Intuitively, u means a not yet decided value
• Let [v]2 be the set of all two-valued interpretations that extend v, i.e.,
{v′ | v ≤i v′, v′ two-valued}

• Special case: if v is two-valued then [v]2 = v

Example
a

v1 u
v2 t
v3 f

[v1]2 = {v2, v3}, [v2]2 = v2 and [v3]2 = v3
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A Characteristic Function for ADFs (contd)

• [v]2 denotes the set of interpretations that refine v, i.e. set u to true or false
• Given v and a boolean formula Cs for a statement s, we might have

different outcomes for each v1, v2 ∈ [v]2

• E.g. v1(Cs) 6= v2(Cs), hence how to update the status of s given v?
• Idea: compute a “consensus”
• The set {t, f, u} forms a meet-semilattice w.r.t. <i, i.e. take as consensus

the meet (u), i.e., t u t = t, f u f = f and u otherwise.

Information Ordering

u

t f
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A Characteristic Function for ADFs (contd)

• For the characteristic function for ADFs we now take the consensus of [v]2
applied to Cs:

Definition
ΓD(v) is given by

s 7→
d

w∈[v]2
w(Cs)

Example
Let Ca = ¬a and v(a) = u, then [v]2 = {v2, v3}

a
v u
v2 t
v3 f

u

v2(Ca) = f v3(Ca) = t

the result is
d

w∈[v]2
w(Ca) = u
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A Characteristic Function for ADFs (contd)

Example
Let Ca = > and v(a) = u, then [v]2 = {v2, v3}

a
v u
v2 t
v3 f

v2(Ca) = t = v3(Ca)

the result is
d

w∈[v]2
w(Ca) = t
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A Characteristic Function for ADFs (contd)

Example
Let Ca = a ∨ b and v(a) = t, v(b) = u, then [v]2 = {v2, v3}

a b
v t u
v2 t t
v3 t f

v2(Ca) = t = v3(Ca)

the result is
d

w∈[v]2
w(Ca) = t

• Here v incorporates already information: v(a) = t
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ADF Semantics

• Using the concept of consensus and information ordering, we can define
admissible sets, grounded, complete and preferred models similarly as for
AFs

Definition
Let D = (S, C) be an ADF and v a three-valued interpretation over S, then
• v is admissible in D if v ≤i ΓD(v)

• v is the grounded model of D if v is the lfp of ΓD wrt <i

• v is complete in D if v = ΓD(v)

• v is preferred in D if v is <i-maximal admissible
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Example

Example
Let Ca = >, Cb = a, Cc = c ∧ b, Cd = ¬d

a b c d

Then the complete models are given by:

a b c d
v1 t t u u grd, com
v2 t t t u com, prf
v3 t t f u com, prf

v1

v2 v3
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Remarks about Expressibility

• Acceptance conditions of ADFs also allow definitions of preference
relations

• Argument A has a higher priority than B: CB = ϕ ∧ (B→ A)

• In general: given preferences can be “compiled” to an ADF
• “Joint attacks” can be modeled: set of statements X attack a if

Ca = ¬(
∧

x∈X x)
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ADF Simulation via AF

• Every ADF can be simulated by an AF such that the models of the ADF
are in correspondence to the stable extensions of the AF [4].

• Idea from boolean circuits: for each statement s we construct its Cs:

a b c

s
(a ∧ b) ∨ ¬c

a ā b b̄ c c̄

h∧ h′∧

∧

h∨

s

• The size of the resulting AF is polynomially bounded wrt to size of ADF.
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Weights for ADFs

• So far: acceptance conditions defined via actual parents.
Now: via properties of links represented as weights.

• Add function w : L→ V, where V is some set of weights.

• Simplest case: V = {+,−}. Possible acceptance conditions:
• Cs(R) = in iff no negative link from elements of R to s,
• Cs(R) = in iff no negative and at least one positive link from R to s,
• Cs(R) = in iff more positive than negative links from R to s.

• More fine grained distinctions if V is numerical:
• Cs(R) = in iff sum of weights of links from R to s positive,
• Cs(R) = in iff maximal positive weight higher than maximal negative

weight,
• Cs(R) = in iff difference between maximal positive weight and

(absolute) maximal negative weight above threshold.
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Prioritized ADFs

• Another way of defining acceptance: qualitative preferences among a
node’s parents.

• Let D = (S, L, C). Assume for each s ∈ S strict partial order >s over
parents of s.

• Let Cs(R) = in iff for each attacking node r ∈ R there is a supporting node
r′ ∈ R such that r′ >s r.

• Node out unless joint support more preferred than joint attack.

• Can reverse this by defining Cs(R) = out iff for each supporting node
r ∈ R there is an attacking node r′ ∈ R such that r′ >s r.

• Now node in unless its attackers are jointly preferred.

• Can have both kinds in single prioritized ADF.
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Computational Problems

Credulous Acceptance
Credσ : Given ADF D = (S, L, C) and a ∈ S; is there an interpretation I ∈ σ(D)
with I(a) = t?

Skeptical Acceptance
Skeptσ : Given ADF D = (S, L, C) and a ∈ S; is I(a) = t for each interpretation
I ∈ σ(D)?
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Further Computational Problems

Verification of an interpretation
Verσ : Given ADF D = (S, L, C) and an interpretation I; is I ∈ σ(D)?

Existence of an interpretation
Existsσ : Given ADF D = (S, L, C); is σ(D) 6= ∅?

Existence of a nonempty interpretation
Exists¬∅

σ : Given ADF D = (S, L, C); does there exist an interpretation I ∈ σ(D)
with I(s) = t for some statement a ∈ S?
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Complexity Results (Summary)

Complexity of ADFs

σ Credσ Skeptσ Verσ Existsσ Exists¬∅
σ

ground co-NP-c co-NP-c DP-c trivial co-NP-c
model NP-c co-NP-c in P NP-c NP-c
adm ΣP

2 -c trivial co-NP-c trivial ΣP
2 -c

comp ΣP
2 -c co-NP-c DP-c trivial ΣP

2 -c
pref ΣP

2 -c ΠP
3 -c ΠP

2 -c trivial ΣP
2 -c
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