Foundations of Knowledge Representation Description Logic: Reasoning with Data

Problem 1. We say that an atomic role R is satisfiable w.r.t. a TBox \mathcal{T} if there exists a model \mathcal{I} of \mathcal{T} such that $R^{\mathcal{I}} \neq \emptyset$.

- Write a satisfiable ALC-TBox such that role R is unsatisfiable w.r.t. T.
- Reduce the problem of checking satisfiability of an atomic role w.r.t. an ALC-TBox to the problem of concept satisfiability w.r.t. an ALC-TBox.

Problem 2. Consider the following interpretation of three coffee places and some beverages they offer:

Do the following:

• Formalize the queries 1-3 in the language of conjunctive queries.

Query1: All beverages offered by some coffee place.

Query2: All beverages offered by FeelGood and Nice and Good.

Query3: The coffee place that offers Cappuccino.

- Provide the answers to those queries given the interpretation above.
- Construct two additional queries: one that yields {FeelGood, Nice&Good} as the only answers and one that yields {PlainCoffee, PumpkinSpiceLatte, MangoJuice} as the only answers.

Problem 3. Consider the following $TBox \mathcal{T}$:

$\exists hasFather. \top$	\Box	Person	(1)
$\exists hasFather^{-}.\top$		Person	(2)
Person	\Box	$\exists hasFather$	(3)

Consider also the following ABox A:

 $\mathcal{A} = \{ \mathsf{Person}(\mathsf{John}), \mathsf{Person}(\mathsf{Nick}), \mathsf{Person}(\mathsf{Toni}), \\ \mathsf{hasFather}(\mathsf{John}, \mathsf{Nick}), \mathsf{hasFather}(\mathsf{Nick}, \mathsf{Toni}) \}$

Provide the certain answers to the following queries:

- $q_1(x,y)$: hasFather(x,y)
 - $q_2(x)$: $\exists y.hasFather(x,y)$
 - $q_3(x)$: $\exists y_1, y_2, y_3.hasFather(x, y_1) \land hasFather(y_1, y_2) \land hasFather(y_2, y_3)$

 $q_4(x, y_3)$: $\exists y_1, y_2$.hasFather $(x, y_1) \land$ hasFather $(y_1, y_2) \land$ hasFather (y_2, y_3)