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Motivation

Implications and formal contexts

formal context  few implications via NextClosure
implications  small formal context ?

How can be compute for a given set of implications a small corresponding
formal context?

Algorithms to compute the intents of a formal context (G ,M, I )

NextClosure input: M, X 7→ X ′′

Close-by-One input: (G ,M, I )

Can Close-by-One be applied to an arbitrary closure operator c?
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Decomposing Closure Operators

Definition

Let M be a finite set and let c : P(M)→ P(M). Then c is a closure
operator on M if and only if

c is monotone: ∀A,B ⊆ M : A ⊆ B =⇒ c(A) ⊆ c(B),

c is extending: ∀A ⊆ M : A ⊆ c(A),

c is idempotent: ∀A ⊆ M : c(c(A)) = c(A).

Definition

A formal context K = (G ,M, I ) is a decomposition of c if and only if

Int(K) = c[P(M)]

i.e., the intents of K are precisely the closed sets of c .
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Trivial Decomposition

Lemma

The formal context
Kc = (c[P(M)],M,3)

is a decomposition of c.

Definition

The formal context Kc is called the trivial decomposition of c.
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Trivial Decomposition

Lemma

Every object-clarified and object-reduced decomposition of a closure
operator c can be embedded into Kc .

Kc is therefore the biggest possible decomposition (up to object
renaming).

But what about the smallest possible decomposition?
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Canonical Decomposition

Definition

The canonical decomposition of c is the uniquely determined
object-reduced subcontext of Kc .

Lemma

The canonical decomposition of c is the smallest possible decomposition
of c, i.e., it can be embedded into every other decomposition of c.

Can we compute the canonical decomposition without computing the
trivial one?
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Reconsidering the Problem

Given a closure operator c on a set M. Then what do we have?

a set M of attributes and

the operator X 7→ X ′′ = c(X ), computed in any decomposition of c .

We therefore have the logic of every decomposition of c , i.e., we can decide
whether an implication A→ B holds in a decomposition of c by checking

B ⊆ c(A).

So can we do attribute exploration?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 7 / 16



Reconsidering the Problem

Given a closure operator c on a set M. Then what do we have?

a set M of attributes and

the operator X 7→ X ′′ = c(X ), computed in any decomposition of c .

We therefore have the logic of every decomposition of c , i.e., we can decide
whether an implication A→ B holds in a decomposition of c by checking

B ⊆ c(A).

So can we do attribute exploration?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 7 / 16



Reconsidering the Problem

Given a closure operator c on a set M. Then what do we have?

a set M of attributes and

the operator X 7→ X ′′ = c(X ), computed in any decomposition of c .

We therefore have the logic of every decomposition of c , i.e., we can decide
whether an implication A→ B holds in a decomposition of c by checking

B ⊆ c(A).

So can we do attribute exploration?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 7 / 16



Reconsidering the Problem

Given a closure operator c on a set M. Then what do we have?

a set M of attributes and

the operator X 7→ X ′′ = c(X ), computed in any decomposition of c .

We therefore have the logic of every decomposition of c , i.e., we can decide
whether an implication A→ B holds in a decomposition of c by checking

B ⊆ c(A).

So can we do attribute exploration?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 7 / 16



Reconsidering the Problem

Given a closure operator c on a set M. Then what do we have?

a set M of attributes and

the operator X 7→ X ′′ = c(X ), computed in any decomposition of c .

We therefore have the logic of every decomposition of c , i.e., we can decide
whether an implication A→ B holds in a decomposition of c by checking

B ⊆ c(A).

So can we do attribute exploration?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 7 / 16



Using Attribute Exploration

Turning the closure operator into an expert: Given an implication A→ B

if B ⊆ c(A) accept,

otherwise deny.

Then A→ B does not respect c(A) and c(A) is an intent of every
decomposition of c .
Therefore provide c(A) as a counterexample.

Now attribute exploration can be used to compute a decomposition of c!

But this will not always yield the canonical decomposition of c .
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Maximal Counterexamples

For an invalid implication A→ B, c(A) is a counterexample, but it is not
the only one.

Every closed set C ⊇ A with B 6⊆ C is a counterexample for A→ B.

Lemma

Let N ∈ c[P(M)]. Then N is infimum-irreducible in (c[P(M)],⊆) if and
only if there exists an n ∈ M \ N such that N is maximal in (c[P(M)],⊆)
with respect to not containing n.

Idea

If B 6⊆ c(A), then choose x ∈ B \ c(A) and maximize N ⊇ c(A) with
respect to x /∈ N. Then call N a maximal counterexample for A→ B.
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Decomposition by Attribute Exploration

Corollary

Attribute exploration using maximal counterexamples yields as the final
context of the exploration the canonical decomposition of c.
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Experiments

Fix M := { 0, . . . , 10 }.

Randomly generate formal contexts K with attribute set M.

Compute the canonical decomposition of X 7→ X ′′ using

the naive algorithm
simple attribute exploration
attribute exploration with maximal counterexamples
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Experimental Results

Number of intents vs. Runtime.

0 1,000 2,000
0

5

10

15

0 1,000 2,000
0

5

10

0 1,000 2,000
0

0.2

0.4

0.6

Number of pseudo-intents vs. Runtime.

0 100 200
0

5

10

15

0 100 200
0

5

10

0 100 200
0

0.2

0.4

0.6

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 12 / 16



Experimental Results

Number of intents vs. Runtime.

0 1,000 2,000
0

5

10

15

0 1,000 2,000
0

5

10

0 1,000 2,000
0

0.2

0.4

0.6

Number of pseudo-intents vs. Runtime.

0 100 200
0

5

10

15

0 100 200
0

5

10

0 100 200
0

0.2

0.4

0.6

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 12 / 16



Experimental Results (cont.)

Calls of c vs. Runtime.
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An Unexpected Observation

Number of intents vs. Number of pseudo-intents.
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Further Research

Open Questions

Complexity of decomposing closure operators?

Canonical decomposition might be exponentially large in |M|
How to represent c?

Correlation between number of intents and number of pseudo-intents?
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Thank You.
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