Technische Universität Dresden

Prof. Dr. Sebastian Rudolph

Introduction to Formal Concept Analysis
 Exercise Sheet 1, Winter Semester 2017/18

1 Set Theory

Exercise 1 (a piece of recapitulation)
Given the following hints and the universe $M:=\{1,2,3,4,5,6,7,8\}$, compute the sets A, B, C :
(a) $A \cup B=\{2,3,4,5,6,7,8\}$
(b) $B \cup C=\{1,2,4,6,8\}$
(c) $A \cup C=\{1,2,3,4,5,7,8\}$
(d) $A \cap B=\{2\}$
(e) $B \cap C=\{2,4,8\}$
(f) $A \cap C=\{2\}$

Solution:

$$
\begin{aligned}
& A=\{2,3,5,7\} \\
& B=\{2,4,6,8\} \\
& C=\{1,2,4,8\}
\end{aligned}
$$

2 Logic

Exercise 2 (repetition first-order logic)
Formalize the following statements for natural numbers a, b, c, using only multiplication ("."), equality (" $=$ ") and natural numbers (" 0 "," $1 ", " 2 ", \ldots$) besides the usual logical symbols (" \urcorner ", " $\wedge "$ ", " \vee ", " \rightarrow ", "↔", " \forall ", " \exists ", variables and parentheses):
(i) a divides b.
(iv) a is the gcd of b and c.
(ii) a is odd.
(v) a is a square number.
(iii) a is common divisor of b and c
(vi) a is a prime number.

Solution:

(i) a divides b.
$\exists v \in \mathbb{N}: b=a \cdot v$
(ii) a is odd.
$\neg \exists v \in \mathbb{N}: a=2 \cdot v$
(iii) a is common divisor of b and c
$\exists v, w \in \mathbb{N}: b=a \cdot v \wedge c=a \cdot w$
(iv) a is the gcd of b and c.
$(\exists v, w \in \mathbb{N}: b=a \cdot v \wedge c=a \cdot w) \wedge(\forall u:(\exists v, w \in \mathbb{N}: b=u \cdot v \wedge c=u \cdot w) \rightarrow(\exists t: a=t \cdot u))$
$(v) a$ is a square number.
$\exists v \in \mathbb{N}: v \cdot v=a$
(vi) a is a prime number.
$\neg(a=1) \wedge \forall v, w \in \mathbb{N}: v \cdot w=a \rightarrow v=1 \vee v=a$

3 Derivation Operators and Formal Concepts

Exercise 3 (line diagram)
a) Recall: how is the derivation operator $(\cdot)^{\prime}$ defined?
b) Let $\mathbb{K}=(G, M, I)$ be a formal context and let $A, B \subseteq G$. Prove the following statements:

1. $A \subseteq B$ implies $B^{\prime} \subseteq A^{\prime}$
2. $A \subseteq A^{\prime \prime}$
3. $A^{\prime}=A^{\prime \prime \prime}$
4. For $C \in G$ and $D \in M$ holds: (C, D) is a formal concept if and only if there is some $E \subseteq G$ such that $C=E^{\prime \prime}$ and $D=E^{\prime}$.

Solution:

a) For $A \subseteq G$, we defined $A^{\prime}:=\{m \in M \mid \forall g \in A:(g, m) \in I\}$.

For $B \subseteq M$, we defined $B^{\prime}:=\{g \in G \mid \forall m \in B:(g, m) \in I\}$.
b) 1. First note that for any $X \in G$ we obtain $X^{\prime}=\bigcap_{g \in X}\{m \mid g I m\}$. Then, assuming $A \subseteq B$, we obtain

$$
\begin{aligned}
B^{\prime} & =\bigcap_{g \in B}\{m \mid g \operatorname{Im}\} \\
& =\bigcap_{g \in A}\{m \mid g \operatorname{Im}\} \cap \bigcap_{g \in B \backslash A}\{m \mid g \operatorname{Im}\} \\
& =A^{\prime} \cap \bigcap_{g \in B \backslash A}\{m \mid g \operatorname{Im}\} \\
& \subseteq A^{\prime}
\end{aligned}
$$

2. We show that for every $g \in G$ with $g \in A$ holds $g \in A^{\prime \prime}$. From $g \in A$ follows $(g, m) \in I$ for all $m \in A^{\prime}$. From the latter follows $g \in A^{\prime \prime}$.
3. We show both $A^{\prime} \subseteq A^{\prime \prime \prime}$ and $A^{\prime \prime \prime} \subseteq A^{\prime}$ using the previous two statements. $A^{\prime} \subseteq\left(A^{\prime}\right)^{\prime \prime}=A^{\prime \prime \prime}$ follows from the second statement. On the other hand, knowing that $A \subseteq A^{\prime \prime}$ from the second statement, we can apply the first statement to conclude $A^{\prime \prime \prime}=\left(A^{\prime \prime}\right)^{\prime} \subseteq A^{\prime}$.
4. We have to show two directions: "if" and "only if". For the "only if" direction, we have to find an appropriate E for a given (C, D). But we can just pick $E=C$, since then we get $C=D^{\prime}=\left(C^{\prime}\right)^{\prime}=C^{\prime \prime}=E^{\prime \prime}$ as well as $D=C^{\prime}=E^{\prime}$. For the "if" direction let E be an arbitrary set and let $C=E^{\prime \prime}$ and $D=E^{\prime}$. We now check the conditions $C^{\prime}=D$ and $C=D^{\prime}$: we obtain $C^{\prime}=E^{\prime \prime \prime}=E^{\prime}=D$, on the other hand we obtain $D^{\prime}=E^{\prime \prime}=C$. Hence (C, D) defined this way is a formal concept.

4 Formal Concept Analysis

Exercise 4 (Formal Context)

Regard the following formal context \mathbb{K}, given as a cross table:

Leech	\times	\times					\times		
Bream	\times	\times					\times	\times	
Frog	\times	\times	\times				\times	\times	\times
Spike-Weed	\times	\times		\times		\times			
Reed	\times	\times	\times	\times		\times			
Bean	\times		\times	\times	\times				
Maize	\times		\times	\times		\times			

a) Specify the following sets:
(i) $\{\text { Bean }\}^{\prime}$
(ii) \{lives on land ${ }^{\prime}$
(iii) \{two seed leaves\}"
(iv) $\{\text { Frog, Maize }\}^{\prime}$
(v) \{needs chlorophyll to produce food, can move around\}'
(vi) \{lives in water, lives on land $\}^{\prime}$
(vii) \{needs chlorophyll to produce food, can move around\}"
b) Extend \mathbb{K} with both an object and an attribute.

Solution:

(i) $\{\text { Bean }\}^{\prime}=\{$ needs water to live, lives on land, needs chlorophyll to produce food, two seed leaves\}
(ii) $\{\text { lives on land }\}^{\prime}=\{$ Frog, Reed, Bean, Maize $\}$
(iii) $\{\text { two seed leaves }\}^{\prime \prime}=\{\text { Bean }\}^{\prime}$
$=\{$ needs water to live, lives on land, needs chlorophyll to produce food, two seed leaves\}
(iv) $\{\text { Frog, Maize }\}^{\prime}=\{$ needs water to live, lives on land $\}$
(v) \{needs chlorophyll to produce food, can move around $\}^{\prime}=\emptyset$
(vi) $\{\text { lives in water, lives on land }\}^{\prime}=\{$ Frog, Reed $\}$
(vii) \{needs chlorophyll to produce food, can move around $\}^{\prime \prime}=\emptyset^{\prime}=M$

