SAT Solving - Systematic Search

Steffen Hölldobler and Norbert Manthey
International Center for Computational Logic Technische Universität Dresden Germany

- Truth Tables
- Semantic Trees
- DPLL
- DPLL-NB
- DPLL-CDBL
- GenericCDCL

Truth Tables

- How can we compute the value of a formula F under all possible interpretations?
- Computing a truth table

1 Let $m=|\mathcal{S}(F)|$ be the number of subformulae of F
2 Let $\mathcal{R}_{F}=\{A \mid A \in \mathcal{R}$ and $A \in \mathcal{S}(F)\}$ and $n=\left|\mathcal{R}_{F}\right|$ be the number of propositional variables occurring in F
3 Form a table $\mathrm{TT}(F)$ with 2^{n} rows and m columns, where the first n columns are marked by the elements of \mathcal{R}_{F}, the last column is marked by F, and the remaining columns are marked by the other subformulas of F
4 Fill in the first n columns with \top and \perp as follows:
In the first column fill in alternating downwards $T \perp \top \perp \ldots$, in the second column $\top \top \perp \perp \ldots$, in the third column $\top \top \top \top \perp \perp \perp \perp \ldots$, etc.
5 Calculate the values in the remaining columns using the known functions on the set of truth values

Some Details

- For a row ζ in $\mathrm{TT}(F)$ we denote by $\zeta(G)$ the truth value in the column marked by the formula $G \in \mathcal{S}(F)$
- With this, step 5 can be reformulated as follows

5 For each row ζ in $\operatorname{TT}(F)$ and for all $F \circ G, \neg F \in \mathcal{S}(F) \backslash \mathcal{R}_{F}$ calculate:

$$
\zeta(F \circ G)=\zeta(F) \circ^{*} \zeta(G) \text { and } \zeta(\neg F)=\neg^{*} \zeta(F)
$$

Some Observations

- Let $/$ be an interpretation, F a formula, \mathcal{R}_{F} the set of variables occurring in F and $n=\left|\mathcal{R}_{F}\right|$
- If we fix A^{\prime} for all $A \in \mathcal{R}_{F}$, then F^{\prime} is uniquely determined
- There are exactly 2^{n} different possibilities of assigning truth values to \mathcal{R}_{F}
- Each row in $\mathrm{TT}(F)$ corresponds precisely to one of these possibilities
- For each interpretation I of the language $\mathcal{L}(\mathcal{R})$ exists exactly one row ζ_{I} in $\mathrm{TT}(F)$ with $G^{\prime}=\zeta_{I}(G)$ for all $G \in \mathcal{S}(F)$
- For every row ζ in $\mathrm{TT}(F)$ exists an interpretation I of the language $\mathcal{L}(\mathcal{R})$ with $G^{\prime}=\zeta(G)$ for all $G \in \mathcal{S}(F)$
$\triangleright I$ is not uniquely determined

Determining Satisfiability using Truth Tables

- F is satisfiable iff $\mathrm{TT}(F)$ contains a row ζ with $\zeta(F)=\top$
- F is unsatisfiable iff for all rows ζ in $\mathrm{TT}(F)$ we find $\zeta(F)=\perp$
- F is valid iff for all rows ζ in $\mathrm{TT}(F)$ we find $\zeta(F)=\top$
- F is falsifiable iff $\mathrm{TT}(F)$ contains a row ζ with $\zeta(F)=\perp$

Semantic Trees - Main Characteristics

- Optimization of the truth table method
- Stepwise partitioning of interpretations (through branching)
- Usually conceived for formulas in clausal form
- Notatation

In the sequel nodes are (labeled by) expressions of the form $F:: J$, where
$\triangleright F$ is a formula and
$\triangleright J$ is either a partial interpretation for F, SAT, or CONFLICT with the following informal meaning:
\triangleright If J is a partial interpretation, then $\left.F\right|_{J}$ is the "remaining" SAT-problem
\triangleright If J is SAT or CONFLICT, then $\left.F\right|_{J}$ is undefined
$\triangleright F:: J$ has successor $F:$ SAT iff $J \models F$ iff $\left.\quad F\right|_{J}=\langle \rangle$
$\triangleright F:: J$ has successor $F::$ CONFLICT iff $J \notin F$ iff $\left.[] \in F\right|_{J}$

Semantic Trees

- A semantic tree for a CNF-formula F is a binary tree satisfying the following conditions
\triangleright The root node is $F::()$
\triangleright If $F:: J$ is a node and $\left.F\right|_{J}=\langle \rangle$ then it has a successor node $F::$ SAT
\triangleright If $F:: J$ is a node and $\left.[] \in F\right|_{J}$ then it has a successor node $F::$ CONFLICT
\triangleright If $F:: J$ is a node, $\left.[] \notin F\right|_{J}$ and $A \in$ atoms $\left(\left.F\right|_{J}\right)$ then $F:: J$ has two successor nodes $F:: J, \dot{A}$ and $F:: J, \dot{\bar{A}}$
- Note
\triangleright The conditions in the three if-statements are mutually exclusive; the corresponding rules (see next slide) do not overlap
\triangleright Instead of $F:: J$ we could label the nodes with $\left.F\right|_{J}$
\triangleright From an implementational point of view it is beneficial to separate F and J Why?

The ST Calculus

- Given a CNF-formula F
- Computations are initialized by F :: ()
- The rules of the calculus are

$F:: \boldsymbol{J}$	$\sim_{\text {SAT }}$	$F::$ SAT	iff	$\left.F\right\|_{J}=\langle \rangle$
$F:: \boldsymbol{J}$	$\sim_{\text {CONF }}$	$F::$ CONFLICT	iff	$\left.[] \in \boldsymbol{F}\right\|_{J}$
$F:: \boldsymbol{J}$	$\sim_{\text {SPLIT }}$	$F:: \boldsymbol{J}, \dot{\boldsymbol{A}} \mid \boldsymbol{F}:: \boldsymbol{J}, \dot{\overline{\boldsymbol{A}}}$	iff	$\boldsymbol{A} \in$ atoms $\left(\left.F\right\|_{J}\right)$ and $\left.[] \notin \boldsymbol{F}\right\|_{\boldsymbol{J}}$

- SPLIT leads to branching
- Computation terminates if
\triangleright a node F :: SAT is reached in which case F is satisfiable or
\triangleright all leaf nodes are of the form F :: CONFLICT in which case F is unsatisfiable
- $F:: J \sim F^{\prime}:: J^{\prime}$
iff $F:: J \sim_{\text {sAT }} F^{\prime}:: J^{\prime}$ or $F:: J \sim \operatorname{coNF} F^{\prime}:: J^{\prime}$ or $F:: J \sim$ sPLIt $F^{\prime}:: J^{\prime}$
$\triangleright \stackrel{*}{\sim}$ is the reflexive and transitive closure of \sim

Example

\rightarrow Let $F=\langle[2, \overline{3}],[2,3],[\overline{1}, \overline{2}],[1, \overline{3}],[1, \overline{2}, 3]\rangle$ in

- F is unsatisfiable

Another Example

- Let $F=\langle[2,3],[\overline{1}, \overline{2}],[1, \overline{3}],[1, \overline{2}, 3]\rangle$ in

- $(\dot{1}, \dot{\overline{2}}, \dot{3}) \models F$

Abstract Reduction Systems

- The ST calculus is an abstract reduction system (see e.g. Baader, Nipkow: Term Rewriting and All That. Cambridge University Press: 1998)
- An abstract reduction system $(\mathcal{R}, \rightarrow)$ is said to be

terminating	iff	there is no infinite descending chain $t_{0} \rightarrow t_{1} \rightarrow \ldots$
confluent	iff	$t_{1} \leftarrow^{*} t \rightarrow \rightarrow^{*} t_{2}$ implies $\left(\exists t^{\prime}\right) t_{1} \rightarrow^{*} t^{\prime} \leftarrow^{*} t_{2}$
locally confluent	iff	$t_{1} \leftarrow t \rightarrow t_{2}$ implies $\left(\exists t^{\prime}\right) t_{1} \rightarrow^{*} t^{\prime} \leftarrow^{*} t_{2}$
canonical	iff	is is terminating and confluent

- Newman's Lemma A terminating relation is confluent if it is locally confluent Newman: On theories with a combinatorial definition of 'equivalence'. Annals of Mathematics 43(2), 223-243: 1942

ST Termination

- Theorem ST is terminating
- Proof (sketch)
\triangleright SAT, CONF and SPLIT do not overlap,
i.e., at most one of these rules is applicable to a node $F:: J$
\triangleright If SAT or CONF are applied then their only successor nodes $F::$ SAT and F :: CONFLICT are irreducible
\triangleright We turn to SPLIT
\rightarrow atoms (F) is finite
\rightarrow SPLIT is applied to $F:: J$ yielding two successor nodes
$F:: J, \dot{A}$ and $F:: J, \dot{\bar{A}}$ if $A \in \operatorname{atoms}\left(\left.F\right|_{J}\right)$
$\rightarrow A \notin \operatorname{atoms}\left(\left.F\right|_{(J, \dot{A})}\right) \cup \operatorname{atoms}\left(\left.F\right|_{(J, \dot{\bar{A}})}\right)$
\rightarrow There are no infinite sequences of SPLIT

ST Confluency - Preliminaries

- We assume that nodes are labeled by $\left.F\right|_{J}$ instead of $F:: J$
- Observations
$\left.\triangleright F\right|_{J, L_{1}, L_{2}}=\left.F\right|_{J, L_{2}, L_{1}}$
$\left.\triangleright F\right|_{J}=\left.F\right|_{J, A}=\left.F\right|_{J, \bar{A}}$ if $A \notin \operatorname{atoms}\left(\left.F\right|_{J}\right)$ and neither $A \in J$ nor $\bar{A} \in J$

Example

- Let $F=\langle[1,2],[1,3],[4,5]\rangle$

- The set of leaves is $\{\langle[4,5]\rangle,\langle[3],[4,5]\rangle,\langle[],[3],[4,5]\rangle\}$

Example - Continued

- Let $F=\langle[1,2],[1,3],[4,5]\rangle$

$$
\begin{aligned}
&\left.F\right|_{\dot{i}}=\langle[4,5]\rangle \\
&=\left.F\right|_{\dot{2}, \dot{1}} \\
&=\left.F\right|_{\dot{2}, \dot{1}}
\end{aligned}, \quad \begin{aligned}
F
\end{aligned}
$$

\checkmark The set of leaves is $\{\langle[4,5]\rangle,\langle[3],[4,5]\rangle,\langle[],[3],[4,5]\rangle\}$, which is identical to the set of leaves of the previous tree

- Two trees with identical root are similar if they have identical sets of leaves

ST Confluency

- Proposition ST is confluent (modulo similarity of trees)
- Proof (sketch) Because ST is terminating and, thus, Newman's Lemma is applicable, it suffices to show that ST is locally confluent
\triangleright Because SAT, CONF, and SPLIT do not overlap, the only possible overlap is between two different instance of SPLIT applicable to some node $\left.F\right|_{J}$
\triangleright Let $\left.F\right|_{J, \dot{A}}$ and $\left.F\right|_{J, \dot{\bar{A}}}$ as well as $\left.F\right|_{J, \dot{B}}$ and $\left.F\right|_{J, \dot{B}}$ be the respective extensions of $\left.F\right|_{J}$, where $A \neq B$
\triangleright If $B \in \operatorname{atoms}\left(\left.F\right|_{J, \dot{A}}\right)$ then SPLIT can be applied to $\left.F\right|_{J, \dot{A}}$ yielding $\left.F\right|_{J, \dot{A}, \dot{B}}$ and $\left.F\right|_{J, \dot{A}, \dot{B}} ;$ otherwise, $\left.F\right|_{J, \dot{A}}=\left.F\right|_{J, \dot{A}, \dot{B}}=\left.F\right|_{J, \dot{A}, \dot{B}}$
\triangleright Similar arguments can be made for the remaining three cases
\triangleright Because literals can be swapped in an interpretation, the two trees rooted in $\left.F\right|_{J}$ and generated by the two different inital applications of SPLIT are similar

A Comment

- [] $\left.\notin F\right|_{J}$ may be omitted
\triangleright in the last condition of the definition of a semantic tree and, consequently,
\triangleright in the definition of SPLIT
- Hence,
\triangleright CONF and SPLIT overlap
\triangleright However, ST is still confluent
\triangleright One can show that CONF is a simplification rule
\triangleright Thus, CONF should always be applied first and no alternatives need to be considered

ST Soundness

- Lemma Suppose $F:: J \sim_{\text {SPLIT }} F:: J, \dot{A} \mid F:: J, \dot{\bar{A}}$. Then, $\left.F\right|_{J}$ is satisfiable iff either $\left.F\right|_{(J, \dot{A})}$ or $\left.F\right|_{(J, \dot{\bar{A}})}$ is satisfiable
- Proof \rightsquigarrow Exercise
- Theorem ST is sound
- Proof (sketch)
\triangleright To show if $F::() \stackrel{*}{\sim} F::$ SAT then the CNF-formula F is satisfiable
\triangleright Suppose $F::() \stackrel{*}{\sim} F:$ SAT
$\triangleright F::$ SAT is generated iff its parent node is $F:: J$ and $\left.F\right|_{J}=\langle \rangle$
$\triangleright\rangle$ is satisfiable
\triangleright By induction on the length of the given derivation and using the above mentioned lemma we can show that F is satisfiable
- Exercise Complete the proof of the Theorem

ST Completeness

- Corollary Suppose $F:: J \leadsto$ sPLIT $F:: J, \dot{A} \mid F:: J, \dot{\bar{A}}$. Then, $\left.F\right|_{J}$ is unsatisfiable iff $\left.F\right|_{(J, \dot{A})}$ and $\left.F\right|_{(J, \dot{\bar{A}})}$ are unsatisfiable
- Proof Follows from the previous lemma by negating both sides of the equivalence
- Theorem ST is complete
- Proof (sketch)
\triangleright To show if a CNF-formula F is satisfiable, then $F::() \stackrel{*}{\sim} F:$ SAT
\triangleright Suppose F is satisfiable, but $F::() \underset{\sim}{*} F$:: SAT
\triangleright Because ST is terminating, all leaf nodes are of the form $F:$: CONFLICT
\triangleright For all leaf nodes we find J such that $F:: J \leadsto$ conf $F::$ CONFLICT and $\left.[] \in F\right|_{J}$
\triangleright By induction on the lenght of the given derivation and using the above mentioned corollary we learn that F is unsatisfiable

Relationship to the Truth Table Method

- Each branch of a semantic tree corresponds to rows in the truth table
- Different branches correspond to different rows in the truth table
- Advantage over the truth table method
\triangleright Leaf nodes F :: CONFLICT and F :: SAT may be reached even if not all members of atoms (F) have been assigned to truth values

Controlling the Generation of Semantic Trees

- Which leaf node $F:: J$ shall be selected?
- Which atom A shall be selected in an application of SPLIT?
- Which branch shall be investigated first after an application of SPLIT?
-What about redundancies?
- This section is based on
\triangleright Davis, Putnam: A Computing Procedure for Quantification Theorem Journal of the ACM 7, 201-215: 1960
\triangleright Davis, Logemann, Loveland: A Machine Program for Theorem Provin. Communications of the ACM 5, 394-397: 1962
- DPLL is an acronym for the authors
- The DPLL method was originally specified to show unsatisfiability
- Here, we present a version for showing satisfiability leading to an improved algorithm for the generation of semantic trees
- We consider clauses as sets
\triangleright There are no multiple occurrences of literals in a clause
\triangleright An implementation has to guarantee this!

Simplification Rules

- Consider a CNF-formula F
- Consider rules which yield F^{\prime} such that $F^{\prime} \equiv F$ and F^{\prime} is "simpler" than F
- Such rules can be applied at any time.
- They are often called simplification rules
- Here TAUT and SUBS

TAUT: Tautological Clauses

- Definition

A clause is a tautology iff it contains a complementary pair of literals

- Proposition

Tautologies can be deleted while preserving semantic equivalence, i.e., $F, C \equiv F$ if C is a tautology.

$$
\langle[1, \overline{2}, 2,3,4, \overline{7}],[5, \overline{6}]\rangle \equiv\langle[5, \overline{6}]\rangle
$$

- $\boldsymbol{F}, \boldsymbol{C}:: \boldsymbol{J} \sim_{\text {TAUT }} \boldsymbol{F}:: \boldsymbol{J}$ iff \boldsymbol{C} is a tautology
- Applicable
\triangleright in the initialization phase
\triangleright whenever a new clause is generated, e.g., by resolution
- TAUT reduces the number of clauses in a formula

SUBS: Subsumption

Definition \boldsymbol{C}_{1} subsumes \boldsymbol{C}_{2} iff $\boldsymbol{C}_{1} \subseteq \boldsymbol{C}_{\mathbf{2}}$

- Proposition

Subsumed clauses can be deleted while preserving semantic equivalence, i.e., $F, C \equiv F$ if there exists $C^{\prime} \in F$ with $C^{\prime} \subseteq C$

$$
\langle[2, \overline{3}],[\overline{2}],[1,2, \overline{3}, \overline{4}]\rangle \equiv\langle[2, \overline{3}],[\overline{2}]\rangle
$$

- $F, C:: J \sim$ subs $F:: J$ iff there exists $C^{\prime} \in F$ such that $C^{\prime} \subseteq C$
- Applicable
\triangleright in the initialization phase
\triangleright whenever a new clause is generated, e.g., by resolution
- SUBS reduces the number of clauses in a formula
- Some Questions
\triangleright How complex is the removal of subsumed clauses?
\triangleright Are there forms of subsumption which are less costly?

Remaining Rules

- SAT, SPLIT and CONFLICT as in the ST calculus
- UNIT as a special variant of SPLIT
- PURE

UNIT

- Let $F:: J$ be a node in the computation of a semantic tree for F
- Suppose SPLIT was applied yielding the new nodes $F:: J, \dot{L}$ and $F:: J, \dot{\bar{L}}$
\triangleright If $\left.[L] \in F\right|_{J}$ then $\left.[] \in F\right|_{(J, \dot{\bar{L}})}$ and, thus, $F:: J, \dot{\bar{L}} \leadsto \operatorname{conF} F::$ CONFLICT
\triangleright If $\left.[\bar{L}] \in F\right|_{J}$ then $\left.[] \in F\right|_{(J, \dot{L})}$ and, thus, $F:: J, \dot{L} \leadsto \operatorname{conF} F::$ CONFLICT
- Hence, unit clauses should eagerly trigger SPLITs
- $F:: J \sim$ UNIt $F:: J, L \quad$ iff $\left.\quad[L] \in F\right|_{J}$
- L is a propagation variable
- Applicable
\triangleright in the initialization phase
\triangleright whenever a new clause is generated, e.g., by resolution
\triangleright whenever literals are deleted from a clause, e.g., by UNIT
- How complex is the application of UNIT?

PURE

- Definition A literal $L \in \operatorname{lits}(F)$ is pure iff $\bar{L} \notin \operatorname{lits}(F)$
- Clauses containing a pure L are satisfied by any interpretation containing L
- Interpretations containing \bar{L} need not be considered
$\downarrow F:: J \sim_{\text {PURE }} F:: J, L$ iff there exists $L \in \operatorname{lits}\left(\left.F\right|_{J}\right)$ which is pure in $\left.F\right|_{J}$.
- L is a propagation variable
- Applicable
\triangleright in the initialization phase
\triangleright whenever clauses have been deleted, e.g., by SUBS or TAUT

An Example

$$
\begin{aligned}
& \langle[1,2],[2, \overline{3}],[1,2, \overline{3}],[1,4, \overline{4}],[\overline{2}, \overline{3}, 4],[\overline{1}, 3],[\overline{4}]\rangle::() \\
& \downarrow \text { subs } \\
& \langle[1,2],[2, \overline{3}],[1,4, \overline{4}],[\overline{2}, \overline{3}, 4],[\overline{1}, 3],[\overline{4}]\rangle::() \\
& \downarrow^{\text {taut }} \\
& F::() \text { where } F=\langle[1,2],[2, \overline{3}],[\overline{2}, \overline{3}, 4],[\overline{1}, 3],[\overline{4}]\rangle \\
& \downarrow_{\text {UNIT }}
\end{aligned}
$$

The DPLL Calculus

- Given a CNF-formula F
- The computation is initialized by $F::()$
- The rules of the calculus are SAT, CONFLICT, SPLIT, TAUT, SUBS, UNIT and PURE
- Computation terminates if
\triangleright a node F^{\prime} :: SAT is reached in which case F is satisfiable or
\triangleright all leaf nodes are of the form $F^{\prime}::$ CONFLICT in which case F is unsatisfiable
- Note
\triangleright TAUT and SUBS may still be applicable to F^{\prime} :: CONFLICT
\triangleright However, TAUT and SUBS can only be applied finitely many times because in each application a clause from F^{\prime} is removed and F^{\prime} is finite

UNIT and PURE Revisited

- Proposition UNIT and PURE are satisfiability preserving, i.e.,
\triangleright Suppose $F:: J \leadsto$ UNit $F:: J, L$. Then, $\left.F\right|_{J}$ is satisfiable iff $\left.F\right|_{J, L}$ is satisfiable
\triangleright Suppose $F:: J \sim$ pure $F:: J, L$. Then, $\left.F\right|_{J}$ is satisfiable iff $\left.F\right|_{J, L}$ is satisfiable
- Exercise Prove the proposition
- Note Whenever UNIT or PURE is applied to $F:: J$ yielding $F:: J, L$ then
$\triangleright L \notin \operatorname{lits}\left(\left.F\right|_{J, L}\right)$
$\triangleright \operatorname{atoms}(L) \notin \operatorname{atoms}\left(\left.F\right|_{J, L}\right)$
$\triangleright \operatorname{lits}\left(\left.F\right|_{J, L}\right) \cup\{L\} \subseteq \operatorname{lits}\left(\left.F\right|_{J}\right)$
- Exercise Give examples for the application of UNIT and PURE where the subset relation is proper

DPLL Termination

- Theorem DPLL is terminating
- Proof (sketch) The theorem follows from the following observations:
\triangleright SAT: the node cannot be further extended
\triangleright CONFLICT: the node will not be further extended
\triangleright TAUT, SUBS, UNIT, PURE: the number of clauses occurring in F decreases
\triangleright SPLIT:
\rightarrow the number of clauses does not increase
\rightarrow the number of atoms occurring in $\left.F\right|_{J}$ decreases
- Exercise Complete the proof

DPLL Confluency

- Claim DPLL is confluent
- Some Consequences
\triangleright The inference rules can be applied in any order
\triangleright Starting with F :: () we can first apply TAUT and SUBS as often as possible
\triangleright Thereafter, TAUT and SUBS will not be applicable anymore
\triangleright We delay applications of SPLIT as long as possible, i.e., if TAUT and SUBS are no longer applicable, we apply PURE and UNIT eagerly

DPLL Soundness

- Theorem DPLL is sound
- Proof Follows from the corresponding result of the GenericCDCL calculus

DPLL Completeness

- Theorem DPLL is complete
- Proof (sketch)

The proof is in analogy to the proof of the completeness of the ST calculus
\triangleright Recall that
\rightarrow TAUT and SUBS are simplification rules and
\Rightarrow PURE and UNIT are satisfiability preserving
\triangleright Hence, if $F:: J \leadsto F^{\prime}:: J^{\prime}$, where $\leadsto \in\{\sim$ TAUT,\sim UNit,\sim sUBS,\sim PURE $\}$, then the following holds: If $\left.F^{\prime}\right|_{J}$ is unsatisfiable, so is $\left.F\right|_{J}$.
\triangleright The remaining steps are similar to those in the proof of the completeness of the ST calculus except that between two splits TAUT, SUBS, PURE, and UNIT may be applied

- Exercise Complete the proof

Naive Backtracking

- The ST and the DPLL calculus are branching due to SPLIT
- We would like to linearize DPLL and, thereby, ST
- TAUT and SUBS simplify the formula, SAT is a termination rule
- UNIT and PURE are satisfiability preserving and add propagation literals
- SPLIT is replaced by
$\triangleright F:: J \quad \rightarrow_{D E C I D E} \quad F:: J, L \quad$ iff $\left.\quad[] \notin F\right|_{J}$ and $L \in \operatorname{atoms}\left(\left.F\right|_{J}\right) \cup \overline{\operatorname{atoms}\left(\left.F\right|_{J}\right)}$
- If $\left.[] \in F\right|_{J}$ then J may or may not contain decision literals
$\triangleright F:: J \sim$ Unsat $F::$ UNSAT
iff $\left.[] \in F\right|_{J}$ and J does not contain a decision literal
$\triangleright F:: J, \dot{L}, P \quad \sim_{N B} \quad F:: J, \bar{L} \quad$ iff $\left.\quad[] \in F\right|_{J, \dot{L}, P}$, where
$\rightarrow P$ is a sequence of propagation literals
$\rightarrow \dot{L}$ is the decision literal with the highest level in J, \dot{L}, P
$\rightarrow \bar{L}$ is a propagation literal
\rightarrow NB is called naive backtracking

A Note on PURE

- Each application of PURE can be replaced by DECIDE, in which case the pure literal L used by PURE becomes a decision literal
- In most of the literature and almost all systems PURE is not considered
- We would like to keep it in the moment as we do not fully understand why an implementation of PURE is so costly or why a particular result is affected by PURE
- If, however, one of the methods and techniques presented in the sequel causes a problem due to the fact that PURE adds L as a propagation literal to the current partial interpretation then PURE shall be replaced by DECIDE

The Previous Example Revisited

$$
\sim_{S A T} \quad F:: \text { SAT }
$$

$$
\begin{aligned}
& \langle[1,2],[2, \overline{3}],[1,2, \overline{3}],[1,4, \overline{4}],[2, \overline{3}, 4],[1,3],[\overline{4}]\rangle::() \\
& \sim \text { SUBS } \quad\langle[1,2],[2, \overline{3}],[1,4, \overline{4}],[\overline{2}, \overline{3}, 4],[\overline{1}, 3],[\overline{4}]\rangle::() \\
& \sim_{\text {TAUT }} \quad F::() \\
& \sim \text { UNIT } \quad F::(\overline{4}) \\
& \sim \text { DECIDE } \quad F::(\overline{4}, \mathbf{i}) \\
& \sim \text { UNIT } F::(\overline{4}, \mathbf{1}, 3) \\
& \sim \text { UNIT } \quad F::(\overline{4}, \mathbf{1}, \mathbf{3}, 2) \\
& \sim_{N B} \quad F::(\overline{4}, \overline{1}) \\
& \sim \text { UNIT } F::(\overline{4}, \overline{1}, 2) \\
& \sim \text { UNIT } F::(\overline{4}, \overline{1}, 2, \overline{3}) \\
& \text { where } \boldsymbol{F}=\langle[\mathbf{1}, \mathbf{2}],[2, \overline{3}],[\overline{2}, \overline{3}, 4],[1,3],[\overline{4}]\rangle \\
& \left(\left.F\right|_{(\overline{4})}=\langle[1,2],[2, \overline{3}],[\overline{2}, \overline{3}],[\overline{1}, 3]\rangle\right) \\
& \left(\left.F\right|_{(\overline{4}, 1)}=\langle[2, \overline{3}],[\overline{2}, \overline{3}],[3]\rangle\right) \\
& \left(\left.F\right|_{(\overline{4}, 1,3)}=\langle[2],[\overline{2}]\rangle\right) \\
& \left(\left.F\right|_{(\overline{4}, 1,3,2)}=\langle[]\rangle\right) \\
& \left(\left.F\right|_{(\overline{4}, \overline{1})}=\langle[2],[2, \overline{3}],[\overline{2}, \overline{3}]\rangle\right) \\
& \left(\left.F\right|_{(\overline{4}, \overline{1}, 2)}=\langle[\overline{3}]\rangle\right) \\
& \left(\left.F\right|_{(\overline{4}, \overline{1}, 2, \overline{3})}=\langle \rangle\right)
\end{aligned}
$$

Another Example Revisited

$F::()$	
\sim DECIDE	$F:$ (1)
\sim UNIT	$F::(1, \overline{2})$
\sim UNIT	$F::(1, \overline{\mathbf{2}}, \overline{\mathbf{3}})$
$\sim_{N B}$	$F::(\overline{1})$
\sim UNIT	$F::(\overline{1}, \overline{3})$
\sim UNIT	$F::(\overline{1}, \overline{3}, 2)$
\sim UNSAT	$F:$ UNSAT

where $F=\langle[2, \overline{3}],[2,3],[\overline{1}, \overline{2}],[1, \overline{3}],[1, \overline{\mathbf{2}}, \mathbf{3}]\rangle$

$$
\left(\left.F\right|_{(1)}=\langle[2, \overline{3}],[2,3],[\overline{2}]\rangle\right)
$$

$$
\left.\left.F\right|_{(1, \overline{2})}=\langle[\overline{3}],[3]\rangle\right)
$$

$$
\left(\left.F\right|_{(1, \overline{2}, \overline{3})}=\langle[]\rangle\right)
$$

$$
\left(\left.F\right|_{(\overline{1})}=\langle[2, \overline{3}],[2,3],[\overline{3}],[\overline{2}, 3]\rangle\right)
$$

$$
\left(\left.F\right|_{(\overline{1}, \overline{3})}=\langle[2],[\overline{2}]\rangle\right)
$$

$$
\left(\left.F\right|_{(\overline{1}, \overline{3}, 2)}=\langle[]\rangle\right)
$$

The DPLL-NB Calculus

- Given a CNF-formula F
- The computation is initialized by $F::()$
- The rules of the calculus are SAT, UNSAT, DECIDE, NB, TAUT, SUBS, UNIT and PURE
- Computation terminates if
\triangleright a node F^{\prime} :: SAT is reached in which case F is satisfiable or
\triangleright a node F^{\prime} :: UNSAT is reached in which case F is unsatisfiable
- Note In DPLL-NB and, in particular, in $F:: J$, J may be a partial interpretation, SAT or UNSAT

DPLL-NB - Results

- Theorem DPLL-NB is terminating, sound, and complete
- Proof (sketch)
\triangleright Termination and soundness follow from corresponding results for the GenericCDCL calculus, which will be presented later in the lecture
\triangleright Completeness
\rightarrow DPLL is complete
\rightarrow The search space is finite
\Perp NB specifies just a specific order of traversing this space

Heuristics

- Whenever DECIDE is applied to $F:: J$ in the following examples, then
\triangleright the smallest atom A occurring in $\left.F\right|_{J}$ is selected
- Whenever UNIT is applied to $F:: J$ in the following examples, then
\triangleright the leftmost unit clause occurring in $\left.F\right|_{J}$ is selected

Backtracking and Redundancies (1)

$F::()$ where	$F=\langle[\overline{1}, \overline{2}, \overline{3}],[\overline{2}, 4]$	4], [5,6$],[\overline{1}, \overline{5}, \overline{6}],[5,7],[\overline{1}, 5, \overline{7}],[1,3]\rangle$
\sim DECIDE	$F:$ (1)	$\left(\left.F\right\|_{(1)}=\langle[\overline{2}, \overline{3}],[\overline{2}, 4],[2,4],[\overline{5}, 6],[\overline{5}, \overline{6}],[5,7],[5, \overline{7}]\rangle\right)$
\sim DECIDE	$F::(1,2)$	$\left(\left.F\right\|_{(1,2)}=\langle[\overline{3}],[4],[\overline{5}, 6],[\overline{5}, \overline{6}],[5,7],[5, \overline{7}]\rangle\right)$
\sim UNIT	$F::(1,2, \overline{3})$	$\left(\left.F\right\|_{(1,2, \overline{3})}=\langle[4],[\overline{5}, 6],[\overline{5}, \overline{6}],[5,7],[5, \overline{7}]\rangle\right)$
\sim UNIT	$F::(1,2, \overline{3}, 4)$	$\left(\left.F\right\|_{(1,2, \overline{3}, 4)}=\langle[\overline{5}, 6],[\overline{5}, \overline{6}],[5,7],[5, \overline{7}]\rangle\right)$
\sim DECIDE	$F::(1, \dot{2}, \overline{3}, 4,5)$	$\left(\left.F\right\|_{(1,2, \overline{3}, 4,5)}=\langle[6],[\overline{6}]\rangle\right)$
\sim UNIT	$F::(1, \dot{2}, \overline{3}, 4,5,6)$	$\left(\left.F\right\|_{(1,2, \overline{3}, 4,5,6)}=\langle[]\rangle\right)$
$\sim N B$	$F::(1,2, \overline{3}, 4, \overline{5})$	$(F \mid(\dot{1}, \dot{2}, \overline{3}, 4, \overline{5})=\langle[7],[\overline{7}]\rangle)$
\sim UNIT	$F::(1, \dot{2}, \overline{3}, 4, \overline{5}, 7)$	$\left(\left.F\right\|_{(1, \dot{2}, \overline{3}, 4, \overline{5}, 7)}=\langle[]\rangle\right)$
$\sim N B$	$F::(1, \overline{\mathbf{2}})$	$\left(\left.F\right\|_{(1, \overline{2})}=\langle[4],[\overline{5}, 6],[\overline{5}, \overline{6}],[5,7],[5, \overline{7}]\rangle\right)$
\sim UNIT	$F::(1, \overline{2}, 4)$	$\left(\left.F\right\|_{(1, \overline{2}, 4)}=\langle[\overline{5}, 6],[\overline{5}, \overline{6}],[5,7],[5, \overline{7}]\rangle\right)$
\sim DECIDE	$F::(1, \overline{\mathbf{2}}, 4,5$)	$\left(\left.F\right\|_{(\mathrm{i}, \overline{2}, 4,5)}=\langle[6],[\overline{6}]\rangle\right)$
\sim UNIT	$F::(1, \overline{2}, 4,5,6)$	$\left(\left.F\right\|_{(i, \overline{2}, 4,5,6)}=\langle[]\rangle\right)$
$\sim N B$	$F::(1, \overline{2}, 4, \overline{5})$	$\left(\left.F\right\|_{(\mathrm{i}, \overline{2}, 4, \overline{5})}=\langle[7],[\overline{7}]\rangle\right)$
\sim UNIT	$F::(1, \overline{2}, 4, \overline{5}, 7)$	$\left(\left.F\right\|_{(1, \overline{2}, 4, \overline{5}, 7)}=\langle[]\rangle\right)$
$\sim N B$	$F::(\overline{1})$	$\left(\left.F\right\|_{(\overline{1})}=\langle[\overline{2}, 4],[2,4],[\overline{5}, 6],[5,7],[3]\rangle\right)$
\sim UNIT	$F::(\overline{1}, 3)$	$\left(\left.F\right\|_{(\overline{1}, 3)}=\langle[\overline{2}, 4],[2,4],[\overline{5}, 6],[5,7]\rangle\right)$
\sim PURE	$F::(\overline{1}, 3,7)$	$\left(\left.F\right\|_{(\overline{1}, 3,7)}=\langle[\overline{2}, 4],[2,4],[\overline{5}, 6]\rangle\right)$
\sim PURE	$F::(\overline{1}, 3,7, \overline{5})$	$\left(\left.F\right\|_{(\overline{1}, 3,7, \overline{5})}=\langle[\overline{2}, 4],[2,4]\rangle\right)$
\sim PURE	$F::(\overline{1}, 3,7, \overline{5}, 4)$	$\left(\left.F\right\|_{(\overline{1}, 3,7, \overline{5}, 4)}=\langle \rangle\right)$
$\sim S A T$	$F:$ SAT	

Conflict Analysis

- In the previous example the following clauses triggered UNIT propagation

$$
\begin{array}{rlr}
C_{1}=[\overline{1}, \overline{2}, \overline{3}] & \left(\left.C_{1}\right|_{(1,2)}=[\overline{3}]\right) \\
C_{2}=[\overline{2}, 4] & \left(\left.C_{2}\right|_{(1,2)}=[4]\right) \\
C_{3}=[\overline{5}, 6] & \left.\left(\left.C_{3}\right|_{(1,2,3,4,5)}\right)=[6]\right)
\end{array}
$$

Subsequently, the clause $C=[\overline{1}, \overline{5}, \overline{6}]$ became empty and caused a conflict

- We can find the following (linear) resolution derivation from C wrt $\left\{C_{1}, C_{2}, C_{2}\right\}$

$$
C_{4}=[\overline{1}, \overline{5}] \quad\left(\operatorname{res}\left(C, C_{3}\right)\right)
$$

- Note
\triangleright Resolvents can be added while preserving semantic equivalence
$\left.\triangleright[\overline{1}, \overline{5}]\right|_{(1)}=[\overline{5}]$

Backtracking and Redundancies (2)

```
\(F::()\) where \(F=\langle[\overline{1}, \overline{\mathbf{2}}, \overline{3}],[\overline{2}, 4],[2,4],[\overline{5}, \mathbf{6}],[\overline{1}, \overline{5}, \overline{6}],[5,7],[\overline{1}, 5, \overline{7}],[1,3]\rangle\)
\(\sim\) DECIDE \(\quad F::(\mathbf{1})\)
\(\sim D E C I D E \quad F::(\mathbf{1}, \dot{\mathbf{2}})\)
\(\leadsto\) UNIT \(\quad F::(\dot{1}, \dot{2}, \overline{3})\)
\(\sim\) UNIT \(\quad F::(\dot{1}, \dot{2}, \overline{3}, 4)\)
\(\sim{ }_{D E C I D E} \quad F::(\dot{1}, \dot{2}, \overline{3}, 4, \dot{5})\)
\(\sim\) UNIT \(\quad F::(\dot{1}, \dot{2}, \overline{3}, 4, \dot{5}, 6)\)
\(\sim \operatorname{LEARN} \quad F,[\overline{1}, \overline{5}]::(\dot{\mathbf{1}}, \dot{\mathbf{2}}, \overline{\mathbf{3}}, \mathbf{4}, \mathbf{5}, \mathbf{6})\)
\(\sim_{B A C K} \quad F,[\overline{1}, \overline{5}]::(\mathbf{1})\)
\(\sim\) UNIT \(\quad F,[\overline{1}, \overline{5}]::(\mathbf{1}, \overline{\mathbf{5}})\)
\(\left(\left.(F,[\overline{1}, \overline{5}])\right|_{(1, \overline{5})}=\langle[\overline{2}, \overline{3}],[\overline{2}, 4],[2,4],[7],[\overline{7}]\rangle\right)\)
\(\sim\) CDBL \(\quad F,[\overline{1}, \overline{5}]::(\mathbf{1}, \overline{\mathbf{5}})\)
    \(\sim\) UNIT \(F,[\overline{1}, \overline{5}]::(1, \overline{5}, 7)\)
    \(\left(\left.F\right|_{(1)}=\langle[\overline{2}, \overline{3}],[\overline{2}, 4],[2,4],[\overline{5}, 6],[\overline{5}, \overline{6}],[5,7],[5, \overline{7}]\rangle\right)\)
        \(\left(\left.F\right|_{(1,2)}=\langle[\overline{3}],[4],[\overline{5}, 6],[\overline{5}, \overline{6}],[5,7],[5, \overline{7}]\rangle\right)\)
        \(\left(\left.F\right|_{(1,2, \overline{3})}=\langle[4],[\overline{5}, 6],[\overline{5}, \overline{6}],[5,7],[5, \overline{7}]\rangle\right)\)
        \(\left(\left.F\right|_{(1,2, \overline{3}, 4)}=\langle[\overline{5}, 6],[\overline{5}, \overline{6}],[5,7],[5, \overline{7}]\rangle\right)\)
        \(\left(\left.F\right|_{(1,2, \overline{3}, 4,5)}=\langle[6],[\overline{6}]\rangle\right)\)
        \(\left(\left.F\right|_{(1,2, \overline{3}, 4,5,6)}=\langle[]\rangle\right)\)
\(\left(\left.(F,[\overline{1}, \overline{5}])\right|_{(1, \overline{5})}=\langle[\overline{2}, \overline{3}],[\overline{2}, 4],[2,4],[7],[\overline{7}]\rangle\right)\)
    \(\left(\left.(F,[\overline{1}, \overline{5}])\right|_{(1, \overline{5}, 7)}=\langle[\overline{2}, \overline{3}],[\overline{2}, 4],[2,4],[]\rangle\right)\)
```


Conflict Analysis (2)

- The following clauses triggered UNIT propagation:

$$
\begin{aligned}
C_{1} & =[5,7] & \left(\left.C_{1}\right|_{(1, \overline{5})}\right. & =[7]) \\
C_{2} & =[\overline{1}, \overline{5}] & \left(\left.C_{2}\right|_{(1)}\right. & =[\overline{5}])
\end{aligned}
$$

- The new conflict was caused by $C=[\overline{1}, 5, \overline{7}]$
- We can find the following (linear) resolution derivation from C wrt $\left\{C_{1}, C_{3}\right\}$:

$$
\begin{aligned}
& C_{3}=[\overline{1}, 5] \quad\left(\operatorname{res}\left(C, C_{1}\right)\right) \\
& C_{4}=[\overline{1}] \\
& \left(\operatorname{res}\left(C_{3}, C_{2}\right)\right)
\end{aligned}
$$

- Note
\triangleright A unit clause can be added
\triangleright This clause should be considered at the start
$\triangleright[\overline{1}]$ subsumes $[\overline{1}, \overline{5}]$

Backtracking and Redundancies (3)

Relevant Clauses

- Definition A clause \boldsymbol{C} is relevant in $\boldsymbol{F}:: \boldsymbol{J}$ iff $C \in F$ and there exist I, L, I^{\prime} such that $J=I, L, I^{\prime}$ and $\left.C\right|_{I}=[L]$
- relevant $(F:: J)=\{C \in F \mid C$ is relevant in $F:: J\}$

Conflict-Directed Backtracking and Learning

- Replace naive backtracking by conflict-directed backtracking and learning
- $\boldsymbol{F}:: \boldsymbol{J}, \dot{L}, \boldsymbol{J}^{\prime} \leadsto$ CDBL $\quad F, \boldsymbol{D}:: \boldsymbol{J}, \boldsymbol{L}^{\prime}$ iff
\triangleright there exists $C \in F$ such that $\left.C\right|_{J, \dot{L}, J^{\prime}}=[]$
\triangleright there is a linear resolution derivation from C to D wrt relevant $\left(F:: J, \dot{L}, J^{\prime}\right)$
$\left.\triangleright D\right|_{J}=\left[L^{\prime}\right]$

The DPLL-CDBL Calculus

- Given a CNF-formula F
- The computation is initialized by $F::()$
- The rules of the calculus are SAT, UNSAT, DECIDE, CDBL, TAUT, SUBS, UNIT and PURE
- Computation terminates if
\triangleright a node F^{\prime} :: SAT is reached in which case F is satisfiable or
\triangleright a node $F^{\prime}:$: UNSAT is reached in which case F is unsatisfiable

Another Example

```
\(F::()\) where \(F=\langle[\overline{\mathbf{1}}, \mathbf{2}],[\overline{\mathbf{2}}, \mathbf{3}],[\overline{\mathbf{4}}, \mathbf{5}],[\overline{\mathbf{5}}, \mathbf{6}],[\overline{\mathbf{7}}, \mathbf{8}],[\overline{\mathbf{8}}, 9],[\overline{\mathbf{3}}, \overline{\mathbf{8}}, \overline{9}]\rangle\)
\(\sim_{D E C I D E} \quad F::(1)\)
\(\left(\left.F\right|_{(1)}=\langle[2],[\overline{2}, 3],[\overline{4}, 5],[\overline{5}, 6],[\overline{7}, 8],[\overline{8}, 9],[\overline{3}, \overline{8}, \overline{9}]\rangle\right)\)
\(\sim\) UNIT \(\quad F::(\mathbf{1}, 2)\)
\(\left(\left.F\right|_{(1,2)}=\langle[3],[\overline{4}, 5],[\overline{5}, 6],[\overline{7}, 8],[\overline{8}, 9],[\overline{3}, \overline{8}, \overline{9}]\rangle\right)\)
\(\sim\) UNIT \(\quad F::(1,2,3)\)
\(\left(\left.F\right|_{(i, 2,3)}=\langle[\overline{4}, 5],[\overline{5}, 6],[\overline{7}, 8],[\overline{8}, 9],[\overline{8}, \overline{9}]\rangle\right)\)
\(\sim\) DECIDE
    \(F::(\dot{1}, 2,3, \dot{4})\)
    \(\left(\left.F\right|_{(i, 2,3, \dot{4})}=\langle[5],[\overline{5}, 6],[\overline{7}, 8],[\overline{8}, 9],[\overline{8}, \overline{9}]\rangle\right)\)
\(\sim\) UNIT \(\quad F::(\dot{1}, 2,3, \dot{4}, 5)\)
\(\left(\left.F\right|_{(i, 2,3, \dot{4}, 5)}=\langle[6],[\overline{7}, 8],[\overline{8}, 9],[\overline{8}, \overline{9}]\rangle\right)\)
\(\sim\) UNIT \(\quad F::(\mathbf{1}, 2,3, \dot{4}, 5,6)\)
\(\left(F_{(1,2,3, \dot{4}, 5,6)}=\langle[\overline{7}, 8],[\overline{8}, 9],[\overline{8}, \overline{9}]\rangle\right)\)
    \(F::(\dot{1}, 2,3, \dot{4}, 5,6, \dot{7})\)
    \(\left(\left.F\right|_{(i, 2,3,4,5,6, \grave{7})}=\langle[8],[\overline{8}, 9],[\overline{8}, \overline{9}]\rangle\right)\)
\(\sim\) DECIDE
\(\leadsto\) UNIT
    \(F::(\dot{1}, 2,3, \dot{4}, 5,6, \grave{7}, 8)\)
\(\sim\) UNIT \(\quad F::(\dot{1}, 2,3, \dot{4}, 5,6, \dot{7}, 8,9)\)
\(\left(\left.F\right|_{(i, 2,3, \dot{4}, 5,6, \grave{7}, 8)}=\langle[9],[\overline{9}]\rangle\right)\)
\(\left(\left.F\right|_{(i, 2,3,4,5,6, \grave{7}, 8,9)}=\langle[]\rangle\right)\)
\(\leadsto C D B L\)
    \(F,[\overline{3}, \overline{8}]::(1,2,3, \overline{8})\)
\(\sim\) UNIT \(\quad F,[\overline{3}, \overline{8}]::(\overline{1}, 2,3, \overline{8}, \overline{7})\)
\(\sim_{\text {PURE }} \quad F,[\overline{3}, \overline{8}]::(\overline{1}, 2,3, \overline{8}, \overline{7}, \overline{4})\)
    \(\left(\left.(F,[\overline{3}, \overline{8}])\right|_{(\mathrm{i}, 2,3, \overline{8})}=\langle[\overline{4}, 5],[\overline{5}, 6],[\overline{7}]\rangle\right)\)
\(\left(\left.(F,[\overline{3}, \overline{8}])\right|_{(i, 2,3, \overline{8}, \overline{7})}=\langle[\overline{4}, 5],[\overline{5}, 6]\rangle\right)\)
    \(F,[\overline{3}, \overline{8}]::(\dot{1}, 2,3, \overline{8}, \overline{7}, \overline{4}, \overline{5})\)
```

\sim DECIDE
$F::(1)$
\sim DECIDE

$$
\because(1,-, 0,+,
$$

$\leadsto C D B L$
$F,[\overline{3}, \overline{8}]::(1,2,3, \overline{8})$
\sim PURE $\quad F,[\overline{3}, \overline{8}]::(\overline{1}, 2,3, \overline{8}, \overline{7}, \overline{4}, \overline{5})$
$F::(\dot{1}, 2,3, \dot{4}, 5)$

$$
F::(\dot{1}, 2,3, \dot{4}, 5,6, \dot{7}, 8)
$$

$\left(\left.F\right|_{(\dot{1}, 2,3, \dot{4}, 5,6, \overline{7}, 8)}=\langle[9],[\overline{9}]\rangle\right)$

$$
\leadsto U N I T \quad F::(\dot{1}, 2,3, \dot{4}, 5,6, \dot{7}, 8,9)
$$

$$
\left(\left.F\right|_{(i, 2,3, \dot{4}, 5,6,7,8,9)}=\langle[]\rangle\right)
$$ $\left(\left.F\right|_{(\mathbf{i}, 2,3,4,5,6, \grave{7}, 8,9)}=\langle[]\rangle\right)$

$$
\left(\left.(F,[\overline{3}, \overline{8}])\right|_{(i, 2,3, \overline{8})}=\langle[\overline{4}, 5],[\overline{5}, 6],[\overline{7}]\rangle\right)
$$

$$
\left(\left.(F,[\overline{3}, \overline{8}])\right|_{(i, 2,3, \overline{8}, \overline{7})}=\langle[\overline{4}, 5],[\overline{5}, 6]\rangle\right)
$$

$$
\left(\left.(F,[\overline{3}, \overline{8}])\right|_{(1,2,3, \overline{8}, \overline{7}, \overline{4})}=\langle[\overline{5}, 6]\rangle\right)
$$

```
\(\left(\left.(F,[\overline{3}, \overline{8}])\right|_{(i, 2,3, \overline{8}, \overline{7}, \overline{4}, \overline{5})}=\langle \rangle\right)\)
```


Another Example - Conflict Analysis

- relevant $(F::(\dot{1}, 2,3, \dot{4}, 5,6, \dot{7}, 8,9))$ contains of the following clauses

$$
\begin{aligned}
C_{1} & =[\overline{1}, 2] & \left(\left.[\overline{1}, 2]\right|_{(1)}\right. & =[2]) \\
C_{2} & =[\overline{2}, 3] & \left(\left.[\overline{2}, 3]\right|_{(1,2)}\right. & =[3]) \\
C_{3} & =[\overline{4}, 5] & \left(\left.[\overline{4}, 5]\right|_{(1,2,3,4)}\right. & =[5]) \\
C_{4} & =[\overline{5}, 6] & \left(\left.[\overline{5}, 6]\right|_{(1,2,3,4,5)}\right. & =[6]) \\
C_{5} & =[\overline{7}, 8] & \left(\left.[\overline{7}, 8]\right|_{(1,2,3,4,5,6,7)}\right. & =[8]) \\
C_{6} & =[\overline{8}, 9] & \left(\left.[\overline{8}, 9]\right|_{(1,2,3,4,5,6,, 7,8)}\right. & =[9])
\end{aligned}
$$

- The conflict clause is $C=[\overline{3}, \overline{8}, \overline{9}]$
- We obtain the following linear derivation from C wrt $\left\{C_{i} \mid 1 \leq i \leq 6\right\}$

$$
\begin{array}{ll}
C_{7}=[\overline{8}, \overline{3}] & \left(\operatorname{res}\left(C, C_{6}\right)\right) \\
C_{8}=[\overline{7}, \overline{3}] & \left(\operatorname{res}\left(C_{7}, C_{5}\right)\right) \\
C_{9}=[\overline{7}, \overline{2}] & \left(\operatorname{res}\left(C_{8}, C_{2}\right)\right) \\
C_{10}=[\overline{7}, \overline{1}] & \left(\operatorname{res}\left(C_{9}, C_{1}\right)\right)
\end{array}
$$

- In principle, all derived clauses could have been added!

Another Example - Continued

- There is an alternative application of CDBL

$F::()$ where $F=\langle[\overline{1}, 2],[\overline{\mathbf{2}}, 3],[\overline{4}, 5],[\overline{5}, 6],[\overline{7}, 8],[\overline{\mathbf{8}}, 9 \mathrm{9}],[\overline{3}, \overline{\mathbf{8}}, \overline{9}]\rangle$		
\sim DECIDE	$F::(1) \quad\left(\left.F\right\|_{(1)}=\langle[2]\right.$	
\sim UNIT	$F::(1,2) \quad\left(\left.F\right\|_{(1,2)}\right.$,2) $=\langle[3],[\overline{4}, 5],[\overline{5}, 6],[\overline{7}, 8],[\overline{8}, 9],[\overline{3}, \overline{8}, \overline{9}]\rangle)$
\sim UNIT	$F::(1,2,3)$	$\left(\left.F\right\|_{(1,2,3)}=\langle[\overline{4}, 5],[\overline{5}, 6],[\overline{7}, 8],[\overline{8}, 9],[\overline{8}, \overline{9}]\rangle\right)$
\sim DECIDE	$F::(\dot{1}, 2,3, \dot{4})$	$\left(\left.F\right\|_{(1,2,3,4)}=\langle[5],[\overline{5}, 6],[\overline{7}, 8],[\overline{8}, 9],[\overline{8}, \overline{9}]\rangle\right)$
\sim UNIT	$F::(1,2,3, \dot{4}, 5)$	$\left(\left.F\right\|_{(1,2,3,4,5)}=\langle[6],[\overline{7}, 8],[\overline{8}, 9],[\overline{8}, \overline{9}]\rangle\right)$
\sim UNIT	$F::(1,2,3, \dot{4}, 5,6)$	$\left(\left.F\right\|_{(i, 2,3, \dot{4}, 5,6)}=\langle[\overline{7}, 8],[\overline{8}, 9],[\overline{8}, \overline{9}]\rangle\right)$
\sim DECIDE	$F::(\dot{1}, 2,3, \dot{4}, 5,6,7)$	$\left(\left.F\right\|_{(i, 2,3,4,5,6, \overline{\text { j }})}=\langle[8],[\overline{8}, 9],[\overline{8}, \overline{9}]\rangle\right)$
\sim UNIT	$F::(\dot{1}, 2,3, \dot{4}, 5,6, \dot{7}, 8)$	$\left(\left.F\right\|_{(i, 2,3,4,5,6, \grave{7}, 8)}=\langle[9],[\overline{9}]\rangle\right)$
\sim UNIT	$F::(\dot{1}, 2,3, \dot{4}, 5,6,7,8,9)$	$\left(\left.F\right\|_{(\mathbf{i}, 2,3,4,5,6, \text {, }, 8,9)}=\langle[]\rangle\right)$
\sim CDBL	$F,[\overline{3}, \overline{8}]::(\dot{1}, 2,3, \dot{4}, 5,6, \overline{8})$	$\left(\left.(F,[\overline{3}, \overline{8}])\right\|_{(i, 2,3,4,5,5, \overline{8})}=\langle[\overline{7}]\rangle\right)$
\leadsto UNIT	$F,[\overline{3}, \overline{8}]::(\dot{1}, 2,3, \dot{4}, 5,6, \overline{8}, \overline{7})$	7) $\quad\left(\left.(F,[\overline{3}, \overline{8}])\right\|_{(i, 2,3, \dot{4}, 5,6, \overline{8}, \overline{7})}=\langle \rangle\right)$

DPLL-CDBL - Results

- Theorem DPLL-CDBL is terminating, sound and complete
- Proof
\triangleright Termination and soundness follow from corresponding results for the GenericCDCL calculus, which will be presented later in the lecture
\triangleright Completeness: to do

GenericCDCL

- H., Manthey, Philipp, Steinke: GenericCDCL - A Formalization of Modern Propositional Satisfiability Solvers. In: Proc. POS-14, Le Berre (ed.), EPiC Series 27, 89-102: 2014, EasyChair, http://www.easychair.org
- F and F^{\prime} are equisatisfiable, in symbols $F \equiv_{S A T} F^{\prime}$, iff either both are satisfiable or both are unsatisfiable

The Rules of the GenericCDCL Calculus

$F:: ~ J ~$	$\sim S_{A T}$	SAT	iff	$\left.\boldsymbol{F}\right\|_{J}=\langle \rangle$
$F:: ~ J ~$	\sim UNSAT	UNSAT	iff	[] $\left.\in \boldsymbol{F}\right\|_{J}$ and \boldsymbol{J} contains only propagation variables
$F:: ~ J ~$	$\sim D E C$	$F:: ~ J, \dot{L}$	iff	$L \in \operatorname{atoms}(F) \cup \overline{\operatorname{atoms}(F)}$ and $\{L, \bar{L}\} \cap \boldsymbol{J}=\emptyset$
$F:: J$	\sim INF	$F:: ~ J, L$	iff	$\begin{aligned} & \left.\left.F\right\|_{J} \equiv S A T F\right\|_{J, L} \\ & L \in \overline{\operatorname{atoms}(F)} \cup \overline{\operatorname{atoms}(F)} \text { and }\{L, \bar{L}\} \cap J=\emptyset \end{aligned}$
$F:: ~ J ~$	\sim LEARN	$\boldsymbol{F}, \boldsymbol{C}: \mathbf{J}$	iff	$\boldsymbol{F} \vDash \boldsymbol{C}$
$\boldsymbol{F}:: \mathbf{J}$	\sim REMOVE	$F \backslash\{C\}:: J$	iff	$F \backslash\{C\} \vDash C$
$F:: J, J$	$\sim{ }_{\text {BACK }}$	$F:: J$		
$F::()$	$\sim I N P$	$F^{\prime}::()$	iff	$F \equiv S A T F^{\prime}$

Some Comments

- The Rules
\triangleright SAT UNSAT DEC minor changes
\triangleright INF covers UNIT and PURE as well as many other techniques
\triangleright LEARN covers all learning techniques in SAT solvers
\triangleright REMOVE covers SUBS as well as TAUT, but also allows to remove previously learned clauses if they are not effective
\triangleright BACK covers naive backtracking, backjumping as well as restarts
\triangleright INP allows the application of all simplification techniques
- GenericCDCL covers all systematic SAT solvers
- 'All' is to be understood as 'to the best of our knowledge, all'

The GenericCDCL Calculus

- Given a CNF-formula F
- The computation is initialized by $F::()$
- The rules of the calculus are SAT, UNSAT, DEC, INF, LEARN, REMOVE, BACK and INP
- Computation terminates if
\triangleright the node SAT is reached in which case F is satisfiable or
\triangleright the node UNSAT is reached in whch case F is unsatisfiable

Invariants

- Proposition If $F::() \stackrel{n}{\sim} G:: J$, then
$\triangleright F \equiv{ }_{\text {sat }} \boldsymbol{G}$
$\left.\left.\triangleright G\right|_{J_{1}} \equiv S A T G\right|_{J_{1}, L}$, for all J_{1}, J_{2} and propagation literal L with $J=J_{1}, L, J_{2}$
- Proof by induction on n
- Exercise complete the proof

Soundness

- Theorem If $F::() \stackrel{*}{\sim} G:: J \sim_{s A T}$ SAT, then F is satisfiable If $F::() \stackrel{*}{\sim} G:: J \sim$ UNSAT UNSAT, then F is unsatisfiable
- Proof follows immediately from the previous proposition
- Exercise complete the proof

Completeness

- Theorem If F is satisfiable, then $F::() \stackrel{*}{\sim}$ SAT If F is unsatisfiable, then $F::() \xrightarrow{*}$ UNSAT
- Proof
\triangleright Suppose F is satisfiable Then we find a model $J=\left(L_{1}, \ldots, L_{n}\right)$ for F Then $F::() \stackrel{n}{\rightarrow}_{\sim_{D E C}} F::\left(\dot{L}_{1}, \ldots, \dot{L}_{n}\right) \sim S A T$ SAT
\triangleright Suppose F is unsatisfiable
Then $F \vDash$ []
Then $F::() \sim$ Learn $F,[]::() \sim$ UNSAT UNSAT

Confluence for Reachable States

- Theorem If $F::() \stackrel{*}{\sim} T_{1}$ and $F::() \stackrel{*}{\sim} T_{2}$, then there exists T with $T_{1} \stackrel{*}{\sim} T$ and $T_{2} \stackrel{*}{\sim} T$
- Proof follows from the completeness of GenericCDCL and its ability to perform restarts with the help of the BACK rule
- Exercise complete the proof

Termination Analysis

- GenericCDCL does not terminate due to
\triangleright possibly infinite sequences of LEARN and REMOVE
\triangleright possibly infinite sequences of restarts
\triangleright possibly infinite sequences of INP
- Fairness Criteria
\triangleright Each clause $C \subseteq \operatorname{lits}(F)$ is learned at most finitely many times
\rightarrow Eventually, LEARN is no longer applicable
\triangleright The number of restarts and the number of applications of INP is bounded
- Eventually, restarts and INP are no longer applicable
- Alternative fairness criteria are possible

