Prof. Dr. Sebastian Rudolph

Introduction to Formal Concept Analysis Exercise Sheet 1, Winter Semester 2017/18

1 Set Theory

Exercise 1 (a piece of recapitulation)

Given the following hints and the universe $M := \{1, 2, 3, 4, 5, 6, 7, 8\}$, compute the sets A, B, C:

- (a) $A \cup B = \{2, 3, 4, 5, 6, 7, 8\}$
- (b) $B \cup C = \{1, 2, 4, 6, 8\}$
- (c) $A \cup C = \{1, 2, 3, 4, 5, 7, 8\}$
- (d) $A \cap B = \{2\}$
- (e) $B \cap C = \{2, 4, 8\}$
- $(f) A \cap C = \{2\}$

Solution:

$$A = \{2, 3, 5, 7\}$$

$$B = \{2, 4, 6, 8\}$$

$$C = \{1, 2, 4, 8\}$$

2 Logic

Exercise 2 (repetition first-order logic)

Formalize the following statements for natural numbers a,b,c, using only multiplication ("·"), equality ("=") and natural numbers ("0","1","2",...) besides the usual logical symbols ("¬", " \wedge ", " \vee ", " \rightarrow ", " \leftrightarrow ", " \forall ", " \exists ", variables and parentheses):

(i) a divides b.

(iv) a is the gcd of b and c.

(ii) a is odd.

- (v) a is a square number.
- (iii) a is common divisor of b and c
- (vi) a is a prime number.

Solution:

- (i) a divides b. $\exists v \in \mathbb{N} : b = a \cdot v$
- (ii) a is odd. $\neg \exists v \in \mathbb{N} : a = 2 \cdot v$
- (iii) a is common divisor of b and c $\exists v, w \in \mathbb{N} : b = a \cdot v \land c = a \cdot w$
- (iv) a is the gcd of b and c. $(\exists v, w \in \mathbb{N} : b = a \cdot v \land c = a \cdot w) \land (\forall u : (\exists v, w \in \mathbb{N} : b = u \cdot v \land c = u \cdot w) \rightarrow (\exists t : a = t \cdot u))$
- (v) a is a square number. $\exists v \in \mathbb{N} : v \cdot v = a$
- (vi) a is a prime number. $\neg (a=1) \land \forall v, w \in \mathbb{N} \colon v \cdot w = a \to v = 1 \lor v = a$

3 Derivation Operators and Formal Concepts

Exercise 3 (line diagram)

- a) Recall: how is the derivation operator $(\cdot)'$ defined?
- b) Let $\mathbb{K} = (G, M, I)$ be a formal context and let $A, B \subseteq G$. Prove the following statements:
 - 1. $A \subseteq B$ implies $B' \subseteq A'$
 - 2. $A \subseteq A''$
 - 3. A' = A'''
 - 4. For $C \in G$ and $D \in M$ holds: (C, D) is a formal concept if and only if there is some $E \subseteq G$ such that C = E'' and D = E'.

Solution:

- a) For $A \subseteq G$, we defined $A' := \{ m \in M \mid \forall g \in A : (g, m) \in I \}$. For $B \subseteq M$, we defined $B' := \{ g \in G \mid \forall m \in B : (g, m) \in I \}$.
- **b)** 1. First note that for any $X \in G$ we obtain $X' = \bigcap_{g \in X} \{m \mid gIm\}$. Then, assuming $A \subseteq B$, we obtain

$$\begin{array}{rcl} B' &=& \bigcap_{g \in B} \{m \mid gIm\} \\ &=& \bigcap_{g \in A} \{m \mid gIm\} \cap \bigcap_{g \in B \backslash A} \{m \mid gIm\} \\ &=& A' \cap \bigcap_{g \in B \backslash A} \{m \mid gIm\} \\ &\subseteq& A' \end{array}$$

- 2. We show that for every $g \in G$ with $g \in A$ holds $g \in A''$. From $g \in A$ follows $(g, m) \in I$ for all $m \in A'$. From the latter follows $g \in A''$.
- 3. We show both $A' \subseteq A'''$ and $A''' \subseteq A'$ using the previous two statements. $A' \subseteq (A')'' = A'''$ follows from the second statement. On the other hand, knowing that $A \subseteq A''$ from the second statement, we can apply the first statement to conclude $A''' = (A'')' \subseteq A'$.
- 4. We have to show two directions: "if" and "only if". For the "only if" direction, we have to find an appropriate E for a given (C, D). But we can just pick E = C, since then we get C = D' = (C')' = C'' = E'' as well as D = C' = E'. For the "if" direction let E be an arbitrary set and let C = E'' and D = E'. We now check the conditions C' = D and C = D': we obtain C' = E''' = E' = D, on the other hand we obtain D' = E'' = C. Hence (C, D) defined this way is a formal concept.

4 Formal Concept Analysis

Exercise 4 (Formal Context)

Regard the following formal context \mathbb{K} , given as a cross table:

	needs water to live	lives in water	lives on land	needs chlorophyll to produce food	two seed leaves	one seed leaf	can move around	has limbs	suckles its offspring
Leech	×	X					X		
Bream	×	×					×	×	
Frog	×	×	×				×	×	\times
Spike-Weed	×	×		×		×			
Reed	×	×	×	×		×			
Bean	×		×	×	×				
Maize	×		×	×		×			

- a) Specify the following sets:
 - $(i) \{ \text{Bean} \}'$
 - (ii) {lives on land}'
 - (iii) {two seed leaves}"
 - (iv) {Frog, Maize}'
 - (v) {needs chlorophyll to produce food, can move around}'
 - (vi) {lives in water, lives on land}'
 - (vii) {needs chlorophyll to produce food, can move around}"
- b) Extend $\mathbb K$ with both an object and an attribute.

Solution:

- $(i) \quad \{ \mathrm{Bean} \}' = \{ \mathrm{needs \ water \ to \ live}, \mathrm{lives \ on \ land}, \mathrm{needs \ chlorophyll \ to \ produce \ food}, \mathrm{two \ seed \ leaves} \}$
- $(ii) \ \{ \text{lives on land} \}' = \{ \text{Frog}, \text{Reed}, \text{Bean}, \text{Maize} \}$
- (iii) {two seed leaves}" = {Bean}'
 - $= \{ \text{needs water to live}, \text{lives on land}, \text{needs chlorophyll to produce food}, \\ \text{two seed leaves} \}$
- (iv) {Frog, Maize}' = {needs water to live, lives on land}
- (v) {needs chlorophyll to produce food, can move around}' = \emptyset
- (vi) {lives in water, lives on land}' = {Frog, Reed}
- (vii) {needs chlorophyll to produce food, can move around}" = $\emptyset' = M$