Exploring Faulty Data

Daniel Borchmann

TU Dresden

2015-06-26

http://www.sealifeconservation.org.au/adopt-an-animal/

{ Venomous, Mammal } $\rightarrow \bot$.

{ Venomous, Mammal } $\rightarrow \bot$.

Accept this Counterexample?

{ Venomous, Mammal } $\rightarrow \bot$.

Accept this Counterexample? It depends

{ Venomous, Mammal } $\rightarrow \bot$.

Accept this Counterexample?

- It depends
 - True if all mammals are considered

{ Venomous, Mammal } $\rightarrow \bot$.

Accept this Counterexample?

It depends

- True if all mammals are considered
- But exceptional, i.e., this counterexample is rare

{ Venomous, Mammal } $\rightarrow \bot$.

Accept this Counterexample?

It depends

- True if all mammals are considered
- But exceptional, i.e., this counterexample is rare
- In general not desired (handle this special case elsewhere)

{ Venomous, Mammal } $\rightarrow \bot$.

Accept this Counterexample?

It depends

- True if all mammals are considered
- But exceptional, i.e., this counterexample is rare
- In general not desired (handle this special case elsewhere)

How to decide?

{ Venomous, Mammal } $\rightarrow \bot$.

Accept this Counterexample?

It depends

- True if all mammals are considered
- But exceptional, i.e., this counterexample is rare
- In general not desired (handle this special case elsewhere)

How to decide?

External source of information needed!

▶ Upon termination, Cn(S) = Th(K) and S is a base of the implicational knowledge of the expert

- ► Upon termination, Cn(S) = Th(K) and S is a base of the implicational knowledge of the expert
- Implications asked are always valid

Algorithm

- ▶ Upon termination, Cn(S) = Th(K) and S is a base of the implicational knowledge of the expert
- Implications asked are always valid

Problem

Data may contain errors or unwanted special cases

Algorithm $m_{\rm p} = \{A_i\}$

- ▶ Upon termination, Cn(S) = Th(K) and S is a base of the implicational knowledge of the expert
- Implications asked are always valid

Problem

Data may contain errors or unwanted special cases \rightsquigarrow ask implications with *high confidence*

Define

$$\mathsf{conf}_{\mathbb{K}}(X \to Y) := egin{cases} 1 & X' = arnothing \ rac{|(X \cup Y)'|}{|X'|} & ext{otherwise} \end{cases}$$

Define

$$\mathsf{conf}_{\mathbb{K}}(X \to Y) := \begin{cases} 1 & X' = \emptyset \\ rac{|(X \cup Y)'|}{|X'|} & \text{otherwise} \end{cases}$$

For $\pmb{c} \in [0,1]$ set

$$\mathsf{Th}_{c}(\mathbb{K}) := \{ X \to Y \mid \mathsf{conf}_{\mathbb{K}}(X \to Y) \ge c \}.$$

Define

$$\mathrm{conf}_{\mathbb{K}}(X\to Y):=\begin{cases} 1 & X'=\varnothing\\ \frac{|(X\cup Y)'|}{|X'|} & \text{otherwise} \end{cases}$$
 For $\pmb{c}\in[0,1]$ set

$$\mathsf{Th}_{\mathsf{c}}(\mathbb{K}) := \{ X \to Y \mid \mathsf{conf}_{\mathbb{K}}(X \to Y) \ge \mathsf{c} \}.$$

Idea

Extend exploration such that implications with *high confidence* are asked.

Let *M* be a finite set. Then an *expert p* on *M* is a mapping

$$p\colon \operatorname{Imp}(M) \to \mathfrak{P}(M) \cup \{\top\}$$

Let *M* be a finite set. Then an *expert p* on *M* is a mapping

$$p\colon \operatorname{Imp}(M) \to \mathfrak{P}(M) \cup \{\top\}$$

•
$$p(X \rightarrow Y) = C \neq \top$$
 implies $X \subseteq C$ and $Y \nsubseteq C$,

Let *M* be a finite set. Then an *expert p* on *M* is a mapping

$$p\colon \operatorname{Imp}(M) \to \mathfrak{P}(M) \cup \{\top\}$$

Let *M* be a finite set. Then an *expert p* on *M* is a mapping

$$p\colon \operatorname{Imp}(M) \to \mathfrak{P}(M) \cup \{\top\}$$

▶
$$p(X \rightarrow Y) = C \neq \top$$
 implies $X \subseteq C$ and $Y \nsubseteq C$,
(expert gives counterexamples to false implications)

▶
$$p(U \rightarrow V) = \top, p(X \rightarrow Y) = C \neq \top$$
 implies $U \nsubseteq C$ or $V \subseteq C$.

Let *M* be a finite set. Then an *expert p* on *M* is a mapping

$$p\colon \operatorname{Imp}(M) \to \mathfrak{P}(M) \cup \{\top\}$$

such that

▶
$$p(X \rightarrow Y) = C \neq \top$$
 implies $X \subseteq C$ and $Y \nsubseteq C$,
(expert gives counterexamples to false implications)

▶ $p(U \rightarrow V) = \top, p(X \rightarrow Y) = C \neq \top$ implies $U \nsubseteq C$ or $V \subseteq C$. (counterexamples do not invalidate correct implications)

To explore $\mathsf{Th}_c(\mathbb{K})$ with expert p with background knowledge $\mathcal S$ means to find a base of

 $\mathsf{Th}(\pmb{\rho}) \cap \mathsf{Th}_{\pmb{c}}(\mathbb{K})$

with background knowledge S,

To explore $\mathsf{Th}_c(\mathbb{K})$ with expert p with background knowledge $\mathcal S$ means to find a base of

 $\mathsf{Th}(p) \cap \mathsf{Th}_{c}(\mathbb{K})$

with background knowledge $\mathcal{S},$ i.e., to compute a set $\mathcal{B} \subseteq \text{Imp}(\textit{M})$ such that

 $\mathsf{Cn}(\mathcal{B}\cup\mathcal{S})=\mathsf{Cn}\big(\mathsf{Th}(\boldsymbol{p})\cap\mathsf{Th}_{\boldsymbol{c}}(\mathbb{K})\big).$

Exploring Faulty Data

	а	b	С
1	×		

$$\begin{split} \varnothing &\to \varnothing'' \\ & \{a\} \to \{a\}'' \\ & \{b\} \to \{b\}'' \\ & \{a,b\} \to \{a,b\}'' \\ & \{c\} \to \{c\}'' \\ & \{a,c\} \to \{c,c\}'' \\ & \{b,c\} \to \{b,c\}'' \end{split}$$

	а	b	С
1	×		
	а	b	С
---	---	---	---
1	×		

	а	b	С
1	×	•	

	а	b	С
1	×	•	

	а	b	С
1	×		

	а	b	С
1	×		

	а	b	С
1	×		
2	×	\times	

	а	b	С
1	×		
2	Х	\times	

	а	b	С
1	×		
2	×	\times	

	а	b	С
1	×		
2	×	\times	

	а	b	С
1	×		
2	×	×	

Note

			$\varnothing \to \varnothing''$	= { a } 🗸
	h	•	$\{a\} \rightarrow \{a\}''$	$= \{ a \}$
a	D	<u> </u>	$\{b\} \rightarrow \{b\}''$	
×	•	•	$\{a,b\} \rightarrow \{a,b\}''$	= { a , b }
X	×	•	$ \{c\} \rightarrow \{c\}''$	
			$\{a,c\} \rightarrow \{a,c\}''$	= { <i>a</i> , <i>b</i> , <i>c</i> } 🗸
			$- \{b,c\} \rightarrow \{b,c\}''$	

Note

_____ 1 $\mathbf{2}$

► Order of premises extends ⊆

			$\varnothing \to \varnothing''$	= { a } ✓
	h	-	$\{a\} \rightarrow \{a\}''$	$= \{ a \}$
a	D	С	$\{b\} \rightarrow \{b\}''$	
$1 \times$	•	•	$\{a,b\} \rightarrow \{a,b\}''$	$= \{ a, b \}$
$2 \mid \times$	×	•	$ \{ \mathbf{C} \} \rightarrow \{ \mathbf{C} \}''$	
			$\{a,c\} \rightarrow \{a,c\}''$	= { <i>a</i> , <i>b</i> , <i>c</i> } 🗸
			$- \{b,c\} \rightarrow \{b,c\}''$	

Note

- ► Order of premises extends ⊆
- Premises are always closed under known implications

Exploring Faulty Data

► Interesting Implications *L*

- ► Interesting Implications *L*
- $\blacktriangleright \textit{Known Implications S}$

► Interesting Implications *L*

► Known Implications S

Question

- ► Interesting Implications *L*
- ► Known Implications S
- Expert can *confirm* implications,

- ► Interesting Implications *L*
- ► Known Implications S
- Expert can *confirm* implications, extending S

- Interesting Implications L
- ▶ Known Implications S
- Expert can *confirm* implications, extending S
- Expert can *reject* implications, providing counterexamples,

- ► Interesting Implications *L*
- ► Known Implications S
- Expert can *confirm* implications, extending S
- Expert can *reject* implications, providing counterexamples, shrinking L

- ► Interesting Implications *L*
- ► Known Implications S
- Expert can *confirm* implications, extending S
- Expert can *reject* implications, providing counterexamples, shrinking L
- Iterate until $\mathcal{L} = \mathcal{S}$.

- Interesting Implications L
- ► Known Implications S
- Expert can *confirm* implications, extending S
- Expert can *reject* implications, providing counterexamples, shrinking L
- Iterate until $\mathcal{L} = \mathcal{S}$.

Which interesting but unknown implications are *valid* in our domain?

• Classical Attribute Exploration: $\mathcal{L} = \mathsf{Th}(\mathbb{K})$

- Interesting Implications L
- ► Known Implications S
- Expert can *confirm* implications, extending S
- Expert can *reject* implications, providing counterexamples, shrinking L
- Iterate until $\mathcal{L} = \mathcal{S}$.

- Classical Attribute Exploration: $\mathcal{L} = \mathsf{Th}(\mathbb{K})$
- Exploration by Confidence: $\mathcal{L} = \mathsf{Th}_{c}(\mathbb{K})$

Replace occurrence of $(\cdot)''$ with $\mathsf{Th}_{\mathsf{C}}(\mathbb{K})(\cdot).$

```
Replace occurrence of (\cdot)'' with \mathsf{Th}_c(\mathbb{K})(\cdot).
```

Problems

```
Replace occurrence of (\cdot)'' with \mathsf{Th}_{c}(\mathbb{K})(\cdot).
```

Problems

It doesn't work,

```
Replace occurrence of (\cdot)'' with \mathsf{Th}_{c}(\mathbb{K})(\cdot).
```

Problems

It doesn't work, i.e., exploration is only "approximative":

Replace occurrence of $(\cdot)''$ with $\mathsf{Th}_{c}(\mathbb{K})(\cdot)$.

Problems

It doesn't work, i.e., exploration is only "approximative":

 $\mathsf{Th}(\rho) \cap \mathsf{Cn}\big(\mathsf{Th}_c(\mathbb{K})\big) \supseteq \mathsf{Cn}(\mathcal{B} \cup \mathcal{S}) \supseteq \mathsf{Cn}\big(\mathsf{Th}(\rho) \cap \mathsf{Th}_c(\mathbb{K})\big)$

Replace occurrence of $(\cdot)''$ with $\mathsf{Th}_{c}(\mathbb{K})(\cdot)$.

Problems

It doesn't work, i.e., exploration is only "approximative":

 $\mathsf{Th}(\rho) \cap \mathsf{Cn}\big(\mathsf{Th}_{c}(\mathbb{K})\big) \supseteq \mathsf{Cn}(\mathcal{B} \cup \mathcal{S}) \supseteq \mathsf{Cn}\big(\mathsf{Th}(\rho) \cap \mathsf{Th}_{c}(\mathbb{K})\big)$

• Closures under $Th_c(\mathbb{K})$ are (potentially) expensive

Idea

Idea

Instead of

$$X \to \mathsf{Th}_{c}(\mathbb{K})(X),$$

ask implications of the form

$$X \to \big\{ m \in M \mid \operatorname{conf}_{\mathbb{K}}(X \to \{ m \}) \ge c \big\}.$$

Idea

Instead of

$$X \to \mathsf{Th}_{c}(\mathbb{K})(X),$$

ask implications of the form

$$X \to \big\{ m \in M \mid \operatorname{conf}_{\mathbb{K}}(X \to \{ m \}) \ge c \big\}.$$

Problem

Doesn't work either.

Choose

▶
$$c := \frac{1}{2}$$

▶ $S := \{ \{a\} \rightarrow \{b\} \}$

• p constantly \top

Choose

▶
$$c := \frac{1}{2}$$

▶ $S := \{ \{a\} \rightarrow \{b\} \}$

• p constantly \top

Then

 $\text{conf}_{\mathbb{K}}(\{\,a\,\} \to \{\,c\,\}) \geqslant \textit{c},$

	а	b	С
1	×	×	
2	×	×	
3	×	×	
4	×	×	Х
5	×	×	Х
6	×	•	Х
$\overline{7}$	×	•	Х
8			
9			
10	.	•	•

Choose

▶
$$c := \frac{1}{2}$$

▶ $S := \{ \{a\} \rightarrow \{b\} \}$

• p constantly \top

Then

$$\text{conf}_{\mathbb{K}}(\{\,a\,\} \to \{\,c\,\}) \geqslant c,$$

but $\{a\}$ is not closed under S,

	a	b	С
1	×	×	
2	×	×	
3	×	×	
4	×	×	×
5	×	×	×
6	×	•	×
$\overline{7}$	×	•	×
8		•	
9		•	
10	.	•	
Choose

▶
$$c := \frac{1}{2}$$

▶ $S := \{ \{a\} \rightarrow \{b\} \}$

• p constantly \top

Then

$$\text{conf}_{\mathbb{K}}(\{\,a\,\} \to \{\,c\,\}) \geqslant c,$$

but $\{\,a\,\}$ is not closed under $\mathcal{S},$ and

$$\operatorname{conf}_{\mathbb{K}}(\{\mathbf{b}\} \to \{\mathbf{c}\}) = \frac{2}{5} < \mathbf{c},$$
$$\operatorname{conf}_{\mathbb{K}}(\{\mathbf{a},\mathbf{b}\} \to \{\mathbf{c}\}) = \frac{2}{5} < \mathbf{c},$$
$$\operatorname{conf}_{\mathbb{K}}(\emptyset \to \{\mathbf{c}\}) = \frac{4}{10} < \mathbf{c}.$$

	a	b	С
1	×	×	
2	×	Х	
3	×	Х	
4	×	×	Х
5	×	Х	×
6	×		Х
7	×		Х
8			
9	.	•	
10		•	

Ensure: when

$$X \to \big\{ m \in M \mid \mathsf{conf}_{\mathbb{K}}(X \to \{ m \}) \ge c \big\}$$

is asked in iteration *i*,

Ensure: when

$$X \to \big\{ m \in M \mid \mathsf{conf}_{\mathbb{K}}(X \to \{ m \}) \ge c \big\}$$

is asked in iteration *i*, then for $Y'' \subsetneq X$

$$\operatorname{conf}_{\mathbb{K}}(Y'' \to \{n\}) \ge c \implies \mathcal{B}_i \cup \mathcal{S} \models (Y'' \to \{n\}).$$

Ensure: when

$$X \to \big\{ \, m \in M \, \big| \, \operatorname{conf}_{\mathbb{K}}(X \to \{ \, m \, \}) \geqslant c \, \big\}$$

is asked in iteration *i*, then for $Y'' \subsetneq X$

$$\operatorname{conf}_{\mathbb{K}}(Y'' \to \{n\}) \ge c \implies \mathcal{B}_i \cup \mathcal{S} \models (Y'' \to \{n\}).$$

Types of Implications asked

Ensure: when

$$X \to \big\{ m \in M \mid \mathsf{conf}_{\mathbb{K}}(X \to \{ m \}) \ge c \big\}$$

is asked in iteration *i*, then for $Y'' \subsetneq X$

$$\mathsf{conf}_{\mathbb{K}}(Y'' \to \{n\}) \geqslant c \implies \mathcal{B}_i \cup \mathcal{S} \models (Y'' \to \{n\}).$$

Types of Implications asked

• $X \to X''$, where X is closed under $\mathcal{B}_i \cup \mathcal{S}$, but not an intent

Ensure: when

$$X \to \big\{ m \in M \mid \mathsf{conf}_{\mathbb{K}}(X \to \{ m \}) \ge c \big\}$$

is asked in iteration *i*, then for $Y'' \subsetneq X$

$$\mathsf{conf}_{\mathbb{K}}(Y'' \to \{n\}) \geqslant c \implies \mathcal{B}_i \cup \mathcal{S} \models (Y'' \to \{n\}).$$

Types of Implications asked

- $X \rightarrow X''$, where X is closed under $\mathcal{B}_i \cup \mathcal{S}$, but not an intent
- $X \to \{ m \in M \mid \operatorname{conf}_{\mathbb{K}}(X \to \{ m \}) \ge c \} \setminus (\mathcal{B}_i \cup \mathcal{S})(X)$, where X is an intent

	а	b	С
1	×	×	
2	×	Х	
3	×	Х	
4	×	Х	×
5	×	Х	×
6	×		×
7	×		×
8	•		
9	•		
10	•		

•
$$c := \frac{1}{2}$$

• $S = \{\{a\} \rightarrow \{b\}\}\$
• p constantly \top

	а	b	с
1	×	×	
2	Х	Х	•
3	×	Х	
4	Х	×	Х
5	Х	×	Х
6	Х		Х
7	Х		Х
8			
9			
10	•		•

• $c := \frac{1}{2}$
$\blacktriangleright \mathcal{S} = \big\{ \{a\} \rightarrow \{b\} \big\}$
• p constantly $ op$
Ø
{ a }
{ b }
$\{a, b\}$
{ c }
{ a, c }
{ b, c }

	а	b	с
1	×	×	
2	×	Х	•
3	×	Х	
4	×	Х	×
5	×	Х	×
6	×		Х
7	×		Х
8			
9			
10	•		•

• $c := \frac{1}{2}$
$\blacktriangleright S = \{ \{a\} \rightarrow \{b\} \}$
• <i>p</i> constantly \top
Ø
{ a }
{ b }
{ a, b }
{ c }
{ a, c }
{ b, c }

	а	b	с	
1	×	×		
2	Х	×		
3	Х	×	•	
4	×	×	×	
5	Х	Х	×	
6	Х		×	
$\overline{7}$	Х		×	
8			•	
9				
10			•	

	а	b	с	
1	×	×		
2	Х	Х		
3	×	Х		
4	Х	Х	×	
5	Х	Х	\times	
6	Х		\times	
7	Х		\times	
8			•	
9			•	
10			•	

$$c := \frac{1}{2}$$

$$S = \{\{a\} \rightarrow \{b\}\}$$

$$p \text{ constantly } \top$$

$$\emptyset \rightarrow \{a\} \checkmark$$

$$\{a\}$$

$$\{b\}$$

$$\{a,b\}$$

$$\{c\}$$

$$\{a,c\}$$

$$\{b,c\}$$

	а	b	с
1	×	×	
2	×	×	
3	×	Х	
4	×	Х	×
5	×	Х	×
6	×		×
7	×		×
8	•		
9			
10			

	а	b	С
1	×	×	
2	×	×	
3	×	Х	
4	×	Х	\times
5	×	Х	×
6	×		×
7	×		×
8	•		
9			
10			

$$c := \frac{1}{2}$$

$$S = \{\{a\} \rightarrow \{b\}\}\}$$

$$p \text{ constantly } \top$$

$$\bigotimes \rightarrow \{a\} \checkmark$$

$$\{a\} \rightarrow \{a, b, c\}$$

$$\{b\}$$

$$\{a, b\}$$

$$\{c\}$$

$$\{a, c\}$$

$$\{b, c\}$$

►

	а	b	С
1	×	×	
2	×	×	
3	×	Х	
4	×	Х	\times
5	×	Х	\times
6	×		×
7	×		×
8	•		
9			
10			

$$c := \frac{1}{2}$$

$$S = \{\{a\} \rightarrow \{b\}\}\}$$

$$p \text{ constantly } \top$$

$$\bigotimes \rightarrow \{a\} \checkmark$$

$$\{a\} \rightarrow \{a, b, c\} \checkmark$$

$$\{a, b\}$$

$$\{c\}$$

$$\{a, c\}$$

$$\{b, c\}$$

►

	а	b	С
1	×	×	
2	Х	Х	
3	×	Х	
4	Х	Х	×
5	Х	Х	×
6	Х		×
7	Х		×
8			
9			
10	•	•	

$c := \frac{1}{2}$
$\mathcal{S} = \big\{ \{ a \} \rightarrow \{ b \} \big\}$
p constantly $ op$
$\varnothing \rightarrow \{a\} \checkmark$
$\{a\} \rightarrow \{a,b,c\} \checkmark$
{b}
{a,b}
{c}
{a,c}
{b,c}

►

 Goal: adapt attribute exploration to handle exceptional counterexamples

- Goal: adapt attribute exploration to handle exceptional counterexamples
- Generalized attribute exploration

- Goal: adapt attribute exploration to handle exceptional counterexamples
- Generalized attribute exploration
- Developed "Exploration by Confidence"

- Goal: adapt attribute exploration to handle exceptional counterexamples
- Generalized attribute exploration
- Developed "Exploration by Confidence"

Outlook to Description Logics

- Goal: adapt attribute exploration to handle exceptional counterexamples
- Generalized attribute exploration
- Developed "Exploration by Confidence"

Outlook to Description Logics

Implications correspond to General Concept Inclusions (GCIs)

- Goal: adapt attribute exploration to handle exceptional counterexamples
- Generalized attribute exploration
- Developed "Exploration by Confidence"
- **Outlook to Description Logics**
 - Implications correspond to General Concept Inclusions (GCIs)

Venomous \sqcap Mammal $\sqsubseteq \bot$.

- Goal: adapt attribute exploration to handle exceptional counterexamples
- Generalized attribute exploration
- Developed "Exploration by Confidence"

Outlook to Description Logics

Implications correspond to General Concept Inclusions (GCIs)

```
Venomous \sqcap Mammal \sqsubseteq \bot.
```

Same ideas can be applied

- Goal: adapt attribute exploration to handle exceptional counterexamples
- Generalized attribute exploration
- Developed "Exploration by Confidence"

Outlook to Description Logics

Implications correspond to General Concept Inclusions (GCIs)

```
Venomous \sqcap Mammal \sqsubseteq \bot.
```

- Same ideas can be applied
- Counterexamples need to be connected subinterpretations

- Goal: adapt attribute exploration to handle exceptional counterexamples
- Generalized attribute exploration
- Developed "Exploration by Confidence"

Outlook to Description Logics

Implications correspond to General Concept Inclusions (GCIs)

```
Venomous \sqcap Mammal \sqsubseteq \bot.
```

- Same ideas can be applied
- Counterexamples need to be connected subinterpretations
- Extra expert interaction required (due to growing set of "attributes")

Fact?

$\{\, \text{Venomous}, \text{Bird}\,\} \rightarrow \bot$