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The platypus is a counterexample to

t Venomous,Mammal u Ñ K.

Accept this Counterexample?

It depends
True if all mammals are considered
But exceptional, i.e., this counterexample is rare
In general not desired (handle this special case elsewhere)

How to decide?

External source of information needed!
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Attribute Exploration

Expert Algorithm

K m1 . . . mn

g1 . . .
...

gk . . .

gk+1 C

𝒮 = t A1 Ñ B1,

. . .

Aℓ Ñ Bℓ u

X Ñ Y valid?

YESNO, counterexample C

Upon termination, Cn(𝒮) = Th(K) and 𝒮 is a base of the
implicational knowledge of the expert
Implications asked are always valid

Problem
Data may contain errors or unwanted special cases ; ask implications
with high confidence
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Definition
Define

confK(X Ñ Y ) :=

#

1 X 1 = H
|(XYY)1|

|X 1| otherwise

For c P [0, 1] set

Thc(K) := t X Ñ Y | confK(X Ñ Y ) ě c u.

Idea
Extend exploration such that implications with high confidence are asked.
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Definition
Let M be a finite set. Then an expert p on M is a mapping

p : Imp(M) Ñ P(M) Y t J u

such that

p(X Ñ Y ) = C ‰ J implies X Ď C and Y Ę C,

(expert gives counterexamples to false implications)

p(U Ñ V) = J,p(X Ñ Y ) = C ‰ J implies U Ę C or V Ď C.

(counterexamples do not invalidate correct implications)
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Definition
To explore Thc(K) with expert p with background knowledge 𝒮 means to
find a base of

Th(p) X Thc(K)

with background knowledge 𝒮,

i.e., to compute a set ℬ Ď Imp(M) such
that

Cn(ℬ Y 𝒮) = Cn
(︀
Th(p) X Thc(K)

)︀
.
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Classical Attribute Exploration

a b c
1 ˆ . .

2 ˆ ˆ .

H

Ñ H2 = t a u X

t a u

Ñ t a u
2 = t a u

t b u

Ñ t b u
2

t a,b u

Ñ t a,b u
2 =

t c u

Ñ t c u
2

t a, c u

Ñ t a, c u
2 = t a,b, c u X

t b, c u

Ñ t b, c u
2

Note

Order of premises extends Ď

Premises are always closed under known implications
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Interesting Implications ℒ
Known Implications 𝒮
Expert can confirm implications,

extending 𝒮

Expert can reject implications,
providing counterexamples,

shrinking ℒ

Iterate until ℒ = 𝒮.

Question
Which interesting but unknown implications are valid in our domain?

Classical Attribute Exploration: ℒ = Th(K)

Exploration by Confidence: ℒ = Thc(K)
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First Idea

Replace occurrence of (¨)2 with Thc(K)(¨).

Problems

It doesn’t work, i.e., exploration is only “approximative”:

Th(p) X Cn
(︀
Thc(K)

)︀
Ě Cn(ℬ Y 𝒮) Ě Cn

(︀
Th(p) X Thc(K)

)︀
Closures under Thc(K) are (potentially) expensive
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Idea

Instead of
X Ñ Thc(K)(X),

ask implications of the form

X Ñ
 

m P M
ˇ

ˇ confK(X Ñ t m u) ě c
(

.

Problem
Doesn’t work either.
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Choose
c := 1

2

𝒮 :=
 

t a u Ñ t b u
(

p constantly J

Then

confK(t a u Ñ t c u) ě c,

but t a u is not closed under 𝒮, and

confK(t b u Ñ t c u) =
2

5
ă c,

confK(t a,b u Ñ t c u) =
2

5
ă c,

confK(H Ñ t c u) =
4

10
ă c.

a b c
1 ˆ ˆ .
2 ˆ ˆ .
3 ˆ ˆ .
4 ˆ ˆ ˆ

5 ˆ ˆ ˆ

6 ˆ . ˆ

7 ˆ . ˆ

8 . . .
9 . . .
10 . . .
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Solution

Ensure: when

X Ñ
 

m P M
ˇ

ˇ confK(X Ñ t m u) ě c
(

is asked in iteration i, then for Y 2 Ĺ X

confK(Y 2 Ñ t n u) ě c ùñ ℬi Y 𝒮 |ù (Y 2 Ñ t n u).

Types of Implications asked

X Ñ X2, where X is closed under ℬi Y 𝒮, but not an intent
X Ñ t m P M | confK(X Ñ t m u) ě c uz(ℬi Y 𝒮)(X), where X is an
intent
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Exploration by Confidence

a b c
1 ˆ ˆ .
2 ˆ ˆ .
3 ˆ ˆ .
4 ˆ ˆ ˆ

5 ˆ ˆ ˆ

6 ˆ . ˆ

7 ˆ . ˆ

8 . . .
9 . . .
10 . . .

c := 1
2

𝒮 =
 

t a u Ñ t b u
(

p constantly J

H

Ñ t a u X

t a u

Ñ t a,b, c u X

t b u

t a,b u

t c u

t a, c u

t b, c u
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Summary

Goal: adapt attribute exploration to handle exceptional
counterexamples
Generalized attribute exploration
Developed “Exploration by Confidence”

Outlook to Description Logics

Implications correspond to General Concept Inclusions (GCIs)

Venomous [ Mammal Ď K.

Same ideas can be applied
Counterexamples need to be connected subinterpretations
Extra expert interaction required (due to growing set of “attributes”)
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Fact?

t Venomous,Bird u Ñ K
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