
Exploratory Programming for Formal Concept Analysis
An Introduction to conexp-clj

Daniel Borchmann

TU Dresden

May 24, 2013

http://www.math.tu-dresden.de/~borch/conexp-clj/icfca2013-tutorial.html

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 1 / 14

http://www.math.tu-dresden.de/~borch/conexp-clj/icfca2013-tutorial.html


Motivation Why another FCA Tool?

Main Question
Why another FCA tool?

Many tools which can do things fast and well!

The “Problem”

But what if you want to do something else?
What if you want to process your results further on?
What if you want to do something from which you are not completely sure
of?

Solution
Need flexible “FCA scripting”

Hard to achieve with available tools
conexp-clj!

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 2 / 14



Motivation Why another FCA Tool?

Main Question
Why another FCA tool? Many tools which can do things fast and well!

The “Problem”

But what if you want to do something else?
What if you want to process your results further on?
What if you want to do something from which you are not completely sure
of?

Solution
Need flexible “FCA scripting”

Hard to achieve with available tools
conexp-clj!

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 2 / 14



Motivation Why another FCA Tool?

Main Question
Why another FCA tool? Many tools which can do things fast and well!

The “Problem”

But what if you want to do something else?
What if you want to process your results further on?
What if you want to do something from which you are not completely sure
of?

Solution
Need flexible “FCA scripting”

Hard to achieve with available tools
conexp-clj!

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 2 / 14



Motivation Why another FCA Tool?

Main Question
Why another FCA tool? Many tools which can do things fast and well!

The “Problem”
But what if you want to do something else?

What if you want to process your results further on?
What if you want to do something from which you are not completely sure
of?

Solution
Need flexible “FCA scripting”

Hard to achieve with available tools
conexp-clj!

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 2 / 14



Motivation Why another FCA Tool?

Main Question
Why another FCA tool? Many tools which can do things fast and well!

The “Problem”
But what if you want to do something else?
What if you want to process your results further on?

What if you want to do something from which you are not completely sure
of?

Solution
Need flexible “FCA scripting”

Hard to achieve with available tools
conexp-clj!

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 2 / 14



Motivation Why another FCA Tool?

Main Question
Why another FCA tool? Many tools which can do things fast and well!

The “Problem”
But what if you want to do something else?
What if you want to process your results further on?
What if you want to do something from which you are not completely sure
of?

Solution
Need flexible “FCA scripting”

Hard to achieve with available tools
conexp-clj!

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 2 / 14



Motivation Why another FCA Tool?

Main Question
Why another FCA tool? Many tools which can do things fast and well!

The “Problem”
But what if you want to do something else?
What if you want to process your results further on?
What if you want to do something from which you are not completely sure
of?

Solution
Need flexible “FCA scripting”

Hard to achieve with available tools
conexp-clj!

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 2 / 14



Motivation Why another FCA Tool?

Main Question
Why another FCA tool? Many tools which can do things fast and well!

The “Problem”
But what if you want to do something else?
What if you want to process your results further on?
What if you want to do something from which you are not completely sure
of?

Solution
Need flexible “FCA scripting”
Hard to achieve with available tools

conexp-clj!

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 2 / 14



Motivation Why another FCA Tool?

Main Question
Why another FCA tool? Many tools which can do things fast and well!

The “Problem”
But what if you want to do something else?
What if you want to process your results further on?
What if you want to do something from which you are not completely sure
of?

Solution
Need flexible “FCA scripting”
Hard to achieve with available tools
conexp-clj!

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 2 / 14



Motivation Goods and Bads

What conexp-clj is good for

flexible tool to try out new ideas in FCA
suitable for exploratory programming, i. e. trying out new algorithms to
see if they are correct and how they behave
compute non-trivial examples (pedagogical or otherwise)
FCA scripting

What conexp-clj is not good for

High performance computations
Data-intense computations
GUI enthusiasts

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 3 / 14



Motivation Goods and Bads

What conexp-clj is good for
flexible tool to try out new ideas in FCA

suitable for exploratory programming, i. e. trying out new algorithms to
see if they are correct and how they behave
compute non-trivial examples (pedagogical or otherwise)
FCA scripting

What conexp-clj is not good for

High performance computations
Data-intense computations
GUI enthusiasts

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 3 / 14



Motivation Goods and Bads

What conexp-clj is good for
flexible tool to try out new ideas in FCA
suitable for exploratory programming, i. e. trying out new algorithms to
see if they are correct and how they behave

compute non-trivial examples (pedagogical or otherwise)
FCA scripting

What conexp-clj is not good for

High performance computations
Data-intense computations
GUI enthusiasts

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 3 / 14



Motivation Goods and Bads

What conexp-clj is good for
flexible tool to try out new ideas in FCA
suitable for exploratory programming, i. e. trying out new algorithms to
see if they are correct and how they behave
compute non-trivial examples (pedagogical or otherwise)

FCA scripting

What conexp-clj is not good for

High performance computations
Data-intense computations
GUI enthusiasts

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 3 / 14



Motivation Goods and Bads

What conexp-clj is good for
flexible tool to try out new ideas in FCA
suitable for exploratory programming, i. e. trying out new algorithms to
see if they are correct and how they behave
compute non-trivial examples (pedagogical or otherwise)
FCA scripting

What conexp-clj is not good for

High performance computations
Data-intense computations
GUI enthusiasts

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 3 / 14



Motivation Goods and Bads

What conexp-clj is good for
flexible tool to try out new ideas in FCA
suitable for exploratory programming, i. e. trying out new algorithms to
see if they are correct and how they behave
compute non-trivial examples (pedagogical or otherwise)
FCA scripting

What conexp-clj is not good for

High performance computations
Data-intense computations
GUI enthusiasts

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 3 / 14



Motivation Goods and Bads

What conexp-clj is good for
flexible tool to try out new ideas in FCA
suitable for exploratory programming, i. e. trying out new algorithms to
see if they are correct and how they behave
compute non-trivial examples (pedagogical or otherwise)
FCA scripting

What conexp-clj is not good for
High performance computations

Data-intense computations
GUI enthusiasts

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 3 / 14



Motivation Goods and Bads

What conexp-clj is good for
flexible tool to try out new ideas in FCA
suitable for exploratory programming, i. e. trying out new algorithms to
see if they are correct and how they behave
compute non-trivial examples (pedagogical or otherwise)
FCA scripting

What conexp-clj is not good for
High performance computations
Data-intense computations

GUI enthusiasts

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 3 / 14



Motivation Goods and Bads

What conexp-clj is good for
flexible tool to try out new ideas in FCA
suitable for exploratory programming, i. e. trying out new algorithms to
see if they are correct and how they behave
compute non-trivial examples (pedagogical or otherwise)
FCA scripting

What conexp-clj is not good for
High performance computations
Data-intense computations
GUI enthusiasts

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 3 / 14



Motivation Main Features

Main Features of conexp-clj (Overview)
basic operations on formal contexts
relational algebra with formal contexts
transparent IO for formal and many-valued contexts
scaling for many-valued contexts
implicational theory and basic attribute exploration
computing Luxenburger-bases and iceberg concept sets
lattice layouts and lattice IO (some...)
a bit of fuzzy-FCA
interface for Java
interface for sage

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 4 / 14



Basic Principles Design Principles

Implementation

implemented in Clojure, a Lisp dialect running on the JVM
highly portable (JVM)
highly flexible (Lisp)
transparent access to all Java functionality
compiled

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 5 / 14



Basic Principles Design Principles

Implementation
implemented in Clojure, a Lisp dialect running on the JVM

highly portable (JVM)
highly flexible (Lisp)
transparent access to all Java functionality
compiled

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 5 / 14



Basic Principles Design Principles

Implementation
implemented in Clojure, a Lisp dialect running on the JVM
highly portable (JVM)

highly flexible (Lisp)
transparent access to all Java functionality
compiled

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 5 / 14



Basic Principles Design Principles

Implementation
implemented in Clojure, a Lisp dialect running on the JVM
highly portable (JVM)
highly flexible (Lisp)

transparent access to all Java functionality
compiled

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 5 / 14



Basic Principles Design Principles

Implementation
implemented in Clojure, a Lisp dialect running on the JVM
highly portable (JVM)
highly flexible (Lisp)
transparent access to all Java functionality

compiled

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 5 / 14



Basic Principles Design Principles

Implementation
implemented in Clojure, a Lisp dialect running on the JVM
highly portable (JVM)
highly flexible (Lisp)
transparent access to all Java functionality
compiled

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 5 / 14



Basic Principles Installing and Running

Prerequisites

Java 1.6 or higher (JRE sufficient)

Download and Installation

Go to conexp-clj’s website: http://github.com/exot/conexp-clj
Move to How to Run
Download one of the .zip files and unpack them where you want

Running

Run ./bin/conexp-clj for a simple (yet sufficient!) command-line
interface
Run ./bin/conexp-clj --gui for a “convenient” (but mostly broken)
graphical user interface

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 6 / 14

http://github.com/exot/conexp-clj


Basic Principles Installing and Running

Prerequisites
Java 1.6 or higher (JRE sufficient)

Download and Installation

Go to conexp-clj’s website: http://github.com/exot/conexp-clj
Move to How to Run
Download one of the .zip files and unpack them where you want

Running

Run ./bin/conexp-clj for a simple (yet sufficient!) command-line
interface
Run ./bin/conexp-clj --gui for a “convenient” (but mostly broken)
graphical user interface

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 6 / 14

http://github.com/exot/conexp-clj


Basic Principles Installing and Running

Prerequisites
Java 1.6 or higher (JRE sufficient)

Download and Installation

Go to conexp-clj’s website: http://github.com/exot/conexp-clj
Move to How to Run
Download one of the .zip files and unpack them where you want

Running

Run ./bin/conexp-clj for a simple (yet sufficient!) command-line
interface
Run ./bin/conexp-clj --gui for a “convenient” (but mostly broken)
graphical user interface

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 6 / 14

http://github.com/exot/conexp-clj


Basic Principles Installing and Running

Prerequisites
Java 1.6 or higher (JRE sufficient)

Download and Installation
Go to conexp-clj’s website: http://github.com/exot/conexp-clj

Move to How to Run
Download one of the .zip files and unpack them where you want

Running

Run ./bin/conexp-clj for a simple (yet sufficient!) command-line
interface
Run ./bin/conexp-clj --gui for a “convenient” (but mostly broken)
graphical user interface

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 6 / 14

http://github.com/exot/conexp-clj


Basic Principles Installing and Running

Prerequisites
Java 1.6 or higher (JRE sufficient)

Download and Installation
Go to conexp-clj’s website: http://github.com/exot/conexp-clj
Move to How to Run

Download one of the .zip files and unpack them where you want

Running

Run ./bin/conexp-clj for a simple (yet sufficient!) command-line
interface
Run ./bin/conexp-clj --gui for a “convenient” (but mostly broken)
graphical user interface

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 6 / 14

http://github.com/exot/conexp-clj


Basic Principles Installing and Running

Prerequisites
Java 1.6 or higher (JRE sufficient)

Download and Installation
Go to conexp-clj’s website: http://github.com/exot/conexp-clj
Move to How to Run
Download one of the .zip files and unpack them where you want

Running

Run ./bin/conexp-clj for a simple (yet sufficient!) command-line
interface
Run ./bin/conexp-clj --gui for a “convenient” (but mostly broken)
graphical user interface

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 6 / 14

http://github.com/exot/conexp-clj


Basic Principles Installing and Running

Prerequisites
Java 1.6 or higher (JRE sufficient)

Download and Installation
Go to conexp-clj’s website: http://github.com/exot/conexp-clj
Move to How to Run
Download one of the .zip files and unpack them where you want

Running

Run ./bin/conexp-clj for a simple (yet sufficient!) command-line
interface
Run ./bin/conexp-clj --gui for a “convenient” (but mostly broken)
graphical user interface

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 6 / 14

http://github.com/exot/conexp-clj


Basic Principles Installing and Running

Prerequisites
Java 1.6 or higher (JRE sufficient)

Download and Installation
Go to conexp-clj’s website: http://github.com/exot/conexp-clj
Move to How to Run
Download one of the .zip files and unpack them where you want

Running
Run ./bin/conexp-clj for a simple (yet sufficient!) command-line
interface

Run ./bin/conexp-clj --gui for a “convenient” (but mostly broken)
graphical user interface

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 6 / 14

http://github.com/exot/conexp-clj


Basic Principles Installing and Running

Prerequisites
Java 1.6 or higher (JRE sufficient)

Download and Installation
Go to conexp-clj’s website: http://github.com/exot/conexp-clj
Move to How to Run
Download one of the .zip files and unpack them where you want

Running
Run ./bin/conexp-clj for a simple (yet sufficient!) command-line
interface
Run ./bin/conexp-clj --gui for a “convenient” (but mostly broken)
graphical user interface

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 6 / 14

http://github.com/exot/conexp-clj


Basic Principles Principle Workflow

Code
user=>

1

1

user=> (+ 1 2)

3

user=> (make-context #{1 2 3} #{0 1 2} <=)

|0 1 2

--+-----

1 |. x x

2 |. . x

3 |. . .

user=> (javax.swing.JOptionPane/showMessageDialog nil "Wow!")

nil

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 7 / 14



Basic Principles Principle Workflow

Code
user=> 1

1

user=> (+ 1 2)

3

user=> (make-context #{1 2 3} #{0 1 2} <=)

|0 1 2

--+-----

1 |. x x

2 |. . x

3 |. . .

user=> (javax.swing.JOptionPane/showMessageDialog nil "Wow!")

nil

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 7 / 14



Basic Principles Principle Workflow

Code
user=> 1

1

user=>

(+ 1 2)

3

user=> (make-context #{1 2 3} #{0 1 2} <=)

|0 1 2

--+-----

1 |. x x

2 |. . x

3 |. . .

user=> (javax.swing.JOptionPane/showMessageDialog nil "Wow!")

nil

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 7 / 14



Basic Principles Principle Workflow

Code
user=> 1

1

user=> (+ 1 2)

3

user=> (make-context #{1 2 3} #{0 1 2} <=)

|0 1 2

--+-----

1 |. x x

2 |. . x

3 |. . .

user=> (javax.swing.JOptionPane/showMessageDialog nil "Wow!")

nil

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 7 / 14



Basic Principles Principle Workflow

Code
user=> 1

1

user=> (+ 1 2)

3

user=>

(make-context #{1 2 3} #{0 1 2} <=)

|0 1 2

--+-----

1 |. x x

2 |. . x

3 |. . .

user=> (javax.swing.JOptionPane/showMessageDialog nil "Wow!")

nil

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 7 / 14



Basic Principles Principle Workflow

Code
user=> 1

1

user=> (+ 1 2)

3

user=> (make-context #{1 2 3} #{0 1 2} <=)

|0 1 2

--+-----

1 |. x x

2 |. . x

3 |. . .

user=> (javax.swing.JOptionPane/showMessageDialog nil "Wow!")

nil

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 7 / 14



Basic Principles Principle Workflow

Code
user=> 1

1

user=> (+ 1 2)

3

user=> (make-context #{1 2 3} #{0 1 2} <=)

|0 1 2

--+-----

1 |. x x

2 |. . x

3 |. . .

user=>

(javax.swing.JOptionPane/showMessageDialog nil "Wow!")

nil

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 7 / 14



Basic Principles Principle Workflow

Code
user=> 1

1

user=> (+ 1 2)

3

user=> (make-context #{1 2 3} #{0 1 2} <=)

|0 1 2

--+-----

1 |. x x

2 |. . x

3 |. . .

user=> (javax.swing.JOptionPane/showMessageDialog nil "Wow!")

nil

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 7 / 14



Basic Principles Principle Workflow

Code
user=> 1

1

user=> (+ 1 2)

3

user=> (make-context #{1 2 3} #{0 1 2} <=)

|0 1 2

--+-----

1 |. x x

2 |. . x

3 |. . .

user=> (javax.swing.JOptionPane/showMessageDialog nil "Wow!")

nil

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 7 / 14



Basic Principles An Example

Example

live!

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 8 / 14



Basic Principles An Example

Example
live!

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 8 / 14



Outlook More Concepts

Code (Functions)
user=>

(defn f [x] (+ x 3))

#’user/f

user=> (f 5)

8

user=> (def f (fn [x] (+ x 3)))

Code (Functional Programming)
user=> (reduce + [1 2 3 4 5])

15

user=> (reduce * (range 1 10))

362880

user=> (map f [4 5 6])

(7 8 9)

user=> (filter odd? [1 2 3 4 5 6])

(1 3 5)

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 9 / 14



Outlook More Concepts

Code (Functions)
user=> (defn f [x] (+ x 3))

#’user/f

user=> (f 5)

8

user=> (def f (fn [x] (+ x 3)))

Code (Functional Programming)
user=> (reduce + [1 2 3 4 5])

15

user=> (reduce * (range 1 10))

362880

user=> (map f [4 5 6])

(7 8 9)

user=> (filter odd? [1 2 3 4 5 6])

(1 3 5)

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 9 / 14



Outlook More Concepts

Code (Functions)
user=> (defn f [x] (+ x 3))

#’user/f

user=>

(f 5)

8

user=> (def f (fn [x] (+ x 3)))

Code (Functional Programming)
user=> (reduce + [1 2 3 4 5])

15

user=> (reduce * (range 1 10))

362880

user=> (map f [4 5 6])

(7 8 9)

user=> (filter odd? [1 2 3 4 5 6])

(1 3 5)

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 9 / 14



Outlook More Concepts

Code (Functions)
user=> (defn f [x] (+ x 3))

#’user/f

user=> (f 5)

8

user=> (def f (fn [x] (+ x 3)))

Code (Functional Programming)
user=> (reduce + [1 2 3 4 5])

15

user=> (reduce * (range 1 10))

362880

user=> (map f [4 5 6])

(7 8 9)

user=> (filter odd? [1 2 3 4 5 6])

(1 3 5)

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 9 / 14



Outlook More Concepts

Code (Functions)
user=> (defn f [x] (+ x 3))

#’user/f

user=> (f 5)

8

user=>

(def f (fn [x] (+ x 3)))

Code (Functional Programming)
user=> (reduce + [1 2 3 4 5])

15

user=> (reduce * (range 1 10))

362880

user=> (map f [4 5 6])

(7 8 9)

user=> (filter odd? [1 2 3 4 5 6])

(1 3 5)

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 9 / 14



Outlook More Concepts

Code (Functions)
user=> (defn f [x] (+ x 3))

#’user/f

user=> (f 5)

8

user=> (def f (fn [x] (+ x 3)))

Code (Functional Programming)
user=> (reduce + [1 2 3 4 5])

15

user=> (reduce * (range 1 10))

362880

user=> (map f [4 5 6])

(7 8 9)

user=> (filter odd? [1 2 3 4 5 6])

(1 3 5)

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 9 / 14



Outlook More Concepts

Code (Functions)
user=> (defn f [x] (+ x 3))

#’user/f

user=> (f 5)

8

user=> (def f (fn [x] (+ x 3)))

Code (Functional Programming)
user=>

(reduce + [1 2 3 4 5])

15

user=> (reduce * (range 1 10))

362880

user=> (map f [4 5 6])

(7 8 9)

user=> (filter odd? [1 2 3 4 5 6])

(1 3 5)

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 9 / 14



Outlook More Concepts

Code (Functions)
user=> (defn f [x] (+ x 3))

#’user/f

user=> (f 5)

8

user=> (def f (fn [x] (+ x 3)))

Code (Functional Programming)
user=> (reduce + [1 2 3 4 5])

15

user=> (reduce * (range 1 10))

362880

user=> (map f [4 5 6])

(7 8 9)

user=> (filter odd? [1 2 3 4 5 6])

(1 3 5)

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 9 / 14



Outlook More Concepts

Code (Functions)
user=> (defn f [x] (+ x 3))

#’user/f

user=> (f 5)

8

user=> (def f (fn [x] (+ x 3)))

Code (Functional Programming)
user=> (reduce + [1 2 3 4 5])

15

user=>

(reduce * (range 1 10))

362880

user=> (map f [4 5 6])

(7 8 9)

user=> (filter odd? [1 2 3 4 5 6])

(1 3 5)

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 9 / 14



Outlook More Concepts

Code (Functions)
user=> (defn f [x] (+ x 3))

#’user/f

user=> (f 5)

8

user=> (def f (fn [x] (+ x 3)))

Code (Functional Programming)
user=> (reduce + [1 2 3 4 5])

15

user=> (reduce * (range 1 10))

362880

user=> (map f [4 5 6])

(7 8 9)

user=> (filter odd? [1 2 3 4 5 6])

(1 3 5)

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 9 / 14



Outlook More Concepts

Code (Functions)
user=> (defn f [x] (+ x 3))

#’user/f

user=> (f 5)

8

user=> (def f (fn [x] (+ x 3)))

Code (Functional Programming)
user=> (reduce + [1 2 3 4 5])

15

user=> (reduce * (range 1 10))

362880

user=>

(map f [4 5 6])

(7 8 9)

user=> (filter odd? [1 2 3 4 5 6])

(1 3 5)

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 9 / 14



Outlook More Concepts

Code (Functions)
user=> (defn f [x] (+ x 3))

#’user/f

user=> (f 5)

8

user=> (def f (fn [x] (+ x 3)))

Code (Functional Programming)
user=> (reduce + [1 2 3 4 5])

15

user=> (reduce * (range 1 10))

362880

user=> (map f [4 5 6])

(7 8 9)

user=> (filter odd? [1 2 3 4 5 6])

(1 3 5)

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 9 / 14



Outlook More Concepts

Code (Functions)
user=> (defn f [x] (+ x 3))

#’user/f

user=> (f 5)

8

user=> (def f (fn [x] (+ x 3)))

Code (Functional Programming)
user=> (reduce + [1 2 3 4 5])

15

user=> (reduce * (range 1 10))

362880

user=> (map f [4 5 6])

(7 8 9)

user=>

(filter odd? [1 2 3 4 5 6])

(1 3 5)

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 9 / 14



Outlook More Concepts

Code (Functions)
user=> (defn f [x] (+ x 3))

#’user/f

user=> (f 5)

8

user=> (def f (fn [x] (+ x 3)))

Code (Functional Programming)
user=> (reduce + [1 2 3 4 5])

15

user=> (reduce * (range 1 10))

362880

user=> (map f [4 5 6])

(7 8 9)

user=> (filter odd? [1 2 3 4 5 6])

(1 3 5)

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 9 / 14



Outlook More Concepts

Code (Functions)
user=> (defn f [x] (+ x 3))

#’user/f

user=> (f 5)

8

user=> (def f (fn [x] (+ x 3)))

Code (Functional Programming)
user=> (reduce + [1 2 3 4 5])

15

user=> (reduce * (range 1 10))

362880

user=> (map f [4 5 6])

(7 8 9)

user=> (filter odd? [1 2 3 4 5 6])

(1 3 5)

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 9 / 14



Outlook Stegosaurus

Task
Is there a correlation between the number of intents and the number of pseudo
intents of a formal context?

0 500 1,000 1,500 2,000

0

50

100

150

200

250

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 10 / 14



Outlook Stegosaurus

Task
Is there a correlation between the number of intents and the number of pseudo
intents of a formal context?

0 500 1,000 1,500 2,000

0

50

100

150

200

250

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 10 / 14



Outlook Stegosaurus

Code

(def points

(map (fn [_]

(let [ctx (reduce-context (random-context (rand-int 2048)

11

(rand)))]

(list (count (intents ctx))

(count (pseudo-intents ctx)))))

(range 1 1000)))

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 11 / 14



Outlook In Case You Need Help

Code
user=>

(doc make-context)

----------------

conexp.main/make-context

([objects attributes incidence])

Standard constructor for contexts. Takes a sequence of

objects,

a sequence of attributes and either a set of pairs or

function of

...

nil

user=> (find-doc "formal context")

----------------

conexp.fca.implications/proper-premises-by-hypertrans

...

conexp.fca.implications/proper-premises-for-attribute

...

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 12 / 14



Outlook In Case You Need Help

Code
user=> (doc make-context)

----------------

conexp.main/make-context

([objects attributes incidence])

Standard constructor for contexts. Takes a sequence of

objects,

a sequence of attributes and either a set of pairs or

function of

...

nil

user=> (find-doc "formal context")

----------------

conexp.fca.implications/proper-premises-by-hypertrans

...

conexp.fca.implications/proper-premises-for-attribute

...

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 12 / 14



Outlook In Case You Need Help

Code
user=> (doc make-context)

----------------

conexp.main/make-context

([objects attributes incidence])

Standard constructor for contexts. Takes a sequence of

objects,

a sequence of attributes and either a set of pairs or

function of

...

nil

user=>

(find-doc "formal context")

----------------

conexp.fca.implications/proper-premises-by-hypertrans

...

conexp.fca.implications/proper-premises-for-attribute

...

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 12 / 14



Outlook In Case You Need Help

Code
user=> (doc make-context)

----------------

conexp.main/make-context

([objects attributes incidence])

Standard constructor for contexts. Takes a sequence of

objects,

a sequence of attributes and either a set of pairs or

function of

...

nil

user=> (find-doc "formal context")

----------------

conexp.fca.implications/proper-premises-by-hypertrans

...

conexp.fca.implications/proper-premises-for-attribute

...

user=>

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 12 / 14



Outlook In Case You Need Help

Code
user=> (doc make-context)

----------------

conexp.main/make-context

([objects attributes incidence])

Standard constructor for contexts. Takes a sequence of

objects,

a sequence of attributes and either a set of pairs or

function of

...

nil

user=> (find-doc "formal context")

----------------

conexp.fca.implications/proper-premises-by-hypertrans

...

conexp.fca.implications/proper-premises-for-attribute

...

user=>
Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 12 / 14



The End Outlook and Further Development

The Future

A better GUI
Java backend for more performance
More flexible IO system
More documentation

Alternate Reality

Reimplementation in Guile (Scheme, Python, Lua, ...)
C backend for better performance
Retain flexibility, but increase speed

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 13 / 14



The End Outlook and Further Development

The Future
A better GUI

Java backend for more performance
More flexible IO system
More documentation

Alternate Reality

Reimplementation in Guile (Scheme, Python, Lua, ...)
C backend for better performance
Retain flexibility, but increase speed

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 13 / 14



The End Outlook and Further Development

The Future
A better GUI
Java backend for more performance

More flexible IO system
More documentation

Alternate Reality

Reimplementation in Guile (Scheme, Python, Lua, ...)
C backend for better performance
Retain flexibility, but increase speed

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 13 / 14



The End Outlook and Further Development

The Future
A better GUI
Java backend for more performance
More flexible IO system

More documentation

Alternate Reality

Reimplementation in Guile (Scheme, Python, Lua, ...)
C backend for better performance
Retain flexibility, but increase speed

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 13 / 14



The End Outlook and Further Development

The Future
A better GUI
Java backend for more performance
More flexible IO system
More documentation

Alternate Reality

Reimplementation in Guile (Scheme, Python, Lua, ...)
C backend for better performance
Retain flexibility, but increase speed

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 13 / 14



The End Outlook and Further Development

The Future
A better GUI
Java backend for more performance
More flexible IO system
More documentation

Alternate Reality

Reimplementation in Guile (Scheme, Python, Lua, ...)
C backend for better performance
Retain flexibility, but increase speed

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 13 / 14



The End Outlook and Further Development

The Future
A better GUI
Java backend for more performance
More flexible IO system
More documentation

Alternate Reality
Reimplementation in Guile (Scheme, Python, Lua, ...)

C backend for better performance
Retain flexibility, but increase speed

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 13 / 14



The End Outlook and Further Development

The Future
A better GUI
Java backend for more performance
More flexible IO system
More documentation

Alternate Reality
Reimplementation in Guile (Scheme, Python, Lua, ...)
C backend for better performance

Retain flexibility, but increase speed

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 13 / 14



The End Outlook and Further Development

The Future
A better GUI
Java backend for more performance
More flexible IO system
More documentation

Alternate Reality
Reimplementation in Guile (Scheme, Python, Lua, ...)
C backend for better performance
Retain flexibility, but increase speed

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 13 / 14



The End Outlook and Further Development

Exercises!

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 14 / 14



The End Outlook and Further Development

Thank You!

Daniel Borchmann (TU Dresden) conexp-clj May 24, 2013 15 / 14


	Motivation
	Why another FCA Tool?
	Goods and Bads
	Main Features

	Basic Principles
	Design Principles
	Installing and Running
	Principle Workflow
	An Example

	Outlook
	More Concepts
	Stegosaurus
	In Case You Need Help

	The End
	Outlook and Further Development


