Decomposing Finite Closure Operators by Attribute Exploration

Daniel Borchmann

TU Dresden, Institut für Algebra

Implications and formal contexts

Implications and formal contexts

formal context \rightsquigarrow few implications

Implications and formal contexts

 $\mbox{formal context} \quad \rightsquigarrow \qquad \mbox{few implications} \qquad \mbox{via NextClosure}$

Implications and formal contexts

formal context	\rightsquigarrow	few implications	via NextClosure
implications	\rightsquigarrow	small formal context	

Implications and formal contexts

formal context	\rightsquigarrow	few implications	via NextClosure
implications	\rightsquigarrow	small formal context	?

Implications and formal contexts

formal context	\rightsquigarrow	few implications	via NextClosure
implications	\rightsquigarrow	small formal context	?

How can be compute for a given set of implications a small corresponding formal context?

Implications and formal contexts

formal context	\rightsquigarrow	few implications	via NextClosure
implications	\rightsquigarrow	small formal context	?

How can be compute for a given set of implications a small corresponding formal context?

Algorithms to compute the intents of a formal context (G, M, I)

Implications and formal contexts

formal context	\rightsquigarrow	few implications	via NextClosure
implications	\rightsquigarrow	small formal context	?

How can be compute for a given set of implications a small corresponding formal context?

Algorithms to compute the intents of a formal context (G, M, I)NextClosure

Implications and formal contexts

 $\begin{array}{rccc} \mbox{formal context} & \rightsquigarrow & \mbox{few implications} & \mbox{via NextClosure} \\ \mbox{implications} & \rightsquigarrow & \mbox{small formal context} & ? \end{array}$

How can be compute for a given set of implications a small corresponding formal context?

Algorithms to compute the intents of a formal context (G, M, I)

NextClosure input: $M, X \mapsto X''$

Implications and formal contexts

 $\begin{array}{rccc} \mbox{formal context} & \rightsquigarrow & \mbox{few implications} & \mbox{via NextClosure} \\ \mbox{implications} & \rightsquigarrow & \mbox{small formal context} & ? \end{array}$

How can be compute for a given set of implications a small corresponding formal context?

Algorithms to compute the intents of a formal context (G, M, I)

NextClosure input: $M, X \mapsto X''$ Close-by-One

Implications and formal contexts

formal context	\rightsquigarrow	few implications	via NextClosure
implications	\rightsquigarrow	small formal context	?

How can be compute for a given set of implications a small corresponding formal context?

Algorithms to compute the intents of a formal context (G, M, I)

NextClosure input: $M, X \mapsto X''$ Close-by-One input: (G, M, I)

Implications and formal contexts

 $\begin{array}{rccc} \mbox{formal context} & \rightsquigarrow & \mbox{few implications} & \mbox{via NextClosure} \\ \mbox{implications} & \rightsquigarrow & \mbox{small formal context} & ? \end{array}$

How can be compute for a given set of implications a small corresponding formal context?

Algorithms to compute the intents of a formal context (G, M, I)

NextClosure input: $M, X \mapsto X''$ Close-by-One input: (G, M, I)

Can Close-by-One be applied to an arbitrary closure operator c?

Decomposing Closure Operators

Definition

Let *M* be a finite set and let $c : \mathfrak{P}(M) \to \mathfrak{P}(M)$. Then *c* is a *closure* operator on *M* if and only if

- c is monotone: $\forall A, B \subseteq M : A \subseteq B \implies c(A) \subseteq c(B)$,
- c is extending: $\forall A \subseteq M : A \subseteq c(A)$,
- c is idempotent: $\forall A \subseteq M : c(c(A)) = c(A)$.

Decomposing Closure Operators

Definition

Let *M* be a finite set and let $c : \mathfrak{P}(M) \to \mathfrak{P}(M)$. Then *c* is a *closure* operator on *M* if and only if

- c is monotone: $\forall A, B \subseteq M : A \subseteq B \implies c(A) \subseteq c(B)$,
- c is extending: $\forall A \subseteq M : A \subseteq c(A)$,
- c is idempotent: $\forall A \subseteq M : c(c(A)) = c(A)$.

Definition

A formal context $\mathbb{K} = (G, M, I)$ is a *decomposition of c* if and only if

$$\mathsf{Int}(\mathbb{K}) = c[\mathfrak{P}(M)]$$

i.e., the intents of $\mathbb K$ are precisely the closed sets of c.

Trivial Decomposition

Lemma

The formal context

$$\mathbb{K}_{c} = (c[\mathfrak{P}(M)], M, \exists)$$

is a decomposition of c.

Trivial Decomposition

Lemma

The formal context

$$\mathbb{K}_{c} = (c[\mathfrak{P}(M)], M, \exists)$$

is a decomposition of c.

Definition

The formal context \mathbb{K}_c is called the *trivial decomposition of c*.

Lemma

Every object-clarified and object-reduced decomposition of a closure operator c can be embedded into \mathbb{K}_c .

Lemma

Every object-clarified and object-reduced decomposition of a closure operator c can be embedded into \mathbb{K}_c .

 \mathbb{K}_c is therefore the biggest possible decomposition (up to object renaming).

Lemma

Every object-clarified and object-reduced decomposition of a closure operator c can be embedded into \mathbb{K}_c .

 \mathbb{K}_c is therefore the biggest possible decomposition (up to object renaming).

But what about the smallest possible decomposition?

Canonical Decomposition

Definition

The *canonical decomposition of c* is the uniquely determined object-reduced subcontext of \mathbb{K}_c .

Canonical Decomposition

Definition

The canonical decomposition of c is the uniquely determined object-reduced subcontext of \mathbb{K}_{c} .

Lemma

The canonical decomposition of c is the smallest possible decomposition of c, i.e., it can be embedded into every other decomposition of c.

Canonical Decomposition

Definition

The canonical decomposition of c is the uniquely determined object-reduced subcontext of \mathbb{K}_{c} .

Lemma

The canonical decomposition of c is the smallest possible decomposition of c, i.e., it can be embedded into every other decomposition of c.

Can we compute the canonical decomposition without computing the trivial one?

Given a closure operator *c* on a set *M*. Then what do we have? • a set *M* of attributes and

- a set *M* of attributes and
- the operator $X \mapsto X'' = c(X)$, computed in *any* decomposition of *c*.

• a set *M* of attributes and

• the operator $X \mapsto X'' = c(X)$, computed in *any* decomposition of *c*.

We therefore have the *logic* of every decomposition of c, i.e., we can decide whether an implication $A \rightarrow B$ holds in a decomposition of c by checking

 $B \subseteq c(A).$

• a set *M* of attributes and

• the operator $X \mapsto X'' = c(X)$, computed in *any* decomposition of *c*.

We therefore have the *logic* of every decomposition of c, i.e., we can decide whether an implication $A \rightarrow B$ holds in a decomposition of c by checking

$$B \subseteq c(A).$$

So can we do attribute exploration?

Turning the closure operator into an expert: Given an implication $A \rightarrow B$ • if $B \subseteq c(A)$ accept,

- if $B \subseteq c(A)$ accept,
- otherwise *deny*.

- if $B \subseteq c(A)$ accept,
- otherwise *deny*.

Then $A \rightarrow B$ does not respect c(A)

- if $B \subseteq c(A)$ accept,
- otherwise *deny*.

Then $A \rightarrow B$ does not respect c(A) and c(A) is an intent of every decomposition of c.

- if $B \subseteq c(A)$ accept,
- otherwise *deny*.

Then $A \rightarrow B$ does not respect c(A) and c(A) is an intent of every decomposition of c.

Therefore provide c(A) as a counterexample.

- if $B \subseteq c(A)$ accept,
- otherwise *deny*.

Then $A \rightarrow B$ does not respect c(A) and c(A) is an intent of every decomposition of c.

Therefore provide c(A) as a counterexample.

Now attribute exploration can be used to compute a decomposition of c!

- if $B \subseteq c(A)$ accept,
- otherwise *deny*.

Then $A \rightarrow B$ does not respect c(A) and c(A) is an intent of every decomposition of c.

Therefore provide c(A) as a counterexample.

Now attribute exploration can be used to compute a decomposition of c!

But this will not always yield the canonical decomposition of c.

For an invalid implication $A \rightarrow B$, c(A) is a counterexample, but it is not the only one.

For an invalid implication $A \rightarrow B$, c(A) is a counterexample, but it is not the only one.

Every closed set $C \supseteq A$ with $B \not\subseteq C$ is a counterexample for $A \rightarrow B$.

For an invalid implication $A \rightarrow B$, c(A) is a counterexample, but it is not the only one.

Every closed set $C \supseteq A$ with $B \not\subseteq C$ is a counterexample for $A \rightarrow B$.

Lemma

Let $N \in c[\mathfrak{P}(M)]$. Then N is infimum-irreducible in $(c[\mathfrak{P}(M)], \subseteq)$ if and only if there exists an $n \in M \setminus N$ such that N is maximal in $(c[\mathfrak{P}(M)], \subseteq)$ with respect to not containing n.

For an invalid implication $A \rightarrow B$, c(A) is a counterexample, but it is not the only one.

Every closed set $C \supseteq A$ with $B \not\subseteq C$ is a counterexample for $A \rightarrow B$.

Lemma

Let $N \in c[\mathfrak{P}(M)]$. Then N is infimum-irreducible in $(c[\mathfrak{P}(M)], \subseteq)$ if and only if there exists an $n \in M \setminus N$ such that N is maximal in $(c[\mathfrak{P}(M)], \subseteq)$ with respect to not containing n.

Idea

If $B \not\subseteq c(A)$, then choose $x \in B \setminus c(A)$ and maximize $N \supseteq c(A)$ with respect to $x \notin N$.

For an invalid implication $A \rightarrow B$, c(A) is a counterexample, but it is not the only one.

Every closed set $C \supseteq A$ with $B \not\subseteq C$ is a counterexample for $A \rightarrow B$.

Lemma

Let $N \in c[\mathfrak{P}(M)]$. Then N is infimum-irreducible in $(c[\mathfrak{P}(M)], \subseteq)$ if and only if there exists an $n \in M \setminus N$ such that N is maximal in $(c[\mathfrak{P}(M)], \subseteq)$ with respect to not containing n.

Idea

If $B \not\subseteq c(A)$, then choose $x \in B \setminus c(A)$ and maximize $N \supseteq c(A)$ with respect to $x \notin N$. Then call N a maximal counterexample for $A \to B$.

Decomposition by Attribute Exploration

Corollary

Attribute exploration using maximal counterexamples yields as the final context of the exploration the canonical decomposition of c.

• Fix
$$M := \{0, \ldots, 10\}.$$

- Fix $M := \{0, \ldots, 10\}.$
- Randomly generate formal contexts \mathbb{K} with attribute set M.

- Fix $M := \{0, \ldots, 10\}.$
- Randomly generate formal contexts \mathbb{K} with attribute set M.
- Compute the canonical decomposition of $X \mapsto X''$ using

- Fix $M := \{0, \ldots, 10\}.$
- Randomly generate formal contexts \mathbb{K} with attribute set M.
- Compute the canonical decomposition of $X \mapsto X''$ using
 - the naive algorithm

- Fix $M := \{0, \ldots, 10\}.$
- Randomly generate formal contexts \mathbb{K} with attribute set M.
- Compute the canonical decomposition of $X \mapsto X''$ using
 - the naive algorithm
 - simple attribute exploration

- Fix $M := \{0, \ldots, 10\}.$
- Randomly generate formal contexts \mathbb{K} with attribute set M.
- Compute the canonical decomposition of $X \mapsto X''$ using
 - the naive algorithm
 - simple attribute exploration
 - attribute exploration with maximal counterexamples

Experimental Results

Number of intents vs. Runtime.

Experimental Results

Number of intents vs. Runtime.

Number of pseudo-intents vs. Runtime.

Experimental Results (cont.)

Calls of c vs. Runtime.

An Unexpected Observation

Number of intents vs. Number of pseudo-intents.

Further Research

Open Questions

• Complexity of decomposing closure operators?

- Complexity of decomposing closure operators?
 - Canonical decomposition might be exponentially large in $\left| M \right|$

- Complexity of decomposing closure operators?
 - Canonical decomposition might be exponentially large in |M|
 - How to represent *c*?

- Complexity of decomposing closure operators?
 - Canonical decomposition might be exponentially large in $\left| M \right|$
 - How to represent c?

• Correlation between number of intents and number of pseudo-intents?

Thank You.