Exploring Faulty Data

Daniel Borchmann

TU Dresden

2015-06-26

http://www.sealifeconservation.org.au/adopt-an-animal/

The platypus is a counterexample to
$\{$ Venomous, Mammal $\} \rightarrow \perp$.

The platypus is a counterexample to
$\{$ Venomous, Mammal $\} \rightarrow \perp$.

Accept this Counterexample?

The platypus is a counterexample to
$\{$ Venomous, Mammal $\} \rightarrow \perp$.

Accept this Counterexample?
It depends

The platypus is a counterexample to
$\{$ Venomous, Mammal $\} \rightarrow \perp$.

Accept this Counterexample?
It depends

- True if all mammals are considered

The platypus is a counterexample to
$\{$ Venomous, Mammal $\} \rightarrow \perp$.

Accept this Counterexample?
It depends

- True if all mammals are considered
- But exceptional, i.e., this counterexample is rare

The platypus is a counterexample to
$\{$ Venomous, Mammal $\} \rightarrow \perp$.

Accept this Counterexample?
It depends

- True if all mammals are considered
- But exceptional, i.e., this counterexample is rare
- In general not desired (handle this special case elsewhere)

The platypus is a counterexample to
$\{$ Venomous, Mammal $\} \rightarrow \perp$.

Accept this Counterexample?
It depends

- True if all mammals are considered
- But exceptional, i.e., this counterexample is rare
- In general not desired (handle this special case elsewhere)

How to decide?

The platypus is a counterexample to
$\{$ Venomous, Mammal $\} \rightarrow \perp$.

Accept this Counterexample?
It depends

- True if all mammals are considered
- But exceptional, i.e., this counterexample is rare
- In general not desired (handle this special case elsewhere)

How to decide?
External source of information needed!

Attribute Exploration

Expert

Algorithm

\mathbb{K}	m_{1}	\ldots	m_{n}	$\mathcal{S}=\left\{A_{1} \rightarrow B_{1}\right.$,
g_{1}	\ldots	\ldots		
\vdots		$\left.A_{\ell} \rightarrow B_{\ell}\right\}$		
g_{k}	\ldots			

Attribute Exploration

$X \rightarrow Y$ valid?
 Expert
 Algorithm

\mathbb{K}	m_{1}	\ldots	m_{n}	$\mathcal{S}=\left\{A_{1} \rightarrow B_{1}\right.$,
g_{1}	\ldots	\ldots		
\vdots		$\left.A_{\ell} \rightarrow B_{\ell}\right\}$		
g_{k}	\ldots			

Attribute Exploration

Attribute Exploration

Attribute Exploration

$X \rightarrow Y$ valid?
 Expert
 Algorithm

\mathbb{K}	m_{1}	\ldots	m_{n}	$\mathcal{S}=\left\{A_{1} \rightarrow B_{1}\right.$,
g_{1}	\ldots	\ldots		
\vdots		$\left.A_{\ell} \rightarrow B_{\ell}\right\}$		
g_{k}	\ldots			

Attribute Exploration

$X \rightarrow Y$ valid?

Expert

Algorithm

NO, counterexample C

\mathbb{K}	m_{1}	\ldots	m_{n}	$\mathcal{S}=\left\{A_{1} \rightarrow B_{1}\right.$,
g_{1}	\ldots	\ldots		
\vdots		$\left.A_{\ell} \rightarrow B_{\ell}\right\}$		
g_{k}	\ldots			

Attribute Exploration

NO, counterexample C

| \mathbb{K} | m_{1} | \ldots | m_{n} |
| :---: | :---: | :---: | :---: |$\quad \mathcal{S}=\left\{A_{1} \rightarrow B_{1}\right.$,

Attribute Exploration

Expert

Algorithm

\mathbb{K}	m_{1}	\ldots	m_{n}	$\mathcal{S}=\left\{A_{1} \rightarrow B_{1}\right.$,
g_{1}	\ldots	\ldots		
\vdots		$\left.A_{\ell} \rightarrow B_{\ell}\right\}$		
g_{k}	\ldots			

Attribute Exploration

Expert

Algorithm

$$
\begin{array}{c|cccc}
\mathbb{K} & m_{1} & \ldots & m_{n} & \mathcal{S}=\left\{A_{1} \rightarrow B_{1}\right. \\
\hline g_{1} & \ldots & \ldots \\
\vdots & & \left.A_{\ell} \rightarrow B_{\ell}\right\} \\
g_{k} & \ldots &
\end{array}
$$

- Upon termination, $\operatorname{Cn}(\mathcal{S})=\operatorname{Th}(\mathbb{K})$ and \mathcal{S} is a base of the implicational knowledge of the expert

Attribute Exploration

Expert

Algorithm

$$
\begin{array}{c|cccc}
\mathbb{K} & m_{1} & \ldots & m_{n} & \mathcal{S}=\left\{A_{1} \rightarrow B_{1}\right. \\
\hline g_{1} & \ldots & \ldots \\
\vdots & & \left.A_{\ell} \rightarrow B_{\ell}\right\} \\
g_{k} & \ldots &
\end{array}
$$

- Upon termination, $\operatorname{Cn}(\mathcal{S})=\operatorname{Th}(\mathbb{K})$ and \mathcal{S} is a base of the implicational knowledge of the expert
- Implications asked are always valid

Attribute Exploration

Expert

Algorithm

$$
\begin{array}{c|cccc}
\mathbb{K} & m_{1} & \ldots & m_{n} & \mathcal{S}=\left\{A_{1} \rightarrow B_{1}\right. \\
\hline g_{1} & \ldots & \ldots \\
\vdots & & \left.A_{\ell} \rightarrow B_{\ell}\right\} \\
g_{k} & \ldots &
\end{array}
$$

- Upon termination, $\operatorname{Cn}(\mathcal{S})=\operatorname{Th}(\mathbb{K})$ and \mathcal{S} is a base of the implicational knowledge of the expert
- Implications asked are always valid

Problem
Data may contain errors or unwanted special cases

Attribute Exploration

Expert

Algorithm

$$
\begin{array}{c|cccc}
\mathbb{K} & m_{1} & \ldots & m_{n} & \mathcal{S}=\left\{A_{1} \rightarrow B_{1}\right. \\
\hline g_{1} & \ldots & \ldots \\
\vdots & & \left.A_{\ell} \rightarrow B_{\ell}\right\} \\
g_{k} & \ldots &
\end{array}
$$

- Upon termination, $\operatorname{Cn}(\mathcal{S})=\operatorname{Th}(\mathbb{K})$ and \mathcal{S} is a base of the implicational knowledge of the expert
- Implications asked are always valid

Problem

Data may contain errors or unwanted special cases \sim ask implications with high confidence

Definition

Define

$$
\operatorname{conf}_{\mathbb{K}}(X \rightarrow Y):= \begin{cases}1 & X^{\prime}=\varnothing \\ \frac{\mid\left(X \cup Y Y^{\prime} \mid\right.}{\left|X^{\prime}\right|} & \text { otherwise }\end{cases}
$$

Definition

Define

$$
\operatorname{conf}_{\mathbb{K}}(X \rightarrow Y):= \begin{cases}1 & X^{\prime}=\varnothing \\ \frac{\left|(X \cup Y)^{\prime}\right|}{\left|X^{\prime}\right|} & \text { otherwise }\end{cases}
$$

For $c \in[0,1]$ set

$$
\operatorname{Th}_{c}(\mathbb{K}):=\left\{X \rightarrow Y \mid \operatorname{conf}_{\mathbb{K}}(X \rightarrow Y) \geqslant c\right\} .
$$

Definition

Define

$$
\operatorname{conf}_{\mathbb{K}}(X \rightarrow Y):= \begin{cases}1 & X^{\prime}=\varnothing \\ \frac{\left|(X \cup Y)^{\prime}\right|}{\left|X^{\prime}\right|} & \text { otherwise }\end{cases}
$$

For $c \in[0,1]$ set

$$
\operatorname{Th}_{c}(\mathbb{K}):=\left\{X \rightarrow Y \mid \operatorname{conf}_{\mathbb{K}}(X \rightarrow Y) \geqslant c\right\} .
$$

Idea
Extend exploration such that implications with high confidence are asked.

Definition

Let M be a finite set. Then an expert p on M is a mapping

$$
p: \operatorname{Imp}(M) \rightarrow \mathfrak{P}(M) \cup\{\top\}
$$

such that

Definition

Let M be a finite set. Then an expert p on M is a mapping

$$
p: \operatorname{Imp}(M) \rightarrow \mathfrak{P}(M) \cup\{T\}
$$

such that

- $p(X \rightarrow Y)=C \neq T$ implies $X \subseteq C$ and $Y \nsubseteq C$,

Definition

Let M be a finite set. Then an expert p on M is a mapping

$$
p: \operatorname{Imp}(M) \rightarrow \mathfrak{P}(M) \cup\{T\}
$$

such that

- $p(X \rightarrow Y)=C \neq T$ implies $X \subseteq C$ and $Y \nsubseteq C$,
(expert gives counterexamples to false implications)

Definition

Let M be a finite set. Then an expert p on M is a mapping

$$
p: \operatorname{Imp}(M) \rightarrow \mathfrak{P}(M) \cup\{T\}
$$

such that

- $p(X \rightarrow Y)=C \neq T$ implies $X \subseteq C$ and $Y \nsubseteq C$,
(expert gives counterexamples to false implications)
- $p(U \rightarrow V)=\top, p(X \rightarrow Y)=C \neq \top$ implies $U \ddagger C$ or $V \subseteq C$.

Definition

Let M be a finite set. Then an expert p on M is a mapping

$$
p: \operatorname{Imp}(M) \rightarrow \mathfrak{P}(M) \cup\{T\}
$$

such that

- $p(X \rightarrow Y)=C \neq T$ implies $X \subseteq C$ and $Y \nsubseteq C$,
(expert gives counterexamples to false implications)
- $p(U \rightarrow V)=\top, p(X \rightarrow Y)=C \neq \top$ implies $U \ddagger C$ or $V \subseteq C$. (counterexamples do not invalidate correct implications)

Definition

To explore $\mathrm{Th}_{c}(\mathbb{K})$ with expert p with background knowledge \mathcal{S} means to find a base of
$\operatorname{Th}(p) \cap \mathrm{Th}_{c}(\mathbb{K})$
with background knowledge \mathcal{S},

Definition

To explore $\mathrm{Th}_{c}(\mathbb{K})$ with expert p with background knowledge \mathcal{S} means to find a base of

$$
\operatorname{Th}(p) \cap \operatorname{Th}_{c}(\mathbb{K})
$$

with background knowledge \mathcal{S}, i.e., to compute a set $\mathcal{B} \subseteq \operatorname{Imp}(M)$ such that

$$
\operatorname{Cn}(\mathcal{B} \cup \mathcal{S})=\operatorname{Cn}\left(\operatorname{Th}(p) \cap \operatorname{Th}_{c}(\mathbb{K})\right)
$$

Classical Attribute Exploration

	a	b	c
$1 \mid \times$	\cdot		

Classical Attribute Exploration

$$
\begin{array}{rrr}
& & \begin{array}{r}
\varnothing \\
a
\end{array} b \\
\hline 1 \mid \times & c & \cdot \\
& & \{a\} \\
& \{b\} \\
& & \{a, b\} \\
& & \{a, c\} \\
\{b, c\}
\end{array}
$$

Classical Attribute Exploration

$$
\begin{aligned}
\varnothing & \rightarrow \varnothing^{\prime \prime} \\
\{a\} & \rightarrow\{a\}^{\prime \prime} \\
\hline 1 \mid \times \quad \cdot \quad \cdot & \{b\} \\
\{a, b\} & \rightarrow\{a, b\}^{\prime \prime} \\
\{c\} & \rightarrow\{c\}^{\prime \prime} \\
\{a, c\} & \rightarrow\{a, c\}^{\prime \prime} \\
\{b, c\} & \rightarrow\{b, c\}^{\prime \prime}
\end{aligned}
$$

Classical Attribute Exploration

$$
\begin{aligned}
\varnothing & \rightarrow \varnothing^{\prime \prime}=\{a\} \\
\{a\} & \rightarrow\{a\}^{\prime \prime} \\
\hline 1 \mid \times \cdot \cdot & \rightarrow b\} \\
\{a, b\} & \rightarrow\{a, b\}^{\prime \prime} \\
\{c\} & \rightarrow\{c\}^{\prime \prime} \\
\{a, c\} & \rightarrow\{a, c\}^{\prime \prime} \\
\{b, c\} & \rightarrow\{b, c\}^{\prime \prime}
\end{aligned}
$$

Classical Attribute Exploration

$$
\begin{aligned}
\varnothing & \rightarrow \varnothing^{\prime \prime} \\
\{a\} & \rightarrow\{a\}^{\prime \prime} \\
\mid a \quad b \quad c & \{a\} \\
\hline 1 \mid \times \cdot \cdot & \rightarrow b\}^{\prime \prime} \\
\{a, b\} & \rightarrow\{a, b\}^{\prime \prime} \\
\{c\} & \rightarrow\{c\}^{\prime \prime} \\
\{a, c\} & \rightarrow\{a, c\}^{\prime \prime} \\
\{b, c\} & \rightarrow\{b, c\}^{\prime \prime}
\end{aligned}
$$

Classical Attribute Exploration

$$
\begin{aligned}
& \varnothing \rightarrow \varnothing^{\prime \prime}=\{a\} \checkmark \\
& \begin{array}{l|lll}
& a & b & c \\
\hline 1 & \times & \cdot &
\end{array} \\
& \{a\} \rightarrow\{a\}^{\prime \prime} \\
& \rightarrow b\} \rightarrow\{b\}^{\prime \prime} \\
& \{a, b\} \rightarrow\{a, b\}^{\prime \prime} \\
& \longrightarrow\{a\} \rightarrow\{c\}^{\prime \prime} \\
& \{a, c\} \rightarrow\{a, c\}^{\prime \prime} \\
& \longrightarrow\{b, c\} \longrightarrow\{b, c\}^{\prime \prime}
\end{aligned}
$$

Classical Attribute Exploration

$$
\begin{aligned}
& \varnothing \rightarrow \varnothing^{\prime \prime}=\{a\} \checkmark \\
& \begin{array}{l|lll}
& a & b & c \\
\hline 1 & \times & \cdot &
\end{array}
\end{aligned}
$$

Classical Attribute Exploration

$$
\begin{aligned}
& \varnothing \rightarrow \varnothing^{\prime \prime} \quad=\{a\} \checkmark \\
& \begin{array}{l|lll}
& a & b & c \\
\hline 1 & \times & \cdot &
\end{array}
\end{aligned}
$$

Classical Attribute Exploration

$$
\left.\begin{array}{rlrl}
\varnothing & \rightarrow \varnothing^{\prime \prime} & =\{a\} \checkmark \\
\{a\} & \rightarrow\{a\}^{\prime \prime} & =\{a\} \\
\frac{1 a b c}{1 \mid \times \cdot \cdot} \quad \begin{array}{rl}
\{b\} & \rightarrow\{b\}^{\prime \prime}
\end{array} & =\{a, b, c\} \times \\
\frac{\{a, b\}}{} \rightarrow\{a, b\}^{\prime \prime} & =\{a\} & \rightarrow\{c\}^{\prime \prime} & \\
\frac{\{a, c\}}{} \rightarrow\{a, c\}^{\prime \prime} \\
\frac{\{b, c\}}{} \rightarrow\{b, c\}^{\prime \prime}
\end{array}\right)
$$

Classical Attribute Exploration

$$
\begin{aligned}
& \begin{aligned}
& \varnothing \rightarrow \varnothing^{\prime \prime} \\
&=\{a\} \checkmark \\
&\{a\} \rightarrow\{a\}^{\prime \prime} \\
&\{b\}=\{a\} \\
&\{a\}^{\prime \prime} \\
&\{a, b\} \rightarrow\{a, b\}^{\prime \prime} \\
&\{c\} \rightarrow\{c\}^{\prime \prime}
\end{aligned}=\{a, b, c\} X \\
& \begin{array}{c|ccc}
& a & b & c \\
\hline 1 & \times & \cdot & \cdot \\
2 & \times & \times & .
\end{array}
\end{aligned}
$$

Classical Attribute Exploration

$$
\begin{aligned}
& \varnothing \rightarrow \varnothing^{\prime \prime}=\{a\} \checkmark \\
& \begin{array}{c|ccc}
& a & b & c \\
\hline 1 & \times & \cdot & . \\
2 & \times & \times & .
\end{array}
\end{aligned}
$$

Classical Attribute Exploration

$$
\begin{aligned}
& \begin{array}{rlrl}
\varnothing & \rightarrow \varnothing^{\prime \prime} & =\{a\} \checkmark \\
\{a\} & \rightarrow\{a\}^{\prime \prime} & =\{a\} \\
\{b\} & \rightarrow\{b\}^{\prime \prime} & \\
\{a, b\} & \rightarrow\{a, b\}^{\prime \prime} & =\{a, b\} \\
\{c\} & \rightarrow\{c\}^{\prime \prime} & \\
\{a, c\} & \rightarrow\{a, c\}^{\prime \prime} & =\{a, b, c\} \\
\{b, c\} & \rightarrow\{b, c\}^{\prime \prime}
\end{array} \\
& \begin{array}{c|ccc}
& a & b & c \\
\hline 1 & \times & \cdot & \cdot \\
2 & \times & \times & .
\end{array}
\end{aligned}
$$

Classical Attribute Exploration

$$
\begin{aligned}
& \varnothing \rightarrow \varnothing^{\prime \prime} \quad=\{a\} \checkmark \\
& \begin{array}{c|ccc}
& a & b & c \\
\hline 1 & \times & \cdot & \cdot \\
2 & \times & \times & .
\end{array}
\end{aligned}
$$

Classical Attribute Exploration

$$
\begin{aligned}
& \begin{aligned}
\varnothing & \rightarrow \varnothing^{\prime \prime} & =\{a\} \checkmark \\
\{a\} & \rightarrow\{a\}^{\prime \prime} & =\{a\} \\
\{b\} & \rightarrow\{b\}^{\prime \prime} & \\
\{a, b\} & \rightarrow\{a, b\}^{\prime \prime} & =\{a, b\} \\
\{c\} & \rightarrow\{c\}^{\prime \prime} & \\
\{a, c\} & \rightarrow\{a, c\}^{\prime \prime} & =\{a, b, c\} \checkmark \\
\{b, c\} & =\{b, c\}^{\prime \prime} &
\end{aligned} \\
& \begin{aligned}
\varnothing & \rightarrow \varnothing^{\prime \prime} & =\{a\} \checkmark \\
\{a\} & \rightarrow\{a\}^{\prime \prime} & =\{a\} \\
\{b\} & \rightarrow\{b\}^{\prime \prime} & \\
\{a, b\} & \rightarrow\{a, b\}^{\prime \prime} & =\{a, b\} \\
\{c\} & \rightarrow\{c\}^{\prime \prime} & \\
\{a, c\} & \rightarrow\{a, c\}^{\prime \prime} & =\{a, b, c\} \checkmark \\
\{b, c\} & =\{b, c\}^{\prime \prime} &
\end{aligned} \\
& \begin{array}{c|ccc}
\mid a & b & c \\
\hline 1 & \times & \cdot & . \\
2 & \times & \times & .
\end{array}
\end{aligned}
$$

Note

Classical Attribute Exploration

$$
\begin{aligned}
& \begin{aligned}
\varnothing & \rightarrow \varnothing^{\prime \prime} & =\{a\} \checkmark \\
\{a\} & \rightarrow\{a\}^{\prime \prime} & =\{a\} \\
\{b\} & \rightarrow\{b\}^{\prime \prime} & \\
\{a, b\} & \rightarrow\{a, b\}^{\prime \prime} & =\{a, b\} \\
\{c\} & \rightarrow\{c\}^{\prime \prime} &
\end{aligned} \\
& \begin{aligned}
\varnothing & \rightarrow \varnothing^{\prime \prime} & =\{a\} \checkmark \\
\{a\} & \rightarrow\{a\}^{\prime \prime} & =\{a\} \\
\{b\} & \rightarrow\{b\}^{\prime \prime} & \\
\{a, b\} & \rightarrow\{a, b\}^{\prime \prime} & =\{a, b\} \\
\{c\} & \rightarrow\{c\}^{\prime \prime} &
\end{aligned} \\
& \begin{array}{c|ccc}
& a & b & c \\
\hline 1 & \times & \cdot & . \\
2 & \times & \times & .
\end{array} \\
& \{a, c\} \rightarrow\{a, c\}^{\prime \prime}=\{a, b, c\} \\
& \xrightarrow{\{b, c\}}\{b, c\}^{\prime \prime}
\end{aligned}
$$

Note

- Order of premises extends \subseteq

Classical Attribute Exploration

$$
\begin{aligned}
& \begin{array}{c|ccc}
& a & b & c \\
\hline 1 & \times & \cdot & . \\
2 & \times & \times & .
\end{array} \\
& \varnothing \rightarrow \varnothing^{\prime \prime} \quad=\{a\} \\
& \{a\} \rightarrow\{a\}^{\prime \prime}=\{a\} \\
& \xrightarrow{\{b\}} \longrightarrow\{b\}^{\prime \prime} \\
& \{a, b\} \rightarrow\{a, b\}^{\prime \prime}=\{a, b\} \\
& \longrightarrow\{c\} \rightarrow\{c\}^{\prime \prime} \\
& \{a, c\} \rightarrow\{a, c\}^{\prime \prime}=\{a, b, c\} \\
& \xrightarrow{\{b, c\}} \rightarrow(b, c\}^{\prime \prime}
\end{aligned}
$$

Note

- Order of premises extends \subseteq
- Premises are always closed under known implications

- Interesting Implications \mathcal{L}

- Interesting Implications \mathcal{L}
- Known Implications \mathcal{S}

- Interesting Implications \mathcal{L}
- Known Implications \mathcal{S}

Question

Which interesting but unknown implications are valid in our domain?

- Interesting Implications \mathcal{L}
- Known Implications \mathcal{S}
- Expert can confirm implications,

Question

Which interesting but unknown implications are valid in our domain?

- Interesting Implications \mathcal{L}
- Known Implications \mathcal{S}
- Expert can confirm implications, extending \mathcal{S}

Question

Which interesting but unknown implications are valid in our domain?

- Interesting Implications \mathcal{L}
- Known Implications \mathcal{S}
- Expert can confirm implications, extending \mathcal{S}
- Expert can reject implications, providing counterexamples,

Question

Which interesting but unknown implications are valid in our domain?

- Interesting Implications \mathcal{L}
- Known Implications \mathcal{S}
- Expert can confirm implications, extending \mathcal{S}
- Expert can reject implications, providing counterexamples, shrinking \mathcal{L}

Question

Which interesting but unknown implications are valid in our domain?

- Interesting Implications \mathcal{L}
- Known Implications \mathcal{S}
- Expert can confirm implications, extending \mathcal{S}
- Expert can reject implications, providing counterexamples, shrinking \mathcal{L}
- Iterate until $\mathcal{L}=\mathcal{S}$.

Question

Which interesting but unknown implications are valid in our domain?

- Interesting Implications \mathcal{L}
- Known Implications \mathcal{S}
- Expert can confirm implications, extending \mathcal{S}
- Expert can reject implications, providing counterexamples, shrinking \mathcal{L}
- Iterate until $\mathcal{L}=\mathcal{S}$.

Question

Which interesting but unknown implications are valid in our domain?

- Classical Attribute Exploration: $\mathcal{L}=\operatorname{Th}(\mathbb{K})$

- Interesting Implications \mathcal{L}
- Known Implications \mathcal{S}
- Expert can confirm implications, extending \mathcal{S}
- Expert can reject implications, providing counterexamples, shrinking \mathcal{L}
- Iterate until $\mathcal{L}=\mathcal{S}$.

Question

Which interesting but unknown implications are valid in our domain?

- Classical Attribute Exploration: $\mathcal{L}=\operatorname{Th}(\mathbb{K})$
- Exploration by Confidence: $\mathcal{L}=\mathrm{Th}_{c}(\mathbb{K})$

First Idea

First Idea
Replace occurrence of $(\cdot)^{\prime \prime}$ with $\operatorname{Th}_{c}(\mathbb{K})(\cdot)$.

First Idea
Replace occurrence of $(\cdot)^{\prime \prime}$ with $\mathrm{Th}_{c}(\mathbb{K})(\cdot)$.
Problems

First Idea
Replace occurrence of $(\cdot)^{\prime \prime}$ with $\mathrm{Th}_{c}(\mathbb{K})(\cdot)$.
Problems

- It doesn't work,

First Idea
Replace occurrence of $(\cdot)^{\prime \prime}$ with $\operatorname{Th}_{c}(\mathbb{K})(\cdot)$.

Problems

- It doesn't work, i.e., exploration is only "approximative":

First Idea
Replace occurrence of $(\cdot)^{\prime \prime}$ with $\mathrm{Th}_{c}(\mathbb{K})(\cdot)$.

Problems

- It doesn't work, i.e., exploration is only "approximative":

$$
\operatorname{Th}(p) \cap \operatorname{Cn}\left(\operatorname{Th}_{c}(\mathbb{K})\right) \supseteq \operatorname{Cn}(\mathcal{B} \cup \mathcal{S}) \supseteq \operatorname{Cn}\left(\operatorname{Th}(p) \cap \operatorname{Th}_{c}(\mathbb{K})\right)
$$

First Idea
Replace occurrence of $(\cdot)^{\prime \prime}$ with $\mathrm{Th}_{c}(\mathbb{K})(\cdot)$.

Problems

- It doesn't work, i.e., exploration is only "approximative":

$$
\operatorname{Th}(p) \cap \operatorname{Cn}\left(\operatorname{Th}_{c}(\mathbb{K})\right) \supseteq \operatorname{Cn}(\mathcal{B} \cup \mathcal{S}) \supseteq \operatorname{Cn}\left(\operatorname{Th}(p) \cap \operatorname{Th}_{c}(\mathbb{K})\right)
$$

- Closures under $\mathrm{Th}_{c}(\mathbb{K})$ are (potentially) expensive

Idea

Idea
Instead of

$$
X \rightarrow \operatorname{Th}_{c}(\mathbb{K})(X)
$$

ask implications of the form

$$
X \rightarrow\left\{m \in M \mid \operatorname{conf}_{\mathbb{K}}(X \rightarrow\{m\}) \geqslant c\right\} .
$$

Idea
Instead of

$$
X \rightarrow \operatorname{Th}_{c}(\mathbb{K})(X)
$$

ask implications of the form

$$
X \rightarrow\left\{m \in M \mid \operatorname{conf}_{\mathbb{K}}(X \rightarrow\{m\}) \geqslant c\right\} .
$$

Problem

Doesn't work either.

Choose

- $c:=\frac{1}{2}$
- $\mathcal{S}:=\{\{\mathrm{a}\} \rightarrow\{\mathrm{b}\}\}$
- p constantly T

	a	b	c
1	\times	\times	\cdot
2	\times	\times	\cdot
3	\times	\times	\cdot
4	\times	\times	\times
5	\times	\times	\times
6	\times	\cdot	\times
7	\times	\cdot	\times
8	\cdot	\cdot	\cdot
9	\cdot	\cdot	\cdot
10	\cdot	\cdot	\cdot

Choose

- $c:=\frac{1}{2}$
- $\mathcal{S}:=\{\{\mathrm{a}\} \rightarrow\{\mathrm{b}\}\}$
- p constantly \top

Then

$$
\operatorname{conf}_{\mathbb{K}}(\{\mathrm{a}\} \rightarrow\{\mathrm{c}\}) \geqslant c,
$$

	a	b	c
1	\times	\times	\cdot
2	\times	\times	\cdot
3	\times	\times	\cdot
4	\times	\times	\times
5	\times	\times	\times
6	\times	\cdot	\times
7	\times	\cdot	\times
8	\cdot	\cdot	\cdot
9	\cdot	\cdot	\cdot
10	\cdot	\cdot	\cdot

Choose

- $c:=\frac{1}{2}$
- $\mathcal{S}:=\{\{\mathrm{a}\} \rightarrow\{\mathrm{b}\}\}$
- p constantly \top

Then

$$
\operatorname{conf}_{\mathbb{K}}(\{\mathrm{a}\} \rightarrow\{\mathrm{c}\}) \geqslant c,
$$

but $\{\mathrm{a}\}$ is not closed under \mathcal{S},

	a	b	c
1	\times	\times	\cdot
2	\times	\times	\cdot
3	\times	\times	\cdot
4	\times	\times	\times
5	\times	\times	\times
6	\times	.	\times
7	\times	\cdot	\times
8	\cdot	\cdot	\cdot
9	\cdot	\cdot	\cdot
10	\cdot	\cdot	\cdot

Choose

- $c:=\frac{1}{2}$
- $\mathcal{S}:=\{\{\mathrm{a}\} \rightarrow\{\mathrm{b}\}\}$
- p constantly T

Then

$$
\operatorname{conf}_{\mathbb{K}}(\{\mathrm{a}\} \rightarrow\{\mathrm{c}\}) \geqslant c,
$$

but $\{a\}$ is not closed under \mathcal{S}, and

$$
\begin{aligned}
\operatorname{conf}_{\mathbb{K}}(\{b\} & \rightarrow\{c\})=\frac{2}{5}<c \\
\operatorname{conf}_{\mathbb{K}}(\{a, b\} & \rightarrow\{c\})=\frac{2}{5}<c \\
\operatorname{conf}_{\mathbb{K}}(\varnothing & \rightarrow\{c\})=\frac{4}{10}<c .
\end{aligned}
$$

	a	b	c
1	\times	\times	\cdot
2	\times	\times	\cdot
3	\times	\times	\cdot
4	\times	\times	\times
5	\times	\times	\times
6	\times	\cdot	\times
7	\times	\cdot	\times
8	\cdot	\cdot	\cdot
9	\cdot	\cdot	\cdot
10	\cdot	\cdot	.

Solution

Solution

Ensure: when

$$
X \rightarrow\left\{m \in M \mid \operatorname{conf}_{\mathbb{K}}(X \rightarrow\{m\}) \geqslant c\right\}
$$

is asked in iteration i,

Solution

Ensure: when

$$
X \rightarrow\left\{m \in M \mid \operatorname{conf}_{\mathbb{K}}(X \rightarrow\{m\}) \geqslant c\right\}
$$

is asked in iteration i, then for $Y^{\prime \prime} \subsetneq X$

$$
\operatorname{conf}_{\mathbb{K}}\left(Y^{\prime \prime} \rightarrow\{n\}\right) \geqslant c \Longrightarrow \mathcal{B}_{i} \cup \mathcal{S} \models\left(Y^{\prime \prime} \rightarrow\{n\}\right)
$$

Solution

Ensure: when

$$
X \rightarrow\left\{m \in M \mid \operatorname{conf}_{\mathbb{K}}(X \rightarrow\{m\}) \geqslant c\right\}
$$

is asked in iteration i, then for $Y^{\prime \prime} \subsetneq X$

$$
\operatorname{conf}_{\mathbb{K}}\left(Y^{\prime \prime} \rightarrow\{n\}\right) \geqslant c \Longrightarrow \mathcal{B}_{i} \cup \mathcal{S} \models\left(Y^{\prime \prime} \rightarrow\{n\}\right)
$$

Types of Implications asked

Solution

Ensure: when

$$
X \rightarrow\left\{m \in M \mid \operatorname{conf}_{\mathbb{K}}(X \rightarrow\{m\}) \geqslant c\right\}
$$

is asked in iteration i, then for $Y^{\prime \prime} \subsetneq X$

$$
\operatorname{conf}_{\mathbb{K}}\left(Y^{\prime \prime} \rightarrow\{n\}\right) \geqslant c \Longrightarrow \mathcal{B}_{i} \cup \mathcal{S} \models\left(Y^{\prime \prime} \rightarrow\{n\}\right)
$$

Types of Implications asked

- $X \rightarrow X^{\prime \prime}$, where X is closed under $\mathcal{B}_{i} \cup \mathcal{S}$, but not an intent

Solution

Ensure: when

$$
X \rightarrow\left\{m \in M \mid \operatorname{conf}_{\mathbb{K}}(X \rightarrow\{m\}) \geqslant c\right\}
$$

is asked in iteration i, then for $Y^{\prime \prime} \subsetneq X$

$$
\operatorname{conf}_{\mathbb{K}}\left(Y^{\prime \prime} \rightarrow\{n\}\right) \geqslant c \Longrightarrow \mathcal{B}_{i} \cup \mathcal{S} \models\left(Y^{\prime \prime} \rightarrow\{n\}\right)
$$

Types of Implications asked

- $X \rightarrow X^{\prime \prime}$, where X is closed under $\mathcal{B}_{i} \cup \mathcal{S}$, but not an intent
- $X \rightarrow\left\{m \in M \mid \operatorname{conf}_{\mathbb{K}}(X \rightarrow\{m\}) \geqslant c\right\} \backslash\left(\mathcal{B}_{i} \cup \mathcal{S}\right)(X)$, where X is an intent

Exploration by Confidence

				$\bullet c:=\frac{1}{2}$	
	a	b	c		
1	\times	\times	\cdot		
2	\times	\times	\cdot		
3	\times	\times	\cdot		
4	\times	\times	\times		
5	\times	\times	\times		
6	\times	\cdot	\times		
7	\times	\cdot	\times		
8	\cdot	\cdot	\cdot		
9	\cdot	\cdot	\cdot		
10	\cdot	\cdot	\cdot		

Exploration by Confidence

	a	b	c	$\text { - } c:=\frac{1}{2}$
1	\times	\times	.	- p constantly T
2	\times	\times	.	
3	\times	\times	.	\varnothing
4	\times	\times	\times	\{a\}
5	\times \times \times	\times	\times	\{b\}
7	\times	.	\times	\{a, b \}
8	.	.		\{c \}
9				\{a, c \}
10				\{b, c \}

Exploration by Confidence

			$\bullet c:=\frac{1}{2}$	
	a	b	c	$\bullet \mathcal{S}=\{\{\mathrm{a}\} \rightarrow\{\mathrm{b}\}\}$
1	\times	\times	\cdot	\bullet constantly \top
2	\times	\times	\cdot	\varnothing
3	\times	\times	.	$\{a\}$
4	\times	\times	\times	$\{b\}$
5	\times	\times	\times	$\{a, b\}$
6	\times	\cdot	\times	$\{c\}$
7	\times	\cdot	\times	$\{a, c\}$
8	\cdot	\cdot	\cdot	$\{b, c\}$

Exploration by Confidence

	a	b	c	$\bullet c:=\frac{1}{2}$
1	\times	\times	\cdot	$\bullet \mathcal{S}=\{\{a\} \rightarrow\{b\}\}$
2	\times	\times	\cdot	
3	\times	\times	\cdot	$\varnothing \rightarrow\{a\}$
4	\times	\times	\times	$\{a\}$
5	\times	\times	\times	$\{b\}$
6	\times	\cdot	\times	$\{a, b\}$
7	\times	\cdot	\times	$\{c\}$
8	\cdot	\cdot	\cdot	$\{a, c\}$
9	\cdot	\cdot	\cdot	$\{b, c\}$

Exploration by Confidence

	a	b	c	$\bullet \mathrm{c}:=\frac{1}{2}$
1	\times	\times	\cdot	$\bullet \mathcal{S}=\{\{\mathrm{a}\} \rightarrow\{\mathrm{b}\}\}$
2	\times	\times	\cdot	
3	\times	\times	\cdot	$\varnothing \rightarrow\{a\} \checkmark$
4	\times	\times	\times	$\{a\}$
5	\times	\times	\times	$\{b\}$
6	\times	\cdot	\times	$\{a, b\}$
7	\times	\cdot	\times	$\{c\}$
8	\cdot	\cdot	\cdot	$\{a, c\}$
9	\cdot	\cdot	\cdot	$\{b, c\}$

Exploration by Confidence

	a	b	c	$\text { - } c:=\frac{1}{2}$
1	\times	\times		- p constantly T
2	\times	\times	.	
3	\times	\times		$\varnothing \rightarrow\{a\} \checkmark$
4	\times	\times	\times	\{a\}
5	\times	\times	\times	
6	\times	.	\times	\{b $\}$
7	\times	.	\times	\{a, b \}
8	.	.		$\{\mathrm{c}\}$
9				\{a, c $\}$
10				$\{b, c\}$

Exploration by Confidence

	a	b	c	$\begin{aligned} \text { - } c & :=\frac{1}{2} \\ \mathcal{S} & =\{\{a\} \rightarrow\{b\}\} \end{aligned}$
1	\times	\times	.	- p constantly T
2	\times	\times	.	
3	\times	\times		$\varnothing \rightarrow\{\mathrm{a}\} \checkmark$
4	\times	\times	\times	$\{\mathrm{a}\} \rightarrow\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
5	\times	\times	\times	(b)
6	\times		\times	(b)
7	\times		\times	\{a, b \}
8	.			$\{0\}$
${ }^{9}$.			\{a, c $\}$
10	.			$\{b, c\}$

Exploration by Confidence

	a	b	c	$\bullet c:=\frac{1}{2}$
1	\times	\times	\cdot	$\bullet \mathcal{S}=\{\{\mathrm{a}\} \rightarrow\{\mathrm{b}\}\}$
2	\times	\times	\cdot	p constantly T
3	\times	\times	\cdot	$\varnothing \rightarrow\{a\} \checkmark$
4	\times	\times	\times	$\{a\} \rightarrow\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \checkmark$
5	\times	\times	\times	$\{b\}$
6	\times	\cdot	\times	$\{\mathrm{a}, \mathrm{b}\}$
7	\times	\cdot	\times	$\{c\}$
8	\cdot	\cdot	\cdot	$\{a, c\}$
9	\cdot	\cdot	\cdot	$\{b, c\}$

Exploration by Confidence

	a	b	c	$\begin{aligned} \rightarrow & c:=\frac{1}{2} \\ \mathcal{S} & =\{\{a\} \rightarrow\{b\}\} \end{aligned}$
1	\times	\times	.	- p constantly T
2	\times	\times	.	
3	\times	\times	.	$\varnothing \rightarrow\{\mathrm{a}\} \checkmark$
4	\times	\times	\times	$\{\mathrm{a}\} \rightarrow\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \checkmark$
5	\times	\times	\times	(b)
6	\times		\times	(b)
7	\times		\times	$\{\mathrm{a}, \mathrm{b}\}$
8	.			$\{0\}$
9	.			$\{a, c\}$
10	.			$\{b, c\}$

Summary

Summary

- Goal: adapt attribute exploration to handle exceptional counterexamples

Summary

- Goal: adapt attribute exploration to handle exceptional counterexamples
- Generalized attribute exploration

Summary

- Goal: adapt attribute exploration to handle exceptional counterexamples
- Generalized attribute exploration
- Developed "Exploration by Confidence"

Summary

- Goal: adapt attribute exploration to handle exceptional counterexamples
- Generalized attribute exploration
- Developed "Exploration by Confidence"

Outlook to Description Logics

Summary

- Goal: adapt attribute exploration to handle exceptional counterexamples
- Generalized attribute exploration
- Developed "Exploration by Confidence"

Outlook to Description Logics

- Implications correspond to General Concept Inclusions (GCIs)

Summary

- Goal: adapt attribute exploration to handle exceptional counterexamples
- Generalized attribute exploration
- Developed "Exploration by Confidence"

Outlook to Description Logics

- Implications correspond to General Concept Inclusions (GCIs)

$$
\text { Venomous } \sqcap \text { Mammal } \sqsubseteq \perp \text {. }
$$

Summary

- Goal: adapt attribute exploration to handle exceptional counterexamples
- Generalized attribute exploration
- Developed "Exploration by Confidence"

Outlook to Description Logics

- Implications correspond to General Concept Inclusions (GCIs)

$$
\text { Venomous } \sqcap \text { Mammal } \sqsubseteq \perp \text {. }
$$

- Same ideas can be applied

Summary

- Goal: adapt attribute exploration to handle exceptional counterexamples
- Generalized attribute exploration
- Developed "Exploration by Confidence"

Outlook to Description Logics

- Implications correspond to General Concept Inclusions (GCIs)

$$
\text { Venomous } \sqcap \text { Mammal } \sqsubseteq \perp \text {. }
$$

- Same ideas can be applied
- Counterexamples need to be connected subinterpretations

Summary

- Goal: adapt attribute exploration to handle exceptional counterexamples
- Generalized attribute exploration
- Developed "Exploration by Confidence"

Outlook to Description Logics

- Implications correspond to General Concept Inclusions (GCIs)

$$
\text { Venomous } \sqcap \text { Mammal } \sqsubseteq \perp \text {. }
$$

- Same ideas can be applied
- Counterexamples need to be connected subinterpretations
- Extra expert interaction required (due to growing set of "attributes")
$\{$ Venomous, Bird $\} \rightarrow \perp$

