
Decomposing Finite Closure Operators by Attribute
Exploration

Daniel Borchmann

TU Dresden, Institut für Algebra

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 1 / 16

Motivation

Implications and formal contexts

formal context few implications via NextClosure
implications small formal context ?

How can be compute for a given set of implications a small corresponding
formal context?

Algorithms to compute the intents of a formal context (G ,M, I)

NextClosure input: M, X 7→ X ′′

Close-by-One input: (G ,M, I)

Can Close-by-One be applied to an arbitrary closure operator c?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 2 / 16

Motivation

Implications and formal contexts

formal context few implications via NextClosure
implications small formal context ?

How can be compute for a given set of implications a small corresponding
formal context?

Algorithms to compute the intents of a formal context (G ,M, I)

NextClosure input: M, X 7→ X ′′

Close-by-One input: (G ,M, I)

Can Close-by-One be applied to an arbitrary closure operator c?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 2 / 16

Motivation

Implications and formal contexts

formal context few implications

via NextClosure
implications small formal context ?

How can be compute for a given set of implications a small corresponding
formal context?

Algorithms to compute the intents of a formal context (G ,M, I)

NextClosure input: M, X 7→ X ′′

Close-by-One input: (G ,M, I)

Can Close-by-One be applied to an arbitrary closure operator c?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 2 / 16

Motivation

Implications and formal contexts

formal context few implications via NextClosure

implications small formal context ?

How can be compute for a given set of implications a small corresponding
formal context?

Algorithms to compute the intents of a formal context (G ,M, I)

NextClosure input: M, X 7→ X ′′

Close-by-One input: (G ,M, I)

Can Close-by-One be applied to an arbitrary closure operator c?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 2 / 16

Motivation

Implications and formal contexts

formal context few implications via NextClosure
implications small formal context

?

How can be compute for a given set of implications a small corresponding
formal context?

Algorithms to compute the intents of a formal context (G ,M, I)

NextClosure input: M, X 7→ X ′′

Close-by-One input: (G ,M, I)

Can Close-by-One be applied to an arbitrary closure operator c?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 2 / 16

Motivation

Implications and formal contexts

formal context few implications via NextClosure
implications small formal context ?

How can be compute for a given set of implications a small corresponding
formal context?

Algorithms to compute the intents of a formal context (G ,M, I)

NextClosure input: M, X 7→ X ′′

Close-by-One input: (G ,M, I)

Can Close-by-One be applied to an arbitrary closure operator c?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 2 / 16

Motivation

Implications and formal contexts

formal context few implications via NextClosure
implications small formal context ?

How can be compute for a given set of implications a small corresponding
formal context?

Algorithms to compute the intents of a formal context (G ,M, I)

NextClosure input: M, X 7→ X ′′

Close-by-One input: (G ,M, I)

Can Close-by-One be applied to an arbitrary closure operator c?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 2 / 16

Motivation

Implications and formal contexts

formal context few implications via NextClosure
implications small formal context ?

How can be compute for a given set of implications a small corresponding
formal context?

Algorithms to compute the intents of a formal context (G ,M, I)

NextClosure input: M, X 7→ X ′′

Close-by-One input: (G ,M, I)

Can Close-by-One be applied to an arbitrary closure operator c?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 2 / 16

Motivation

Implications and formal contexts

formal context few implications via NextClosure
implications small formal context ?

How can be compute for a given set of implications a small corresponding
formal context?

Algorithms to compute the intents of a formal context (G ,M, I)

NextClosure

input: M, X 7→ X ′′

Close-by-One input: (G ,M, I)

Can Close-by-One be applied to an arbitrary closure operator c?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 2 / 16

Motivation

Implications and formal contexts

formal context few implications via NextClosure
implications small formal context ?

How can be compute for a given set of implications a small corresponding
formal context?

Algorithms to compute the intents of a formal context (G ,M, I)

NextClosure input: M, X 7→ X ′′

Close-by-One input: (G ,M, I)

Can Close-by-One be applied to an arbitrary closure operator c?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 2 / 16

Motivation

Implications and formal contexts

formal context few implications via NextClosure
implications small formal context ?

How can be compute for a given set of implications a small corresponding
formal context?

Algorithms to compute the intents of a formal context (G ,M, I)

NextClosure input: M, X 7→ X ′′

Close-by-One

input: (G ,M, I)

Can Close-by-One be applied to an arbitrary closure operator c?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 2 / 16

Motivation

Implications and formal contexts

formal context few implications via NextClosure
implications small formal context ?

How can be compute for a given set of implications a small corresponding
formal context?

Algorithms to compute the intents of a formal context (G ,M, I)

NextClosure input: M, X 7→ X ′′

Close-by-One input: (G ,M, I)

Can Close-by-One be applied to an arbitrary closure operator c?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 2 / 16

Motivation

Implications and formal contexts

formal context few implications via NextClosure
implications small formal context ?

How can be compute for a given set of implications a small corresponding
formal context?

Algorithms to compute the intents of a formal context (G ,M, I)

NextClosure input: M, X 7→ X ′′

Close-by-One input: (G ,M, I)

Can Close-by-One be applied to an arbitrary closure operator c?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 2 / 16

Decomposing Closure Operators

Definition

Let M be a finite set and let c : P(M)→ P(M). Then c is a closure
operator on M if and only if

c is monotone: ∀A,B ⊆ M : A ⊆ B =⇒ c(A) ⊆ c(B),

c is extending: ∀A ⊆ M : A ⊆ c(A),

c is idempotent: ∀A ⊆ M : c(c(A)) = c(A).

Definition

A formal context K = (G ,M, I) is a decomposition of c if and only if

Int(K) = c[P(M)]

i.e., the intents of K are precisely the closed sets of c .

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 3 / 16

Decomposing Closure Operators

Definition

Let M be a finite set and let c : P(M)→ P(M). Then c is a closure
operator on M if and only if

c is monotone: ∀A,B ⊆ M : A ⊆ B =⇒ c(A) ⊆ c(B),

c is extending: ∀A ⊆ M : A ⊆ c(A),

c is idempotent: ∀A ⊆ M : c(c(A)) = c(A).

Definition

A formal context K = (G ,M, I) is a decomposition of c if and only if

Int(K) = c[P(M)]

i.e., the intents of K are precisely the closed sets of c .

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 3 / 16

Trivial Decomposition

Lemma

The formal context
Kc = (c[P(M)],M,3)

is a decomposition of c.

Definition

The formal context Kc is called the trivial decomposition of c.

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 4 / 16

Trivial Decomposition

Lemma

The formal context
Kc = (c[P(M)],M,3)

is a decomposition of c.

Definition

The formal context Kc is called the trivial decomposition of c.

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 4 / 16

Trivial Decomposition

Lemma

Every object-clarified and object-reduced decomposition of a closure
operator c can be embedded into Kc .

Kc is therefore the biggest possible decomposition (up to object
renaming).

But what about the smallest possible decomposition?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 5 / 16

Trivial Decomposition

Lemma

Every object-clarified and object-reduced decomposition of a closure
operator c can be embedded into Kc .

Kc is therefore the biggest possible decomposition (up to object
renaming).

But what about the smallest possible decomposition?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 5 / 16

Trivial Decomposition

Lemma

Every object-clarified and object-reduced decomposition of a closure
operator c can be embedded into Kc .

Kc is therefore the biggest possible decomposition (up to object
renaming).

But what about the smallest possible decomposition?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 5 / 16

Canonical Decomposition

Definition

The canonical decomposition of c is the uniquely determined
object-reduced subcontext of Kc .

Lemma

The canonical decomposition of c is the smallest possible decomposition
of c, i.e., it can be embedded into every other decomposition of c.

Can we compute the canonical decomposition without computing the
trivial one?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 6 / 16

Canonical Decomposition

Definition

The canonical decomposition of c is the uniquely determined
object-reduced subcontext of Kc .

Lemma

The canonical decomposition of c is the smallest possible decomposition
of c, i.e., it can be embedded into every other decomposition of c.

Can we compute the canonical decomposition without computing the
trivial one?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 6 / 16

Canonical Decomposition

Definition

The canonical decomposition of c is the uniquely determined
object-reduced subcontext of Kc .

Lemma

The canonical decomposition of c is the smallest possible decomposition
of c, i.e., it can be embedded into every other decomposition of c.

Can we compute the canonical decomposition without computing the
trivial one?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 6 / 16

Reconsidering the Problem

Given a closure operator c on a set M. Then what do we have?

a set M of attributes and

the operator X 7→ X ′′ = c(X), computed in any decomposition of c .

We therefore have the logic of every decomposition of c , i.e., we can decide
whether an implication A→ B holds in a decomposition of c by checking

B ⊆ c(A).

So can we do attribute exploration?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 7 / 16

Reconsidering the Problem

Given a closure operator c on a set M. Then what do we have?

a set M of attributes and

the operator X 7→ X ′′ = c(X), computed in any decomposition of c .

We therefore have the logic of every decomposition of c , i.e., we can decide
whether an implication A→ B holds in a decomposition of c by checking

B ⊆ c(A).

So can we do attribute exploration?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 7 / 16

Reconsidering the Problem

Given a closure operator c on a set M. Then what do we have?

a set M of attributes and

the operator X 7→ X ′′ = c(X), computed in any decomposition of c .

We therefore have the logic of every decomposition of c , i.e., we can decide
whether an implication A→ B holds in a decomposition of c by checking

B ⊆ c(A).

So can we do attribute exploration?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 7 / 16

Reconsidering the Problem

Given a closure operator c on a set M. Then what do we have?

a set M of attributes and

the operator X 7→ X ′′ = c(X), computed in any decomposition of c .

We therefore have the logic of every decomposition of c , i.e., we can decide
whether an implication A→ B holds in a decomposition of c by checking

B ⊆ c(A).

So can we do attribute exploration?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 7 / 16

Reconsidering the Problem

Given a closure operator c on a set M. Then what do we have?

a set M of attributes and

the operator X 7→ X ′′ = c(X), computed in any decomposition of c .

We therefore have the logic of every decomposition of c , i.e., we can decide
whether an implication A→ B holds in a decomposition of c by checking

B ⊆ c(A).

So can we do attribute exploration?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 7 / 16

Using Attribute Exploration

Turning the closure operator into an expert: Given an implication A→ B

if B ⊆ c(A) accept,

otherwise deny.

Then A→ B does not respect c(A) and c(A) is an intent of every
decomposition of c .
Therefore provide c(A) as a counterexample.

Now attribute exploration can be used to compute a decomposition of c!

But this will not always yield the canonical decomposition of c .

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 8 / 16

Using Attribute Exploration

Turning the closure operator into an expert: Given an implication A→ B

if B ⊆ c(A) accept,

otherwise deny.

Then A→ B does not respect c(A) and c(A) is an intent of every
decomposition of c .
Therefore provide c(A) as a counterexample.

Now attribute exploration can be used to compute a decomposition of c!

But this will not always yield the canonical decomposition of c .

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 8 / 16

Using Attribute Exploration

Turning the closure operator into an expert: Given an implication A→ B

if B ⊆ c(A) accept,

otherwise deny.
Then A→ B does not respect c(A)

and c(A) is an intent of every
decomposition of c .
Therefore provide c(A) as a counterexample.

Now attribute exploration can be used to compute a decomposition of c!

But this will not always yield the canonical decomposition of c .

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 8 / 16

Using Attribute Exploration

Turning the closure operator into an expert: Given an implication A→ B

if B ⊆ c(A) accept,

otherwise deny.
Then A→ B does not respect c(A) and c(A) is an intent of every
decomposition of c .

Therefore provide c(A) as a counterexample.

Now attribute exploration can be used to compute a decomposition of c!

But this will not always yield the canonical decomposition of c .

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 8 / 16

Using Attribute Exploration

Turning the closure operator into an expert: Given an implication A→ B

if B ⊆ c(A) accept,

otherwise deny.
Then A→ B does not respect c(A) and c(A) is an intent of every
decomposition of c .
Therefore provide c(A) as a counterexample.

Now attribute exploration can be used to compute a decomposition of c!

But this will not always yield the canonical decomposition of c .

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 8 / 16

Using Attribute Exploration

Turning the closure operator into an expert: Given an implication A→ B

if B ⊆ c(A) accept,

otherwise deny.
Then A→ B does not respect c(A) and c(A) is an intent of every
decomposition of c .
Therefore provide c(A) as a counterexample.

Now attribute exploration can be used to compute a decomposition of c!

But this will not always yield the canonical decomposition of c .

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 8 / 16

Using Attribute Exploration

Turning the closure operator into an expert: Given an implication A→ B

if B ⊆ c(A) accept,

otherwise deny.
Then A→ B does not respect c(A) and c(A) is an intent of every
decomposition of c .
Therefore provide c(A) as a counterexample.

Now attribute exploration can be used to compute a decomposition of c!

But this will not always yield the canonical decomposition of c .

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 8 / 16

Maximal Counterexamples

For an invalid implication A→ B, c(A) is a counterexample, but it is not
the only one.

Every closed set C ⊇ A with B 6⊆ C is a counterexample for A→ B.

Lemma

Let N ∈ c[P(M)]. Then N is infimum-irreducible in (c[P(M)],⊆) if and
only if there exists an n ∈ M \ N such that N is maximal in (c[P(M)],⊆)
with respect to not containing n.

Idea

If B 6⊆ c(A), then choose x ∈ B \ c(A) and maximize N ⊇ c(A) with
respect to x /∈ N. Then call N a maximal counterexample for A→ B.

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 9 / 16

Maximal Counterexamples

For an invalid implication A→ B, c(A) is a counterexample, but it is not
the only one.

Every closed set C ⊇ A with B 6⊆ C is a counterexample for A→ B.

Lemma

Let N ∈ c[P(M)]. Then N is infimum-irreducible in (c[P(M)],⊆) if and
only if there exists an n ∈ M \ N such that N is maximal in (c[P(M)],⊆)
with respect to not containing n.

Idea

If B 6⊆ c(A), then choose x ∈ B \ c(A) and maximize N ⊇ c(A) with
respect to x /∈ N. Then call N a maximal counterexample for A→ B.

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 9 / 16

Maximal Counterexamples

For an invalid implication A→ B, c(A) is a counterexample, but it is not
the only one.

Every closed set C ⊇ A with B 6⊆ C is a counterexample for A→ B.

Lemma

Let N ∈ c[P(M)]. Then N is infimum-irreducible in (c[P(M)],⊆) if and
only if there exists an n ∈ M \ N such that N is maximal in (c[P(M)],⊆)
with respect to not containing n.

Idea

If B 6⊆ c(A), then choose x ∈ B \ c(A) and maximize N ⊇ c(A) with
respect to x /∈ N. Then call N a maximal counterexample for A→ B.

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 9 / 16

Maximal Counterexamples

For an invalid implication A→ B, c(A) is a counterexample, but it is not
the only one.

Every closed set C ⊇ A with B 6⊆ C is a counterexample for A→ B.

Lemma

Let N ∈ c[P(M)]. Then N is infimum-irreducible in (c[P(M)],⊆) if and
only if there exists an n ∈ M \ N such that N is maximal in (c[P(M)],⊆)
with respect to not containing n.

Idea

If B 6⊆ c(A), then choose x ∈ B \ c(A) and maximize N ⊇ c(A) with
respect to x /∈ N.

Then call N a maximal counterexample for A→ B.

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 9 / 16

Maximal Counterexamples

For an invalid implication A→ B, c(A) is a counterexample, but it is not
the only one.

Every closed set C ⊇ A with B 6⊆ C is a counterexample for A→ B.

Lemma

Let N ∈ c[P(M)]. Then N is infimum-irreducible in (c[P(M)],⊆) if and
only if there exists an n ∈ M \ N such that N is maximal in (c[P(M)],⊆)
with respect to not containing n.

Idea

If B 6⊆ c(A), then choose x ∈ B \ c(A) and maximize N ⊇ c(A) with
respect to x /∈ N. Then call N a maximal counterexample for A→ B.

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 9 / 16

Decomposition by Attribute Exploration

Corollary

Attribute exploration using maximal counterexamples yields as the final
context of the exploration the canonical decomposition of c.

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 10 / 16

Experiments

Fix M := { 0, . . . , 10 }.

Randomly generate formal contexts K with attribute set M.

Compute the canonical decomposition of X 7→ X ′′ using

the naive algorithm
simple attribute exploration
attribute exploration with maximal counterexamples

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 11 / 16

Experiments

Fix M := { 0, . . . , 10 }.
Randomly generate formal contexts K with attribute set M.

Compute the canonical decomposition of X 7→ X ′′ using

the naive algorithm
simple attribute exploration
attribute exploration with maximal counterexamples

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 11 / 16

Experiments

Fix M := { 0, . . . , 10 }.
Randomly generate formal contexts K with attribute set M.

Compute the canonical decomposition of X 7→ X ′′ using

the naive algorithm
simple attribute exploration
attribute exploration with maximal counterexamples

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 11 / 16

Experiments

Fix M := { 0, . . . , 10 }.
Randomly generate formal contexts K with attribute set M.

Compute the canonical decomposition of X 7→ X ′′ using

the naive algorithm

simple attribute exploration
attribute exploration with maximal counterexamples

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 11 / 16

Experiments

Fix M := { 0, . . . , 10 }.
Randomly generate formal contexts K with attribute set M.

Compute the canonical decomposition of X 7→ X ′′ using

the naive algorithm
simple attribute exploration

attribute exploration with maximal counterexamples

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 11 / 16

Experiments

Fix M := { 0, . . . , 10 }.
Randomly generate formal contexts K with attribute set M.

Compute the canonical decomposition of X 7→ X ′′ using

the naive algorithm
simple attribute exploration
attribute exploration with maximal counterexamples

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 11 / 16

Experimental Results

Number of intents vs. Runtime.

0 1,000 2,000
0

5

10

15

0 1,000 2,000
0

5

10

0 1,000 2,000
0

0.2

0.4

0.6

Number of pseudo-intents vs. Runtime.

0 100 200
0

5

10

15

0 100 200
0

5

10

0 100 200
0

0.2

0.4

0.6

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 12 / 16

Experimental Results

Number of intents vs. Runtime.

0 1,000 2,000
0

5

10

15

0 1,000 2,000
0

5

10

0 1,000 2,000
0

0.2

0.4

0.6

Number of pseudo-intents vs. Runtime.

0 100 200
0

5

10

15

0 100 200
0

5

10

0 100 200
0

0.2

0.4

0.6

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 12 / 16

Experimental Results (cont.)

Calls of c vs. Runtime.

0 1,000 2,000
0

5

10

15

0 1,000 2,000
0

5

10

0 5001,0001,500
0

0.2

0.4

0.6

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 13 / 16

An Unexpected Observation

Number of intents vs. Number of pseudo-intents.

0 500 1,000 1,500 2,000

0

100

200

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 14 / 16

Further Research

Open Questions

Complexity of decomposing closure operators?

Canonical decomposition might be exponentially large in |M|
How to represent c?

Correlation between number of intents and number of pseudo-intents?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 15 / 16

Further Research

Open Questions

Complexity of decomposing closure operators?

Canonical decomposition might be exponentially large in |M|
How to represent c?

Correlation between number of intents and number of pseudo-intents?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 15 / 16

Further Research

Open Questions

Complexity of decomposing closure operators?

Canonical decomposition might be exponentially large in |M|

How to represent c?

Correlation between number of intents and number of pseudo-intents?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 15 / 16

Further Research

Open Questions

Complexity of decomposing closure operators?

Canonical decomposition might be exponentially large in |M|
How to represent c?

Correlation between number of intents and number of pseudo-intents?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 15 / 16

Further Research

Open Questions

Complexity of decomposing closure operators?

Canonical decomposition might be exponentially large in |M|
How to represent c?

Correlation between number of intents and number of pseudo-intents?

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 15 / 16

Thank You.

Daniel Borchmann (TU Dresden) Decomposing Closure Operators 16 / 16

