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Truth Tables

I How can we compute the value of a formula F under all possible
interpretations?

I Computing a truth table

1 Let m = |S(F )| be the number of subformulae of F

2 LetRF = {A | A ∈ R and A ∈ S(F )} and
n = |RF | be the number of propositional variables occurring in F

3 Form a table TT(F ) with 2n rows and m columns, where
the first n columns are marked by the elements ofRF ,
the last column is marked by F , and
the remaining columns are marked by the other subformulas of F

4 Fill in the first n columns with> and⊥ as follows:
In the first column fill in alternating downwards>⊥>⊥ . . .,
in the second column>>⊥⊥ . . .,
in the third column>>>>⊥⊥⊥⊥ . . . , etc.

5 Calculate the values in the remaining columns using
the known functions on the set of truth values
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Some Details

I For a row ζ in TT(F ) we denote by ζ(G) the truth value
in the column marked by the formula G ∈ S(F )

I With this, step 5 can be reformulated as follows

5 For each row ζ in TT(F ) and for all F ◦ G, ¬F ∈ S(F )\RF calculate:

ζ(F ◦ G) = ζ(F ) ◦∗ ζ(G) and ζ(¬F ) = ¬∗ζ(F )
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Some Observations

I Let I be an interpretation, F a formula,
RF the set of variables occurring in F and n = |RF |

I If we fix AI for all A ∈ RF , then F I is uniquely determined

I There are exactly 2n different possibilities of assigning truth values toRF

I Each row in TT(F ) corresponds precisely to one of these possibilities

I For each interpretation I of the language L(R)
exists exactly one row ζI in TT(F ) with GI = ζI (G) for all G ∈ S(F )

I For every row ζ in TT(F ) exists an interpretation I of the language L(R)
with GI = ζ(G) for all G ∈ S(F )

. I is not uniquely determined
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Determining Satisfiability using Truth Tables

I F is satisfiable iff TT(F ) contains a row ζ with ζ(F ) = >

I F is unsatisfiable iff for all rows ζ in TT(F ) we find ζ(F ) = ⊥

I F is valid iff for all rows ζ in TT(F ) we find ζ(F ) = >

I F is falsifiable iff TT(F ) contains a row ζ with ζ(F ) = ⊥
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Semantic Trees – Main Characteristics

I Optimization of the truth table method

I Stepwise partitioning of interpretations (through branching)

I Usually conceived for formulas in clausal form

I Notatation
In the sequel nodes are (labeled by) expressions of the form F ::J, where

. F is a formula and

. J is either a partial interpretation for F , SAT, or CONFLICT

with the following informal meaning:

. If J is a partial interpretation, then F |J is the “remaining” SAT-problem

. If J is SAT or CONFLICT, then F |J is undefined

. F ::J has successor F ::SAT iff J |= F iff F |J = 〈 〉

. F ::J has successor F ::CONFLICT iff J 6|= F iff [ ] ∈ F |J
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Semantic Trees

I A semantic tree for a CNF-formula F is a binary tree satisfying
the following conditions

. The root node is F :: ( )

. If F ::J is a node and F |J = 〈 〉 then it has a successor node F ::SAT

. If F ::J is a node and [ ] ∈ F |J then it has a successor node F ::CONFLICT

. If F ::J is a node, [ ] 6∈ F |J and A ∈ atoms(F |J)
then F ::J has two successor nodes F ::J, Ȧ and F ::J, Ȧ

I Note

. The conditions in the three if-statements are mutually exclusive;
the corresponding rules (see next slide) do not overlap

. Instead of F ::J we could label the nodes with F |J

. From an implementational point of view it is beneficial to separate F and J
Why?
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The ST Calculus

I Given a CNF-formula F

I Computations are initialized by F :: ( )

I The rules of the calculus are

F ::J ;SAT F ::SAT iff F |J = 〈 〉
F ::J ;CONF F ::CONFLICT iff [ ] ∈ F |J
F ::J ;SPLIT F ::J, Ȧ | F ::J, Ȧ iff A ∈ atoms(F |J) and [ ] 6∈ F |J

I SPLIT leads to branching

I Computation terminates if

. a node F ::SAT is reached in which case F is satisfiable or

. all leaf nodes are of the form F ::CONFLICT in which case F is unsatisfiable

I F ::J ; F ′ ::J′

iff F ::J ;SAT F ′ ::J′ or F ::J ;CONF F ′ ::J′ or F ::J ;SPLIT F ′ ::J′

I
∗
; is the reflexive and transitive closure of ;
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Example

I Let F = 〈[2, 3], [2, 3], [1, 2], [1, 3], [1, 2, 3]〉 in

F :: ( )
�����)
PPPPPq

F :: (1̇) F :: (1̇)

��	 @@R
F :: (1̇, 2̇) F :: (1̇, 2̇)

B
B
BBN

F ::CONFLICT

��	 @@R
F :: (1̇, 2̇, 3̇) F :: (1̇, 2̇, 3̇)

XXXXXXz
HHj

��	 @@R
F :: (1̇, 3̇) F :: (1̇, 3̇)

�
�
��


��	 @@R
F :: (1̇, 3̇, 2̇) F :: (1̇, 3̇, 2̇)
���

������9

I F is unsatisfiable
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Another Example

I Let F = 〈[2, 3], [1, 2], [1, 3], [1, 2, 3]〉 in

F :: ( )
�����)
PPPPPq

F :: (1̇) F :: (1̇)

��	 @@R
F :: (1̇, 2̇) F :: (1̇, 2̇)

B
B
BBN

F ::CONFLICT

��	 @@R
F :: (1̇, 2̇, 3̇) F :: (1̇, 2̇, 3̇)

?
F ::SAT

HHj

��	 @@R
F :: (1̇, 3̇) F :: (1̇, 3̇)

�
�
��


��	 @@R
F :: (1̇, 3̇, 2̇) F :: (1̇, 3̇, 2̇)
���

������9

I (1̇, 2̇, 3̇) |= F
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Abstract Reduction Systems

I The ST calculus is an abstract reduction system (see e.g. Baader, Nipkow:
Term Rewriting and All That. Cambridge University Press: 1998)

I An abstract reduction system (R,→) is said to be

terminating iff there is no infinite descending chain t0 → t1 → . . .
confluent iff t1 ←∗ t →∗ t2 implies (∃t′) t1 →∗ t′ ←∗ t2

locally confluent iff t1 ← t → t2 implies (∃t′) t1 →∗ t′ ←∗ t2
canonical iff is is terminating and confluent

I Newman’s Lemma A terminating relation is confluent if it is locally confluent
Newman: On theories with a combinatorial definition of ’equivalence’.
Annals of Mathematics 43(2), 223-243: 1942
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ST Termination

I Theorem ST is terminating

I Proof (sketch)

. SAT, CONF and SPLIT do not overlap,
i.e., at most one of these rules is applicable to a node F ::J

. If SAT or CONF are applied then their only successor nodes
F ::SAT and F ::CONFLICT are irreducible

. We turn to SPLIT

II atoms(F ) is finite

II SPLIT is applied to F ::J yielding two successor nodes
F ::J, Ȧ and F ::J, Ȧ if A ∈ atoms(F |J)

II A 6∈ atoms(F |(J,Ȧ)) ∪ atoms(F |
(J,Ȧ)

)

II There are no infinite sequences of SPLIT qed
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ST Confluency – Preliminaries

I We assume that nodes are labeled by F |J instead of F ::J

I Observations

. F |J,L1,L2 = F |J,L2,L1

. F |J = F |J,A = F |J,A if A 6∈ atoms(F |J) and neither A ∈ J nor A ∈ J
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Example

I Let F = 〈[1, 2], [1, 3], [4, 5]〉

F

F |2̇ = 〈[1, 3], [4, 5]〉

F |2̇,1̇ = 〈[4, 5]〉 F |
2̇,1̇

= 〈[3], [4, 5]〉

F |
2̇
= 〈[1], [1, 3], [4, 5]〉

F |
2̇,1̇

= 〈[4, 5]〉 F |
2̇,1̇

= 〈[ ], [3], [4, 5]〉

I The set of leaves is {〈[4, 5]〉, 〈[3], [4, 5]〉, 〈[ ], [3], [4, 5]〉}
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Example – Continued

I Let F = 〈[1, 2], [1, 3], [4, 5]〉

F

F |1̇ = 〈[4, 5]〉
= F |2̇,1̇
= F |

2̇,1̇

F |
1̇
= 〈[2], [3], [4, 5]〉

F |
1̇,2̇

= 〈[3], [4, 5]〉
= F |

2̇,1̇

F |
1̇,2̇

= 〈[ ], [3], [4, 5]〉
= F |

2̇,1̇

I The set of leaves is {〈[4, 5]〉, 〈[3], [4, 5]〉, 〈[ ], [3], [4, 5]〉},
which is identical to the set of leaves of the previous tree

I Two trees with identical root are similar if they have identical sets of leaves
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ST Confluency

I Proposition ST is confluent (modulo similarity of trees)

I Proof (sketch) Because ST is terminating and, thus, Newman’s Lemma is
applicable, it suffices to show that ST is locally confluent

. Because SAT, CONF, and SPLIT do not overlap, the only possible overlap
is between two different instance of SPLIT applicable to some node F |J

. Let F |J,Ȧ and F |
J,Ȧ

as well as F |J,Ḃ and F |
J,Ḃ

be the respective extensions of F |J , where A 6= B

. If B ∈ atoms(F |J,Ȧ) then SPLIT can be applied to F |J,Ȧ
yielding F |J,Ȧ,Ḃ and F |

J,Ȧ,Ḃ
; otherwise, F |J,Ȧ = F |J,Ȧ,Ḃ = F |

J,Ȧ,Ḃ

. Similar arguments can be made for the remaining three cases

. Because literals can be swapped in an interpretation, the two trees rooted in
F |J and generated by the two different inital applications of SPLIT are similar

qed
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A Comment

I [ ] 6∈ F |J may be omitted

. in the last condition of the definition of a semantic tree and, consequently,

. in the definition of SPLIT

I Hence,

. CONF and SPLIT overlap

. However, ST is still confluent

. One can show that CONF is a simplification rule

. Thus, CONF should always be applied first
and no alternatives need to be considered
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ST Soundness

I Lemma Suppose F ::J ;SPLIT F ::J, Ȧ | F ::J, Ȧ. Then,
F |J is satisfiable iff either F |(J,Ȧ) or F |

(J,Ȧ)
is satisfiable

I Proof  Exercise

I Theorem ST is sound

I Proof (sketch)

. To show if F :: ( )
∗
; F ::SAT then the CNF-formula F is satisfiable

. Suppose F :: ( )
∗
; F ::SAT

. F ::SAT is generated iff its parent node is F ::J and F |J = 〈 〉

. 〈 〉 is satisfiable

. By induction on the length of the given derivation and using the above
mentioned lemma we can show that F is satisfiable qed

I Exercise Complete the proof of the Theorem
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ST Completeness

I Corollary Suppose F ::J ;SPLIT F ::J, Ȧ | F ::J, Ȧ. Then,
F |J is unsatisfiable iff F |(J,Ȧ) and F |

(J,Ȧ)
are unsatisfiable

I Proof Follows from the previous lemma by negating both sides of the
equivalence qed

I Theorem ST is complete

I Proof (sketch)

. To show if a CNF-formula F is satisfiable, then F :: ( )
∗
; F ::SAT

. Suppose F is satisfiable, but F :: ( ) 6 ∗; F ::SAT

. Because ST is terminating, all leaf nodes are of the form F ::CONFLICT

. For all leaf nodes we find J such that
F ::J ;CONF F ::CONFLICT and [ ] ∈ F |J

. By induction on the lenght of the given derivation and using the above
mentioned corollary we learn that F is unsatisfiable qed
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Relationship to the Truth Table Method

I Each branch of a semantic tree corresponds to rows in the truth table

I Different branches correspond to different rows in the truth table

I Advantage over the truth table method

. Leaf nodes F ::CONFLICT and F ::SAT may be reached
even if not all members of atoms(F ) have been assigned to truth values
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Controlling the Generation of Semantic Trees

I Which leaf node F ::J shall be selected?

I Which atom A shall be selected in an application of SPLIT?

I Which branch shall be investigated first after an application of SPLIT?

I What about redundancies?
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DPLL

I This section is based on

. Davis, Putnam: A Computing Procedure for Quantification Theorem
Journal of the ACM 7, 201-215: 1960

. Davis, Logemann, Loveland: A Machine Program for Theorem Provin.
Communications of the ACM 5, 394-397: 1962

I DPLL is an acronym for the authors

I The DPLL method was originally specified to show unsatisfiability

I Here, we present a version for showing satisfiability
leading to an improved algorithm for the generation of semantic trees

I We consider clauses as sets

. There are no multiple occurrences of literals in a clause

. An implementation has to guarantee this!
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Simplification Rules

I Consider a CNF-formula F

I Consider rules which yield F ′ such that F ′ ≡ F and F ′ is “simpler” than F

I Such rules can be applied at any time.

I They are often called simplification rules

I Here TAUT and SUBS
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TAUT: Tautological Clauses

I Definition
A clause is a tautology iff it contains a complementary pair of literals

I Proposition
Tautologies can be deleted while preserving semantic equivalence,
i.e., F ,C ≡ F if C is a tautology.

〈[1, 2, 2, 3, 4, 7], [5, 6]〉 ≡ 〈[5, 6]〉

I F ,C ::J ;TAUT F ::J iff C is a tautology

I Applicable

. in the initialization phase

. whenever a new clause is generated, e.g., by resolution

I TAUT reduces the number of clauses in a formula
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SUBS: Subsumption

I Definition C1 subsumes C2 iff C1 ⊆ C2

I Proposition
Subsumed clauses can be deleted while preserving semantic equivalence,
i.e., F ,C ≡ F if there exists C′ ∈ F with C′ ⊆ C

〈[2, 3], [2], [1, 2, 3, 4]〉 ≡ 〈[2, 3], [2]〉

I F ,C ::J ;SUBS F ::J iff there exists C′ ∈ F such that C′ ⊆ C

I Applicable

. in the initialization phase

. whenever a new clause is generated, e.g., by resolution

I SUBS reduces the number of clauses in a formula

I Some Questions

. How complex is the removal of subsumed clauses?

. Are there forms of subsumption which are less costly?
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Remaining Rules

I SAT, SPLIT and CONFLICT as in the ST calculus

I UNIT as a special variant of SPLIT

I PURE
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UNIT

I Let F ::J be a node in the computation of a semantic tree for F

I Suppose SPLIT was applied yielding the new nodes F ::J, L̇ and F ::J, L̇

. If [L] ∈ F |J then [ ] ∈ F |
(J,L̇)

and, thus, F ::J, L̇ ;CONF F ::CONFLICT

. If [L] ∈ F |J then [ ] ∈ F |(J,L̇) and, thus, F ::J, L̇ ;CONF F ::CONFLICT

I Hence, unit clauses should eagerly trigger SPLITs

I F ::J ;UNIT F ::J, L iff [L] ∈ F |J

I L is a propagation variable

I Applicable

. in the initialization phase

. whenever a new clause is generated, e.g., by resolution

. whenever literals are deleted from a clause, e.g., by UNIT

I How complex is the application of UNIT?
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PURE

I Definition A literal L ∈ lits(F ) is pure iff L 6∈ lits(F )

I Clauses containing a pure L are satisfied by any interpretation containing L

I Interpretations containing L need not be considered

I F ::J ;PURE F ::J, L iff there exists L ∈ lits(F |J) which is pure in F |J .

I L is a propagation variable

I Applicable

. in the initialization phase

. whenever clauses have been deleted, e.g., by SUBS or TAUT
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An Example
〈[1, 2], [2, 3], [1, 2, 3], [1, 4, 4], [2, 3, 4], [1, 3], [4]〉 :: ( )

?
SUBS

〈[1, 2], [2, 3], [1, 4, 4], [2, 3, 4], [1, 3], [4]〉 :: ( )

?
TAUT

F :: ( ) where F = 〈[1, 2], [2, 3], [2, 3, 4], [1, 3], [4]〉

?
UNIT

F :: (4)
������9
XXXXXXz

SPLIT

F :: (4, 1̇) F :: (4, 1̇)

?
UNIT

F :: (4, 1̇, 3)

?
UNIT

F :: (4, 1̇, 3, 2)

?
CONF

F ::CONFLICT

?
UNIT

F :: (4, 1̇, 2)

?
UNIT

F :: (4, 1̇, 2, 3)

?
SAT

F ::SAT
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The DPLL Calculus

I Given a CNF-formula F

I The computation is initialized by F :: ( )

I The rules of the calculus are
SAT, CONFLICT, SPLIT, TAUT, SUBS, UNIT and PURE

I Computation terminates if

. a node F ′ ::SAT is reached in which case F is satisfiable or

. all leaf nodes are of the form F ′ ::CONFLICT in which case F is unsatisfiable

I Note

. TAUT and SUBS may still be applicable to F ′ ::CONFLICT

. However, TAUT and SUBS can only be applied finitely many times
because in each application a clause from F ′ is removed and F ′ is finite
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UNIT and PURE Revisited

I Proposition UNIT and PURE are satisfiability preserving, i.e.,

. Suppose F ::J ;UNIT F ::J, L. Then,
F |J is satisfiable iff F |J,L is satisfiable

. Suppose F ::J ;PURE F ::J, L. Then,
F |J is satisfiable iff F |J,L is satisfiable

I Exercise Prove the proposition

I Note Whenever UNIT or PURE is applied to F ::J yielding F ::J, L then

. L 6∈ lits(F |J,L)

. atoms(L) 6⊆ atoms(F |J,L)

. lits(F |J,L) ∪ {L} ⊆ lits(F |J)

I Exercise Give examples for the application of UNIT and PURE where the
subset relation is proper
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DPLL Termination

I Theorem DPLL is terminating

I Proof (sketch) The theorem follows from the following observations:

. SAT: the node cannot be further extended

. CONFLICT: the node will not be further extended

. TAUT, SUBS, UNIT, PURE: the number of clauses occurring in F decreases

. SPLIT:

II the number of clauses does not increase

II the number of atoms occurring in F |J decreases qed

I Exercise Complete the proof
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DPLL Confluency

I Claim DPLL is confluent

I Some Consequences

. The inference rules can be applied in any order

. Starting with F :: () we can first apply TAUT and SUBS as often as possible

. Thereafter, TAUT and SUBS will not be applicable anymore

. We delay applications of SPLIT as long as possible, i.e.,
if TAUT and SUBS are no longer applicable, we apply PURE and UNIT eagerly
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DPLL Soundness

I Theorem DPLL is sound

I Proof Follows from the corresponding result of the GenericCDCL calculus
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DPLL Completeness

I Theorem DPLL is complete

I Proof (sketch)
The proof is in analogy to the proof of the completeness of the ST calculus

. Recall that

II TAUT and SUBS are simplification rules and

II PURE and UNIT are satisfiability preserving

. Hence, if F ::J ; F ′ ::J′, where ; ∈ {;TAUT ,;UNIT ,;SUBS ,;PURE},
then the following holds: If F ′|J′ is unsatisfiable, so is F |J .

. The remaining steps are similar to those in the proof of the
completeness of the ST calculus except that
between two splits TAUT, SUBS, PURE, and UNIT may be applied qed

I Exercise Complete the proof
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Naive Backtracking

I The ST and the DPLL calculus are branching due to SPLIT

I We would like to linearize DPLL and, thereby, ST

I TAUT and SUBS simplify the formula, SAT is a termination rule

I UNIT and PURE are satisfiability preserving and add propagation literals

I SPLIT is replaced by

. F ::J ;DECIDE F ::J, L̇ iff [ ] 6∈ F |J and L ∈ atoms(F |J) ∪ atoms(F |J)

I If [ ] ∈ F |J then J may or may not contain decision literals

. F ::J ;UNSAT F ::UNSAT
iff [ ] ∈ F |J and J does not contain a decision literal

. F ::J, L̇, P ;NB F ::J, L iff [ ] ∈ F |J,L̇,P , where

II P is a sequence of propagation literals

II L̇ is the decision literal with the highest level in J, L̇, P

II L is a propagation literal

II NB is called naive backtracking
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A Note on PURE

I Each application of PURE can be replaced by DECIDE,
in which case the pure literal L used by PURE becomes a decision literal

I In most of the literature and almost all systems PURE is not considered

I We would like to keep it in the moment
as we do not fully understand why an implementation of PURE is so costly
or why a particular result is affected by PURE

I If, however, one of the methods and techniques presented in the sequel causes
a problem due to the fact that PURE adds L as a propagation literal to the
current partial interpretation then PURE shall be replaced by DECIDE

Steffen Hölldobler and Norbert Manthey
SAT Solving – Systematic Search 37



The Previous Example Revisited

〈[1, 2], [2, 3], [1, 2, 3], [1, 4, 4], [2, 3, 4], [1, 3], [4]〉 :: ( )
;SUBS 〈[1, 2], [2, 3], [1, 4, 4], [2, 3, 4], [1, 3], [4]〉 :: ( )
;TAUT F :: ( ) where F = 〈[1, 2], [2, 3], [2, 3, 4], [1, 3], [4]〉
;UNIT F :: (4) (F |(4) = 〈[1, 2], [2, 3], [2, 3], [1, 3]〉)

;DECIDE F :: (4, 1̇) (F |(4,1) = 〈[2, 3], [2, 3], [3]〉)

;UNIT F :: (4, 1̇, 3) (F |(4,1,3) = 〈[2], [2]〉)

;UNIT F :: (4, 1̇, 3, 2) (F |(4,1,3,2) = 〈[ ]〉)

;NB F :: (4, 1) (F |(4,1) = 〈[2], [2, 3], [2, 3]〉)

;UNIT F :: (4, 1, 2) (F |(4,1,2) = 〈[3]〉)

;UNIT F :: (4, 1, 2, 3) (F |(4,1,2,3) = 〈 〉)

;SAT F ::SAT
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Another Example Revisited

F :: ( ) where F = 〈[2, 3], [2, 3], [1, 2], [1, 3], [1, 2, 3]〉
;DECIDE F :: (1̇) (F |(1) = 〈[2, 3], [2, 3], [2]〉)
;UNIT F :: (1̇, 2) F |(1,2) = 〈[3], [3]〉)

;UNIT F :: (1̇, 2, 3) (F |(1,2,3) = 〈[ ]〉)

;NB F :: (1) (F |(1) = 〈[2, 3], [2, 3], [3], [2, 3]〉)

;UNIT F :: (1, 3) (F |(1,3) = 〈[2], [2]〉)

;UNIT F :: (1, 3, 2) (F |(1,3,2) = 〈[ ]〉)

;UNSAT F ::UNSAT
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The DPLL-NB Calculus

I Given a CNF-formula F

I The computation is initialized by F :: ( )

I The rules of the calculus are
SAT, UNSAT, DECIDE, NB, TAUT, SUBS, UNIT and PURE

I Computation terminates if

. a node F ′ ::SAT is reached in which case F is satisfiable or

. a node F ′ ::UNSAT is reached in which case F is unsatisfiable

I Note In DPLL-NB and, in particular, in F ::J,
J may be a partial interpretation, SAT or UNSAT
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DPLL-NB – Results

I Theorem DPLL-NB is terminating, sound, and complete

I Proof (sketch)

. Termination and soundness follow from corresponding results
for the GenericCDCL calculus, which will be presented later in the lecture

. Completeness

II DPLL is complete

II The search space is finite

II NB specifies just a specific order of traversing this space qed
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Heuristics

I Whenever DECIDE is applied to F ::J in the following examples, then

. the smallest atom A occurring in F |J is selected

I Whenever UNIT is applied to F ::J in the following examples, then

. the leftmost unit clause occurring in F |J is selected
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Backtracking and Redundancies (1)

F :: ( ) where F = 〈[1, 2, 3], [2, 4], [2, 4], [5, 6], [1, 5, 6], [5, 7], [1, 5, 7], [1, 3]〉
;DECIDE F :: (1̇) (F |(1) = 〈[2, 3], [2, 4], [2, 4], [5, 6], [5, 6], [5, 7], [5, 7]〉)
;DECIDE F :: (1̇, 2̇) (F |(1,2) = 〈[3], [4], [5, 6], [5, 6], [5, 7], [5, 7]〉)
;UNIT F :: (1̇, 2̇, 3) (F |

(1,2,3) = 〈[4], [5, 6], [5, 6], [5, 7], [5, 7]〉)
;UNIT F :: (1̇, 2̇, 3, 4) (F |

(1,2,3,4) = 〈[5, 6], [5, 6], [5, 7], [5, 7]〉)
;DECIDE F :: (1̇, 2̇, 3, 4, 5̇) (F |

(1,2,3,4,5) = 〈[6], [6]〉)
;UNIT F :: (1̇, 2̇, 3, 4, 5̇, 6) (F |

(1,2,3,4,5,6) = 〈[ ]〉)
;NB F :: (1̇, 2̇, 3, 4, 5) (F |(1̇, 2̇, 3, 4, 5) = 〈[7], [7]〉)
;UNIT F :: (1̇, 2̇, 3, 4, 5, 7) (F |

(1̇,2̇,3,4,5,7) = 〈[ ]〉)
;NB F :: (1̇, 2) (F |

(1,2) = 〈[4], [5, 6], [5, 6], [5, 7], [5, 7]〉)
;UNIT F :: (1̇, 2, 4) (F |

(1̇,2,4) = 〈[5, 6], [5, 6], [5, 7], [5, 7]〉)
;DECIDE F :: (1̇, 2, 4, 5̇) (F |

(1̇,2,4,5̇) = 〈[6], [6]〉)
;UNIT F :: (1̇, 2, 4, 5̇, 6) (F |

(1̇,2,4,5̇,6) = 〈[ ]〉)
;NB F :: (1̇, 2, 4, 5) (F |

(1̇,2,4,5) = 〈[7], [7]〉)
;UNIT F :: (1̇, 2, 4, 5, 7) (F |

(1̇,2,4,5,7) = 〈[ ]〉)
;NB F :: (1) (F |

(1) = 〈[2, 4], [2, 4], [5, 6], [5, 7], [3]〉)
;UNIT F :: (1, 3) (F |

(1,3) = 〈[2, 4], [2, 4], [5, 6], [5, 7]〉)
;PURE F :: (1, 3, 7) (F |

(1,3,7) = 〈[2, 4], [2, 4], [5, 6]〉)
;PURE F :: (1, 3, 7, 5) (F |

(1,3,7,5) = 〈[2, 4], [2, 4]〉)
;PURE F :: (1, 3, 7, 5, 4) (F |

(1,3,7,5,4) = 〈〉)
;SAT F ::SAT
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Conflict Analysis

I In the previous example the following clauses triggered UNIT propagation

C1 = [1, 2, 3] (C1|(1,2) = [3])
C2 = [2, 4] (C2|(1,2) = [4])
C3 = [5, 6] (C3|(1,2,3,4,5)) = [6])

Subsequently, the clause C = [1, 5, 6] became empty and caused a conflict

I We can find the following (linear) resolution derivation from C wrt {C1,C2,C2}

C4 = [1, 5] (res(C,C3))

I Note

. Resolvents can be added while preserving semantic equivalence

. [1, 5]|(1) = [5]
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Backtracking and Redundancies (2)

F :: ( ) where F = 〈[1, 2, 3], [2, 4], [2, 4], [5, 6], [1, 5, 6], [5, 7], [1, 5, 7], [1, 3]〉
;DECIDE F :: (1̇) (F |(1) = 〈[2, 3], [2, 4], [2, 4], [5, 6], [5, 6], [5, 7], [5, 7]〉)
;DECIDE F :: (1̇, 2̇) (F |(1,2) = 〈[3], [4], [5, 6], [5, 6], [5, 7], [5, 7]〉)
;UNIT F :: (1̇, 2̇, 3) (F |(1,2,3) = 〈[4], [5, 6], [5, 6], [5, 7], [5, 7]〉)

;UNIT F :: (1̇, 2̇, 3, 4) (F |(1,2,3,4) = 〈[5, 6], [5, 6], [5, 7], [5, 7]〉)

;DECIDE F :: (1̇, 2̇, 3, 4, 5̇) (F |(1,2,3,4,5) = 〈[6], [6]〉)

;UNIT F :: (1̇, 2̇, 3, 4, 5̇, 6) (F |(1,2,3,4,5,6) = 〈[ ]〉)

;LEARN F , [1, 5] :: (1̇, 2̇, 3, 4, 5̇, 6)

;BACK F , [1, 5] :: (1̇)

;UNIT F , [1, 5] :: (1̇, 5) ((F , [1, 5])|(1,5) = 〈[2, 3], [2, 4], [2, 4], [7], [7]〉)

;CDBL F , [1, 5] :: (1̇, 5) ((F , [1, 5])|(1,5) = 〈[2, 3], [2, 4], [2, 4], [7], [7]〉)

;UNIT F , [1, 5] :: (1̇, 5, 7) ((F , [1, 5])|(1,5,7) = 〈[2, 3], [2, 4], [2, 4], [ ]〉)
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Conflict Analysis (2)

I The following clauses triggered UNIT propagation:

C1 = [5, 7] (C1|(1,5) = [7])
C2 = [1, 5] (C2|(1) = [5])

I The new conflict was caused by C = [1, 5, 7]

I We can find the following (linear) resolution derivation from C wrt {C1,C3}:

C3 = [1, 5] (res(C,C1))

C4 = [1] (res(C3,C2))

I Note

. A unit clause can be added

. This clause should be considered at the start

. [1] subsumes [1, 5]
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Backtracking and Redundancies (3)

F :: ( ) where F = 〈[1, 2, 3], [2, 4], [2, 4], [5, 6], [1, 5, 6], [5, 7], [1, 5, 7], [1, 3]〉

;DECIDE F :: (1̇) (F |(1) = 〈[2, 3], [2, 4], [2, 4], [5, 6], [5, 6], [5, 7], [5, 7]〉)

;DECIDE F :: (1̇, 2̇) (F |(1,2) = 〈[3], [4], [5, 6], [5, 6], [5, 7], [5, 7]〉)

;UNIT F :: (1̇, 2̇, 3) (F |
(1,2,3) = 〈[4], [5, 6], [5, 6], [5, 7], [5, 7]〉)

;UNIT F :: (1̇, 2̇, 3, 4) (F |
(1,2,3,4) = 〈[5, 6], [5, 6], [5, 7], [5, 7]〉)

;DECIDE F :: (1̇, 2̇, 3, 4, 5̇) (F |
(1,2,3,4,5) = 〈[6], [6]〉)

;UNIT F :: (1̇, 2̇, 3, 4, 5̇, 6) (F |
(1,2,3,4,5,6) = 〈[ ]〉)

;CDBL F , [1, 5] :: (1̇, 5) ((F , [1, 5])|(1,5) = 〈[2, 3], [2, 4], [2, 4], [7], [7]〉)

;UNIT F , [1, 5] :: (1̇, 5, 7) ((F , [1, 5])|(1,5,7) = 〈[2, 3], [2, 4], [2, 4], [ ]〉)

;CDBL F , [1, 5], [1] :: (1) (F , [1, 5], [1])|
(1) = 〈[2, 4], [2, 4], [5, 6], [5, 7], [3]〉)

;UNIT F , [1, 5], [1] :: (1, 3) (F , [1, 5], [1])|
(1,3) = 〈[2, 4], [2, 4], [5, 6], [5, 7]〉)

3
;PURE F , [1, 5], [1] :: (1, 3, 4, 6, 7) (F , [1, 5], [1])|

(1,3,4,6,7) = 〈 〉)

;SAT F , [1, 5], [1] ::SAT
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Relevant Clauses

I Definition A clause C is relevant in F ::J
iff C ∈ F and there exist I, L, I′ such that J = I, L, I′ and C|I = [L]

I relevant(F ::J) = {C ∈ F | C is relevant in F ::J}
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Conflict-Directed Backtracking and Learning

I Replace naive backtracking by conflict-directed backtracking and learning

I F ::J, L̇, J′ ;CDBL F ,D ::J, L′ iff

. there exists C ∈ F such that C|J,L̇,J′ = [ ]

. there is a linear resolution derivation from C to D wrt relevant(F ::J, L̇, J′)

. D|J = [L′]
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The DPLL-CDBL Calculus

I Given a CNF-formula F

I The computation is initialized by F :: ( )

I The rules of the calculus are
SAT, UNSAT, DECIDE, CDBL, TAUT, SUBS, UNIT and PURE

I Computation terminates if

. a node F ′ ::SAT is reached in which case F is satisfiable or

. a node F ′ ::UNSAT is reached in which case F is unsatisfiable
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Another Example

F :: ( ) where F = 〈[1, 2], [2, 3], [4, 5], [5, 6], [7, 8], [8, 9], [3, 8, 9]〉
;DECIDE F :: (1̇) (F |(1) = 〈[2], [2, 3], [4, 5], [5, 6], [7, 8], [8, 9], [3, 8, 9]〉)
;UNIT F :: (1̇, 2) (F |(1,2) = 〈[3], [4, 5], [5, 6], [7, 8], [8, 9], [3, 8, 9]〉)
;UNIT F :: (1̇, 2, 3) (F |(1̇,2,3) = 〈[4, 5], [5, 6], [7, 8], [8, 9], [8, 9]〉)
;DECIDE F :: (1̇, 2, 3, 4̇) (F |(1̇,2,3,4̇) = 〈[5], [5, 6], [7, 8], [8, 9], [8, 9]〉)
;UNIT F :: (1̇, 2, 3, 4̇, 5) (F |(1̇,2,3,4̇,5) = 〈[6], [7, 8], [8, 9], [8, 9]〉)
;UNIT F :: (1̇, 2, 3, 4̇, 5, 6) (F |(1̇,2,3,4̇,5,6) = 〈[7, 8], [8, 9], [8, 9]〉)
;DECIDE F :: (1̇, 2, 3, 4̇, 5, 6, 7̇) (F |(1̇,2,3,4̇,5,6,7̇) = 〈[8], [8, 9], [8, 9]〉)
;UNIT F :: (1̇, 2, 3, 4̇, 5, 6, 7̇, 8) (F |(1̇,2,3,4̇,5,6,7̇,8) = 〈[9], [9]〉)
;UNIT F :: (1̇, 2, 3, 4̇, 5, 6, 7̇, 8, 9) (F |(1̇,2,3,4̇,5,6,7̇,8,9) = 〈[ ]〉)
;CDBL F , [3, 8] :: (1̇, 2, 3, 8) ((F , [3, 8])|(1̇,2,3,8) = 〈[4, 5], [5, 6], [7]〉)
;UNIT F , [3, 8] :: (1̇, 2, 3, 8, 7) ((F , [3, 8])|(1̇,2,3,8,7) = 〈[4, 5], [5, 6]〉)
;PURE F , [3, 8] :: (1̇, 2, 3, 8, 7, 4) ((F , [3, 8])|(1̇,2,3,8,7,4) = 〈[5, 6]〉)
;PURE F , [3, 8] :: (1̇, 2, 3, 8, 7, 4, 5) ((F , [3, 8])|(1̇,2,3,8,7,4,5) = 〈 〉)
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Another Example – Conflict Analysis

I relevant(F :: (1̇, 2, 3, 4̇, 5, 6, 7̇, 8, 9)) contains of the following clauses

C1 = [1, 2] ([1, 2]|(1) = [2])
C2 = [2, 3] ([2, 3]|(1,2) = [3])
C3 = [4, 5] ([4, 5]|(1,2,3,4) = [5])
C4 = [5, 6] ([5, 6]|(1,2,3,4,5) = [6])
C5 = [7, 8] ([7, 8]|(1,2,3,4,5,6,7) = [8])
C6 = [8, 9] ([8, 9]|(1,2,3,4,5,6,,7,8) = [9])

I The conflict clause is C = [3, 8, 9]

I We obtain the following linear derivation from C wrt {Ci | 1 ≤ i ≤ 6}

C7 = [8, 3] (res(C,C6))

C8 = [7, 3] (res(C7,C5))

C9 = [7, 2] (res(C8,C2))

C10 = [7, 1] (res(C9,C1))

I In principle, all derived clauses could have been added!
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Another Example – Continued

I There is an alternative application of CDBL

F :: ( ) where F = 〈[1, 2], [2, 3], [4, 5], [5, 6], [7, 8], [8, 9], [3, 8, 9]〉
;DECIDE F :: (1̇) (F |(1) = 〈[2], [2, 3], [4, 5], [5, 6], [7, 8], [8, 9], [3, 8, 9]〉)
;UNIT F :: (1̇, 2) (F |(1,2) = 〈[3], [4, 5], [5, 6], [7, 8], [8, 9], [3, 8, 9]〉)
;UNIT F :: (1̇, 2, 3) (F |(1̇,2,3) = 〈[4, 5], [5, 6], [7, 8], [8, 9], [8, 9]〉)
;DECIDE F :: (1̇, 2, 3, 4̇) (F |(1̇,2,3,4̇) = 〈[5], [5, 6], [7, 8], [8, 9], [8, 9]〉)
;UNIT F :: (1̇, 2, 3, 4̇, 5) (F |(1̇,2,3,4̇,5) = 〈[6], [7, 8], [8, 9], [8, 9]〉)
;UNIT F :: (1̇, 2, 3, 4̇, 5, 6) (F |(1̇,2,3,4̇,5,6) = 〈[7, 8], [8, 9], [8, 9]〉)
;DECIDE F :: (1̇, 2, 3, 4̇, 5, 6, 7̇) (F |(1̇,2,3,4̇,5,6,7̇) = 〈[8], [8, 9], [8, 9]〉)
;UNIT F :: (1̇, 2, 3, 4̇, 5, 6, 7̇, 8) (F |(1̇,2,3,4̇,5,6,7̇,8) = 〈[9], [9]〉)
;UNIT F :: (1̇, 2, 3, 4̇, 5, 6, 7̇, 8, 9) (F |(1̇,2,3,4̇,5,6,7̇,8,9) = 〈[ ]〉)
;CDBL F , [3, 8] :: (1̇, 2, 3, 4̇, 5, 6, 8) ((F , [3, 8])|(1̇,2,3,4̇,5,6,8) = 〈[7]〉)
;UNIT F , [3, 8] :: (1̇, 2, 3, 4̇, 5, 6, 8, 7) ((F , [3, 8])|(1̇,2,3,4̇,5,6,8,7) = 〈 〉)
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DPLL-CDBL – Results

I Theorem DPLL-CDBL is terminating, sound and complete

I Proof

. Termination and soundness follow from corresponding results
for the GenericCDCL calculus, which will be presented later in the lecture

. Completeness: to do
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GenericCDCL

I H., Manthey, Philipp, Steinke: GenericCDCL – A Formalization of Modern
Propositional Satisfiability Solvers. In: Proc. POS-14, Le Berre (ed.), EPiC
Series 27, 89-102: 2014, EasyChair, http://www.easychair.org

I F and F ′ are equisatisfiable, in symbols F ≡SAT F ′,
iff either both are satisfiable or both are unsatisfiable
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The Rules of the GenericCDCL Calculus

F ::J ;SAT SAT iff F |J = 〈 〉

F ::J ;UNSAT UNSAT iff [ ] ∈ F |J and J contains only propagation variables

F ::J ;DEC F ::J, L̇ iff L ∈ atoms(F ) ∪ atoms(F ) and {L, L} ∩ J = ∅

F ::J ;INF F ::J, L iff F |J ≡SAT F |J,L,
L ∈ atoms(F ) ∪ atoms(F ) and {L, L} ∩ J = ∅

F ::J ;LEARN F ,C ::J iff F |= C

F ::J ;REMOVE F \ {C} ::J iff F \ {C} |= C

F ::J, J′ ;BACK F ::J

F :: ( ) ;INP F ′ :: ( ) iff F ≡SAT F ′
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Some Comments

I The Rules

. SAT UNSAT DEC minor changes

. INF covers UNIT and PURE as well as many other techniques

. LEARN covers all learning techniques in SAT solvers

. REMOVE covers SUBS as well as TAUT, but also allows to remove
previously learned clauses if they are not effective

. BACK covers naive backtracking, backjumping as well as restarts

. INP allows the application of all simplification techniques

I GenericCDCL covers all systematic SAT solvers

I ’All’ is to be understood as ’to the best of our knowledge, all’
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The GenericCDCL Calculus

I Given a CNF-formula F

I The computation is initialized by F :: ( )

I The rules of the calculus are
SAT, UNSAT, DEC, INF, LEARN, REMOVE, BACK and INP

I Computation terminates if

. the node SAT is reached in which case F is satisfiable or

. the node UNSAT is reached in whch case F is unsatisfiable
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Invariants

I Proposition If F :: ( )
n
; G ::J, then

. F ≡SAT G

. G|J1 ≡SAT G|J1,L, for all J1, J2 and propagation literal L with J = J1, L, J2

I Proof by induction on n

I Exercise complete the proof
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Soundness

I Theorem If F :: ( )
∗
; G ::J ;SAT SAT, then F is satisfiable

If F :: ( )
∗
; G ::J ;UNSAT UNSAT, then F is unsatisfiable

I Proof follows immediately from the previous proposition

I Exercise complete the proof
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Completeness

I Theorem If F is satisfiable, then F :: ( )
∗
; SAT

If F is unsatisfiable, then F :: ( )
∗
; UNSAT

I Proof

. Suppose F is satisfiable

Then we find a model J = (L1, . . . , Ln) for F
Then F :: ( )

n
;DEC F :: (L̇1, . . . , L̇n) ;SAT SAT

. Suppose F is unsatisfiable

Then F |= [ ]

Then F :: ( ) ;LEARN F , [ ] :: ( ) ;UNSAT UNSAT
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Confluence for Reachable States

I Theorem If F :: ( )
∗
; T1 and F :: ( )

∗
; T2,

then there exists T with T1
∗
; T and T2

∗
; T

I Proof follows from the completeness of GenericCDCL
and its ability to perform restarts with the help of the BACK rule

I Exercise complete the proof
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Termination Analysis

I GenericCDCL does not terminate due to

. possibly infinite sequences of LEARN and REMOVE

. possibly infinite sequences of restarts

. possibly infinite sequences of INP

I Fairness Criteria

. Each clause C ⊆ lits(F ) is learned at most finitely many times

II Eventually, LEARN is no longer applicable

. The number of restarts and the number of applications of INP is bounded

II Eventually, restarts and INP are no longer applicable

I Alternative fairness criteria are possible
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