SAT Solving - Simplification

Steffen Hölldobler and Norbert Manthey
International Center for Computational Logic Technische Universität Dresden Germany

- Types of Redundancy
- Simpification Algorithms

Simplification - Warm Up

- Given a formiula F, when preserves removing a clause $C \in F$ equivalence?

Simplification - Warm Up

- Given a formiula F, when preserves removing a clause $C \in F$ equivalence?
- How is the above check performed?

Simplification - Warm Up

- Given a formiula F, when preserves removing a clause $C \in F$ equivalence?
- How is the above check performed?
- How complex is this check?

Simplification - Warm Up

- Given a formiula F, when preserves removing a clause $C \in F$ equivalence?
- How is the above check performed?
- How complex is this check?
- Are there other redundancies to preserve satisfiability?

Simplification - Warm Up

- Which of the following hold:

Simplification - Warm Up

- Which of the following hold:
- $\left.F \wedge x \equiv F\right|_{x}$

Simplification - Warm Up

- Which of the following hold:
$\left.\triangleright F \wedge x \equiv F\right|_{x}$
$-\left.F \wedge x \equiv_{S A T} F\right|_{X}$

Simplification - Warm Up

- Which of the following hold:
$\left.\wedge F \wedge x \equiv F\right|_{x}$
$-\left.F \wedge x \equiv_{S A T} F\right|_{X}$
$\left.\triangleright F \wedge x \vDash F\right|_{x}$

Simplification - Warm Up

- Which of the following hold:
$\left.\triangleright F \wedge x \equiv F\right|_{x}$
$-\left.F \wedge x \equiv{ }_{S A T} F\right|_{X}$
$\left.\wedge F \wedge x \vDash F\right|_{x}$
- Let C and D be clauses with $D \subset C: F \wedge D \vDash F \wedge C$

Simplification - Warm Up

- Which of the following hold:
$\left.\triangleright F \wedge x \equiv F\right|_{x}$
$-\left.F \wedge x \equiv{ }_{S A T} F\right|_{X}$
$\left.\wedge F \wedge x \vDash F\right|_{x}$
- Let C and D be clauses with $D \subset C: F \wedge D \vDash F \wedge C$
- Let $D \subset C: F \wedge C \vDash F \wedge D$

Simplification - Warm Up

- How many (relevant partial) models has the formula $F=(a \vee \neg b) \wedge(\neg a \vee b)$?

Simplification - Warm Up

- How many (relevant partial) models has the formula $F=(a \vee \neg b) \wedge(\neg a \vee b)$?
- Enumerate the models!

Simplification - Warm Up

- How many (relevant partial) models has the formula $F=(a \vee \neg b) \wedge(\neg a \vee b)$?
- Enumerate the models!
- How many models has the formula $F=(a \vee \neg a) \wedge(\neg a \vee a)$?

Simplification - Warm Up

- How many (relevant partial) models has the formula $F=(a \vee \neg b) \wedge(\neg a \vee b)$?
- Enumerate the models!
- How many models has the formula $F=(a \vee \neg a) \wedge(\neg a \vee a)$?
- Enumerate the models!

Simplification - Warm Up

- How many (relevant partial) models has the formula $F=(a \vee \neg b) \wedge(\neg a \vee b)$?
- Enumerate the models!
- How many models has the formula $F=(a \vee \neg a) \wedge(\neg a \vee a)$?
- Enumerate the models!
- Do you see a connection?

TECHNISCHE
UNIVERSITAT

Revision - Notation

- Given a formula F in CNF and a literal x, then $F_{x}=\{C \in F \mid x \in C\}$.

TECHNISCHE
UNIVERSITAT

Acknowledgement

- Some slides are based on slides from
- Marijn Heule,

The University of Texas
Austin

Equivalence Preserving Techniques

Tautologies and Subsumption

Definition (Tautology)
A clause \boldsymbol{C} is a tautology iff it contains a complementary pair of literals.

Example
The clause $(a \vee b \vee \bar{b})$ is a tautology.

Definition (Subsumption)
Clause \boldsymbol{C} subsumes clause \boldsymbol{D} iff $\boldsymbol{C} \subseteq \boldsymbol{D}$.

Example

The clause $(a \vee b)$ subsumes clause $(a \vee b \vee \bar{c})$.

Self-Subsuming Resolution

Self-Subsuming Resolution
$\boldsymbol{C}_{\boldsymbol{C} \vee \boldsymbol{D}}^{\boldsymbol{D} \vee \overline{\boldsymbol{I}}} \boldsymbol{C} \subseteq \boldsymbol{D}$

$$
\frac{(a \vee b \vee I)(a \vee b \vee c \vee \bar{l})}{(a \vee b \vee c)}
$$

resolvent \boldsymbol{D} subsumes $\boldsymbol{D} \vee \overline{\boldsymbol{I}}$

Self-Subsuming Resolution

Self-Subsuming Resolution
$\boldsymbol{C} \vee \boldsymbol{I}_{\boldsymbol{D} \vee \overline{\boldsymbol{I}}}^{\boldsymbol{C} \subseteq \boldsymbol{D} .}$

$$
\frac{(a \vee b \vee I)(a \vee b \vee c \vee \bar{l})}{(a \vee b \vee c)}
$$

resolvent \boldsymbol{D} subsumes $\boldsymbol{D} \vee \overline{\boldsymbol{I}}$

Example

Assume a CNF contains both antecedents
$\ldots(\boldsymbol{a} \vee \boldsymbol{b} \vee I)(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c} \vee \bar{l}) \ldots$
If \boldsymbol{D} is added, then $\boldsymbol{D} \vee \overline{\boldsymbol{I}}$ can be removed
which in essence removes $\overline{\boldsymbol{l}}$ from $\boldsymbol{D} \vee \overline{\boldsymbol{l}}$
$\ldots(a \vee b \vee I)(a \vee b \vee c) \ldots$
Initially in the SATeLite preprocessor, now common in most solvers (i.e., as pre- and inprocessing)

Self-Subsuming Example

Self-Subsuming Resolution

${\underset{D}{C \vee I} D \vee \bar{I}}_{C}^{C} \subseteq \boldsymbol{D}$

$$
\frac{(a \vee b \vee I)(a \vee b \vee c \vee \bar{l})}{(a \vee b \vee c)}
$$

resolvent \boldsymbol{D} subsumes $\boldsymbol{D} \vee \overline{\boldsymbol{I}}$
Example: Remove literals using self-subsumption

$$
\begin{aligned}
& (a \vee b \vee c) \wedge(\bar{a} \vee b \vee c) \wedge \\
& (\bar{a} \vee b \vee \bar{c}) \wedge(a \vee \bar{b} \vee c) \wedge \\
& (\bar{a} \vee \bar{b} \vee d) \wedge(\bar{a} \vee \bar{b} \vee \bar{d}) \wedge \\
& (a \vee \bar{c} \vee d) \wedge(a \vee \bar{c} \vee \bar{d})
\end{aligned}
$$

Self-Subsuming Example

Self-Subsuming Resolution

$\boldsymbol{C} \vee \boldsymbol{I}_{\boldsymbol{D} \vee \overline{\boldsymbol{I}}}^{C} \subseteq \boldsymbol{D}$

$$
\frac{(a \vee b \vee I)(a \vee b \vee c \vee \bar{l})}{(a \vee b \vee c)}
$$

resolvent \boldsymbol{D} subsumes $\boldsymbol{D} \vee \overline{\boldsymbol{I}}$
Example: Remove literals using self-subsumption

$$
\begin{aligned}
& (\quad b \vee c) \wedge(\bar{a} \vee b \vee c) \wedge \\
& (\bar{a} \vee b \vee \bar{c}) \wedge(a \vee \bar{b} \vee c) \wedge \\
& (\bar{a} \vee \bar{b} \vee d) \wedge(\bar{a} \vee \bar{b} \vee \bar{d}) \wedge \\
& (a \vee \bar{c} \vee d) \wedge(a \vee \bar{c} \vee \bar{d})
\end{aligned}
$$

Self-Subsuming Example

Self-Subsuming Resolution
$\frac{\boldsymbol{C} \vee \boldsymbol{I}}{\boldsymbol{D} \vee \overline{\boldsymbol{I}}} \boldsymbol{C} \subseteq \boldsymbol{D}$

$$
\frac{(a \vee b \vee I)(a \vee b \vee c \vee \bar{l})}{(a \vee b \vee c)}
$$

resolvent \boldsymbol{D} subsumes $\boldsymbol{D} \vee \overline{\boldsymbol{I}}$
Example: Remove literals using self-subsumption

$$
\begin{aligned}
& (\quad b \vee c) \wedge(\bar{a} \vee b \vee c) \wedge \\
& (\bar{a} \vee b) \wedge(a \vee \bar{b} \vee c) \wedge \\
& (\bar{a} \vee \bar{b} \vee d) \wedge(\bar{a} \vee \bar{b} \vee \bar{d}) \wedge \\
& (a \vee \bar{c} \vee d) \wedge(a \vee \bar{c} \vee \bar{d})
\end{aligned}
$$

Self-Subsuming Example

Self-Subsuming Resolution
${\underset{D}{C \vee I} \boldsymbol{D} \vee \overline{\boldsymbol{I}}}_{\boldsymbol{C} \subseteq \boldsymbol{D}, ~}^{\boldsymbol{D}}$

$$
\frac{(a \vee b \vee I)(a \vee b \vee c \vee \bar{l})}{(a \vee b \vee c)}
$$

resolvent \boldsymbol{D} subsumes $\boldsymbol{D} \vee \overline{\boldsymbol{I}}$
Example: Remove literals using self-subsumption

$$
\begin{aligned}
& (\quad b \vee c) \wedge(\bar{a} \vee b \vee c) \wedge \\
& (\bar{a} \vee b) \wedge(a \vee c) \wedge \\
& (\bar{a} \vee \bar{b} \vee d) \\
& (a \vee \bar{c} \vee d) \wedge(\bar{a} \vee \bar{b} \vee \bar{d}) \wedge \\
& (a \vee \bar{c} \vee \bar{d})
\end{aligned}
$$

Self-Subsuming Example

Self-Subsuming Resolution
${\underset{D}{C \vee I} \boldsymbol{D} \vee \overline{\boldsymbol{I}}}_{\boldsymbol{C} \subseteq \boldsymbol{D}, ~}^{\boldsymbol{D}}$

$$
\frac{(a \vee b \vee I)(a \vee b \vee c \vee \bar{l})}{(a \vee b \vee c)}
$$

resolvent \boldsymbol{D} subsumes $\boldsymbol{D} \vee \overline{\boldsymbol{I}}$
Example: Remove literals using self-subsumption

$$
\begin{aligned}
& (\quad b \vee c) \\
& (\bar{a} \vee b) \\
& (\bar{a} \vee \bar{b}) \\
& (a \vee(\bar{a} \vee b \vee c) \wedge(\bar{c} \vee d) \\
& (a, \bar{a} \vee \bar{b} \vee \bar{d}) \wedge \\
& (a \vee \bar{c} \vee \bar{d})
\end{aligned}
$$

Self-Subsuming Example

Self-Subsuming Resolution
$\boldsymbol{C}_{\boldsymbol{D} \vee \boldsymbol{I}}^{\boldsymbol{D} \vee \overline{\boldsymbol{I}}} \boldsymbol{C} \subseteq \boldsymbol{D}$

$$
\frac{(a \vee b \vee I)(a \vee b \vee c \vee \bar{l})}{(a \vee b \vee c)}
$$

resolvent \boldsymbol{D} subsumes $\boldsymbol{D} \vee \overline{\boldsymbol{I}}$
Example: Remove literals using self-subsumption

$$
\begin{array}{ll}
(\quad b \vee c) & \wedge(\bar{a} \vee b \vee c) \wedge \\
(\bar{a} \vee b &) \\
(\bar{a} \vee \bar{b} &) \\
(a, ~ & \wedge(\bar{a} \vee \bar{b} \vee \bar{d}) \wedge \\
(a \vee \bar{c} &) \\
) & \wedge(a \vee \bar{c} \vee \bar{d})
\end{array}
$$

Self-Subsuming Example

Self-Subsuming Resolution
$\underbrace{\boldsymbol{C} \vee I \vee \bar{I}}_{D} \boldsymbol{C} \subseteq \boldsymbol{D}$

$$
\frac{(a \vee b \vee I)(a \vee b \vee c \vee \bar{l})}{(a \vee b \vee c)}
$$

resolvent \boldsymbol{D} subsumes $\boldsymbol{D} \vee \overline{\boldsymbol{I}}$
Example: Remove literals using self-subsumption

$(\bar{b} \vee c)$	$\wedge(\bar{a} \vee b \vee \boldsymbol{c}) \wedge$
$(\bar{a}$	$)$
$(\bar{a} \vee \bar{b}$	$)$
$(\boldsymbol{a} \vee \bar{c}$	$\wedge(\bar{a} \vee \bar{b} \vee \bar{d}) \wedge$
	$) \wedge(a \vee \bar{c} \vee \bar{d})$

Self-Subsuming Example

Self-Subsuming Resolution
${\underset{D}{C \vee I} \boldsymbol{D} \vee \overline{\boldsymbol{I}}}_{\boldsymbol{C} \subseteq \boldsymbol{D}, ~}^{\boldsymbol{D}}$

$$
\frac{(a \vee b \vee I)(a \vee b \vee c \vee \bar{l})}{(a \vee b \vee c)}
$$

resolvent \boldsymbol{D} subsumes $\boldsymbol{D} \vee \overline{\boldsymbol{I}}$
Example: Remove literals using self-subsumption

$(\bar{b} \vee c)$	$\wedge(\bar{a} \vee b \vee c) \wedge$
$(\bar{a}$	$)$
$(\bar{a} \vee \bar{b}$	$)$
$(a, ~(\bar{a} \vee \bar{b} \vee \bar{d}) \wedge$	
$(a \vee \bar{c}$	$)$
	$\wedge(a \vee \bar{c} \vee \bar{d})$

Self-Subsuming Example

Self-Subsuming Resolution
$\underbrace{\boldsymbol{C} \vee I \vee \bar{I}}_{D} \boldsymbol{C} \subseteq \boldsymbol{D}$

$$
\frac{(a \vee b \vee I)(a \vee b \vee c \vee \bar{l})}{(a \vee b \vee c)}
$$

resolvent \boldsymbol{D} subsumes $\boldsymbol{D} \vee \overline{\boldsymbol{I}}$
Example: Remove literals using self-subsumption

$) \wedge$

Probing

- Idea: use unit propagation do derive extra information
- Vivification of a clause $C=\left(I_{1} \vee \cdots \vee I_{n}\right), C \in F$

1. Unit propagation results in the empty clause:

$$
F::\left(\overline{I_{1}}, \ldots, \overline{I_{i}}\right) \sim \sim_{U N I T}^{*} F:: J, \text { where }\left.[] \in F\right|_{J}, i<n
$$

Probing

- Idea: use unit propagation do derive extra information
- Vivification of a clause $\boldsymbol{C}=\left(I_{1} \vee \cdots \vee I_{n}\right), C \in F$

1. Unit propagation results in the empty clause: $F::\left(\overline{I_{1}}, \ldots, \overline{\boldsymbol{I}}_{i}\right) \sim_{\text {UNIT }}^{*} F:: J$, where $\left.[] \in F\right|_{J}, i<n$
2. Unit propagation implies another literal of the clause \boldsymbol{C} $F::\left(\overline{I_{1}}, \ldots, \overline{I_{i}}\right) \sim{ }_{U N I T}^{*} F:: J$, where $I_{j} \in J, i<j<n:$

Probing

- Idea: use unit propagation do derive extra information
- Vivification of a clause $C=\left(I_{1} \vee \cdots \vee I_{n}\right), C \in F$

1. Unit propagation results in the empty clause:

$$
F::\left(\overline{I_{1}}, \ldots, \overline{I_{i}}\right) \sim \sim_{\text {UNIT }}^{*} F:: J \text {, where }\left.[] \in F\right|_{J}, i<n
$$

2. Unit propagation implies another literal of the clause \boldsymbol{C} $F::\left(\overline{I_{1}}, \ldots, \overline{I_{i}}\right) \sim{ }_{\text {UNIT }}^{*} F:: J$, where $I_{j} \in J, i<j<n$:
3. Unit propagation implies another negated literal of the clause C $F::\left(\overline{I_{1}}, \ldots, \overline{I_{i}}\right) \sim{ }_{\text {UNIT }}^{*} F:: J$, where $\bar{I}_{j} \in J, i<j<n:$
\wedge Exploit: $F \vDash\left(\left(\bar{I}_{1} \wedge \cdots \wedge \bar{I}_{i}\right) \rightarrow x\right)$, hence $F \equiv F \wedge\left(I_{1} \vee \cdots \vee I_{i} \vee x\right)$

Probing

- Idea: use unit propagation do derive extra information
- Vivification of a clause $C=\left(I_{1} \vee \cdots \vee I_{n}\right), C \in F$

1. Unit propagation results in the empty clause:

$$
F::\left(\overline{I_{1}}, \ldots, \overline{I_{i}}\right) \sim \sim_{\text {UNIT }}^{*} F:: J \text {, where }\left.[] \in F\right|_{J}, i<n
$$

2. Unit propagation implies another literal of the clause \boldsymbol{C} $F::\left(\overline{I_{1}}, \ldots, \overline{I_{i}}\right) \sim{ }_{\text {UNIT }}^{*} F:: J$, where $I_{j} \in J, i<j<n$:
3. Unit propagation implies another negated literal of the clause \boldsymbol{C} $F::\left(\overline{I_{1}}, \ldots, \overline{I_{i}}\right) \sim{ }_{\text {UNIT }}^{*} F:: J$, where $\bar{I}_{j} \in J, i<j<n:$

- Exploit: $F \vDash\left(\left(\bar{l}_{1} \wedge \cdots \wedge \bar{l}_{i}\right) \rightarrow x\right)$, hence $F \equiv F \wedge\left(I_{1} \vee \cdots \vee I_{i} \vee x\right)$
- Then, replace C with

1. $C:=\left(I_{1} \vee \cdots \vee I_{i}\right)$

Probing

- Idea: use unit propagation do derive extra information
- Vivification of a clause $\boldsymbol{C}=\left(\boldsymbol{I}_{1} \vee \cdots \vee I_{n}\right), C \in F$

1. Unit propagation results in the empty clause:

$$
F::\left(\overline{\bar{I}_{1}}, \ldots, \overline{I_{i}}\right) \sim \sim_{\text {UNIT }}^{*} F:: J \text {, where }\left.[] \in F\right|_{J}, i<n
$$

2. Unit propagation implies another literal of the clause C $F::\left(\overline{I_{1}}, \ldots, \overline{I_{i}}\right) \sim{ }_{\text {UNIT }}^{*} F:: J$, where $I_{j} \in J, i<j<n$:
3. Unit propagation implies another negated literal of the clause C $F::\left(\overline{I_{1}}, \ldots, \overline{I_{i}}\right) \sim{ }_{\text {UNIT }}^{*} F:: J$, where $\bar{I}_{j} \in J, i<j<n:$
\checkmark Exploit: $F \vDash\left(\left(\bar{I}_{1} \wedge \cdots \wedge \bar{I}_{i}\right) \rightarrow x\right)$, hence $F \equiv F \wedge\left(I_{1} \vee \cdots \vee I_{i} \vee x\right)$

- Then, replace C with

1. $C:=\left(I_{1} \vee \cdots \vee I_{i}\right)$
2. $C:=\left(\boldsymbol{I}_{1} \vee \cdots \vee \boldsymbol{I}_{\boldsymbol{i}} \vee \boldsymbol{I}_{\boldsymbol{j}}\right)$

Probing

- Idea: use unit propagation do derive extra information
- Vivification of a clause $\boldsymbol{C}=\left(\boldsymbol{I}_{1} \vee \cdots \vee I_{n}\right), C \in F$

1. Unit propagation results in the empty clause:

$$
F::\left(\overline{\bar{I}_{1}}, \ldots, \overline{I_{i}}\right) \sim{ }_{\text {UNIT }}^{*} F:: J \text {, where }\left.[] \in F\right|_{J}, i<n
$$

2. Unit propagation implies another literal of the clause \boldsymbol{C} $F::\left(\overline{I_{1}}, \ldots, \overline{I_{i}}\right) \sim{ }_{\text {UNIT }}^{*} F:: J$, where $I_{j} \in J, i<j<n$:
3. Unit propagation implies another negated literal of the clause \boldsymbol{C} $F::\left(\overline{I_{1}}, \ldots, \overline{I_{i}}\right) \sim{ }_{\text {UNIT }}^{*} F:: J$, where $\bar{I}_{j} \in J, i<j<n:$
\wedge Exploit: $F \vDash\left(\left(\bar{I}_{1} \wedge \cdots \wedge \bar{I}_{i}\right) \rightarrow x\right)$, hence $F \equiv F \wedge\left(I_{1} \vee \cdots \vee I_{i} \vee x\right)$

- Then, replace C with

1. $C:=\left(I_{1} \vee \cdots \vee I_{i}\right)$
2. $C:=\left(\boldsymbol{I}_{1} \vee \cdots \vee \boldsymbol{I}_{i} \vee \boldsymbol{I}_{\boldsymbol{j}}\right)$
3. $C:=C \backslash\left\{I_{j}\right\}$, by above statement, and self-subsuming

Probing

- Failed Literal test for some literal I
$\triangleright F::(I) \sim \sim_{U N I T}^{*} F:: J$, where $\left.[] \in F\right|_{J}$, then add the unit clause $\neg I$
\triangleright Could also apply conflict analysis
\triangleright Then: learn all UIP clauses (have to be units)
- Test for entailed literals (also backbones, necessary assignments), and equivalent literals wrt F
$\triangleright F::(I) \sim_{U N I T}^{*} F:: J_{I}, \quad J_{I}$ is the set of all implied literals of I
$\triangleright F::(\neg I) \sim \sim_{U N I t}^{*} F:: J_{\neg I}, \quad J_{\neg I}$ is the set of all implied literals of $\neg I$

Probing

- Failed Literal test for some literal I
$\triangleright F::(I) \sim \sim_{U N I T}^{*} F:: J$, where $\left.[] \in F\right|_{J}$, then add the unit clause $\neg I$
\triangleright Could also apply conflict analysis
\triangleright Then: learn all UIP clauses (have to be units)
- Test for entailed literals (also backbones, necessary assignments), and equivalent literals wrt F
$\triangleright F::(I) \sim_{U N I T}^{*} F:: J_{I}, \quad J_{I}$ is the set of all implied literals of I
$\triangleright F::(\neg I) \sim \sim_{U N I T}^{*} F:: J_{\neg I}, \quad J_{\neg I}$ is the set of all implied literals of $\neg I$
- I^{\prime} is an entailed literal if $I^{\prime} \in J_{I} \cap J_{\neg I}$,

Probing

- Failed Literal test for some literal I
$\triangleright F::(I) \sim \sim_{U N I T}^{*} F:: J$, where $\left.[] \in F\right|_{J}$, then add the unit clause $\neg I$
\triangleright Could also apply conflict analysis
\triangleright Then: learn all UIP clauses (have to be units)
- Test for entailed literals (also backbones, necessary assignments), and equivalent literals wrt F
$\triangleright F::(I) \sim_{U N I T}^{*} F:: J_{I}, \quad J_{I}$ is the set of all implied literals of I
$\triangleright F::(\neg I) \sim \sim_{U N I T}^{*} F:: J_{\neg I}, \quad J_{\neg I}$ is the set of all implied literals of $\neg I$
- I^{\prime} is an entailed literal if $I^{\prime} \in J_{I} \cap J_{\neg I}$,
- I^{\prime} and I are equivalent if $I^{\prime} \in J_{I}$ and $\neg I^{\prime} \in J_{\neg I}$

Simplification Techniques - Equivalence Preserving

- Equivalence Preserving Techniques:
\triangleright Unit Propagation
\triangleright Subsumption
\triangleright Resolution, (lazy) Hyper Binary Resolution
\triangleright Self-Subsuming Resolution (or Strengthening)
\triangleright Hidden Tautology Elimination
\triangleright Asymmetric Tautology Elimination both based on hidden or asymmetric literal addition
\triangleright Probing
- Clause Vivification
\# Necessary Assignments
\Rightarrow Failed Literals
\triangleright Adding and removing transitive implications (binary clauses)
\triangleright Higher reasoning: Gaussian Elimination, Fourier-Motzkin method
- No need to construct a model, the found model can be used

Equisatisfiability Preserving Techniques

Model Reconstruction

- Techniques preserve equisatisfiability, thus, model needs to be constructed
- Information required for model construction can be stored on a stack
- Reason: $F \overbrace{\text { bad }} F^{\prime} \sim_{\text {bad }} F^{\prime \prime} \sim_{\text {bad }} F^{\prime \prime \prime} \ldots$
- Reconstruction processes this chain in the opposite direction
$\triangleright \ldots \mathbf{J}^{\prime \prime \prime} \rightarrow \mathbf{J}^{\prime \prime} \rightarrow \mathbf{J}^{\prime} \rightarrow \boldsymbol{J}$
- Thus, techniques can be run in any order, and mixed with the good ones
- For all currently used techniques, this process is polynomial (linear in the stack)

Equivalent Literal Substitution

- Given a formula F, and $F \models\left(I_{1} \leftrightarrow I_{2}\right)$,
then replace each occurrence of I_{1} and \bar{I}_{1} in F by I_{2} and \bar{I}_{2}, respectively, and remove double negation

Equivalent Literal Substitution

- Given a formula F, and $F \vDash\left(I_{1} \leftrightarrow I_{2}\right)$,
then replace each occurrence of I_{1} and \bar{I}_{1} in F by I_{2} and \bar{I}_{2}, respectively, and remove double negation
- How to find equivalences
\triangleright By probing
\triangleright By analyzing the binary implication graph (each SCC is an equivalence)
$\mapsto F \vDash(a \rightarrow b) \wedge(b \rightarrow c) \wedge(c \rightarrow a)$, then $F \vDash a \leftrightarrow b \leftrightarrow c$.

Equivalent Literal Substitution

- Given a formula F, and $F \vDash\left(I_{1} \leftrightarrow I_{2}\right)$,
then replace each occurrence of I_{1} and \bar{I}_{1} in F by I_{2} and \bar{I}_{2}, respectively, and remove double negation
- How to find equivalences
\triangleright By probing
\triangleright By analyzing the binary implication graph (each SCC is an equivalence)
$\rightarrow F \vDash(a \rightarrow b) \wedge(b \rightarrow c) \wedge(c \rightarrow a)$, then $F \vDash a \leftrightarrow b \leftrightarrow c$.
\triangleright By structural hashing
$\Rightarrow F \vDash(x \leftrightarrow(a \wedge b)) \wedge(y \leftrightarrow(a \wedge b)$, then $F \vDash(x \leftrightarrow y)$
\rightarrow Works for many other gate types, and variable definitions
m Weakness: definitions have to be found (structural or semantically)

Equivalent Literal Substitution

- Given a formula F, and $F \vDash\left(I_{1} \leftrightarrow I_{2}\right)$,
then replace each occurrence of I_{1} and \bar{I}_{1} in F by I_{2} and \bar{I}_{2}, respectively, and remove double negation
- How to find equivalences
\triangleright By probing
\triangleright By analyzing the binary implication graph (each SCC is an equivalence)
$\mapsto F \vDash(a \rightarrow b) \wedge(b \rightarrow c) \wedge(c \rightarrow a)$, then $F \vDash a \leftrightarrow b \leftrightarrow c$.
\triangleright By structural hashing
$\rightarrow F \vDash(x \leftrightarrow(a \wedge b)) \wedge(y \leftrightarrow(a \wedge b)$, then $F \vDash(x \leftrightarrow y)$
\rightarrow Works for many other gate types, and variable definitions
\rightarrow Weakness: definitions have to be found (structural or semantically)
- How to construct the model J from J^{\prime} ?:

Equivalent Literal Substitution

- Given a formula F, and $F \vDash\left(I_{1} \leftrightarrow I_{2}\right)$, then replace each occurrence of I_{1} and \bar{I}_{1} in F by I_{2} and \bar{I}_{2}, respectively, and remove double negation
- How to find equivalences
\triangleright By probing
\triangleright By analyzing the binary implication graph (each SCC is an equivalence)
$\rightarrow F \vDash(a \rightarrow b) \wedge(b \rightarrow c) \wedge(c \rightarrow a)$, then $F \vDash a \leftrightarrow b \leftrightarrow c$.
\triangleright By structural hashing
$\rightarrow F \vDash(x \leftrightarrow(a \wedge b)) \wedge(y \leftrightarrow(a \wedge b)$, then $F \vDash(x \leftrightarrow y)$
\rightarrow Works for many other gate types, and variable definitions
\rightarrow Weakness: definitions have to be found (structural or semantically)
- How to construct the model \boldsymbol{J} from \boldsymbol{J}^{\prime} ?:
\triangleright If $I_{2} \in J^{\prime}$, then $J:=\left(J^{\prime} \backslash\left\{I_{1}, \neg I_{1}\right\}\right) \cup\left\{I_{1}\right\}$
\triangleright If $\neg I_{2} \in J^{\prime}$, then $\boldsymbol{J}:=\left(J^{\prime} \backslash\left\{I_{1}, \neg I_{1}\right\}\right) \cup\left\{\neg I_{1}\right\}$

Example VE by clause distribution

Definition (Variable elimination (VE))
Given a CNF formula \boldsymbol{F}, variable elimination (or DP resolution) removes a variable \boldsymbol{x} by replacing $\boldsymbol{F}_{\boldsymbol{x}}$ and $\boldsymbol{F}_{\overline{\boldsymbol{x}}}$ by $\boldsymbol{F}_{\boldsymbol{x}} \otimes_{\boldsymbol{x}} \boldsymbol{F}_{\overline{\boldsymbol{x}}}$

Example VE by clause distribution

Definition (Variable elimination (VE))

Given a CNF formula \boldsymbol{F}, variable elimination (or DP resolution) removes a variable \boldsymbol{x} by replacing $\boldsymbol{F}_{\boldsymbol{x}}$ and $\boldsymbol{F}_{\overline{\boldsymbol{x}}}$ by $\boldsymbol{F}_{\boldsymbol{x}} \otimes_{\boldsymbol{x}} \boldsymbol{F}_{\overline{\boldsymbol{x}}}$

Example of clause distribution

| $F_{\bar{x}}\left\{\begin{array}{ccc}(x \vee a) & (x \vee \bar{d}) & (x \vee \bar{a} \vee \bar{b}) \\ F_{x} \\ (\bar{x} \vee b) & (a \vee c) & (a \vee d) \\ (\bar{x} \vee \bar{e} \vee f) & (b \vee c) & (b \vee \bar{a} \vee \bar{b}) \\ (c \vee \overline{\mathbf{e}} \vee f) & (d \vee \overline{\mathbf{e}} \vee f) & (\bar{a} \vee \bar{a} \vee \bar{b}) \\ (\bar{a} \vee \overline{\mathbf{b}} \vee f)\end{array}\right.$ |
| :---: | :---: | :---: | :--- |

Example VE by clause distribution

Definition (Variable elimination (VE))

Given a CNF formula \boldsymbol{F}, variable elimination (or DP resolution) removes a variable \boldsymbol{x} by replacing $\boldsymbol{F}_{\boldsymbol{x}}$ and $\boldsymbol{F}_{\overline{\boldsymbol{x}}}$ by $\boldsymbol{F}_{\boldsymbol{x}} \otimes_{\boldsymbol{x}} \boldsymbol{F}_{\overline{\boldsymbol{x}}}$

Example of clause distribution

	F_{X}		
	$(x \vee c)$	$(x \vee \bar{d})$	$(x \vee \overline{\mathbf{a}} \vee \overline{\boldsymbol{b}})$
$F_{\bar{x}}\left\{\begin{array}{c} (\bar{x} \vee a) \\ (\bar{x} \vee b) \\ (\bar{x} \vee \bar{e} \vee f) \end{array}\right.$	$\begin{gathered} (a \vee c) \\ (b \vee c) \\ (c \vee \overline{\mathbf{e}} \vee f) \end{gathered}$	$\begin{aligned} & (a \vee d) \\ & (b \vee d) \\ & (d \vee \bar{e} \vee f) \end{aligned}$	$\begin{gathered} (a \vee \bar{a} \vee \bar{b}) \\ (\bar{b} \vee \bar{a} \vee \bar{b}) \\ (\bar{a} \vee \bar{b} \vee \bar{e} \vee f) \end{gathered}$

Example VE by clause distribution

Definition (Variable elimination (VE))
Given a CNF formula \boldsymbol{F}, variable elimination (or DP resolution) removes a variable \boldsymbol{x} by replacing $\boldsymbol{F}_{\boldsymbol{x}}$ and $\boldsymbol{F}_{\overline{\boldsymbol{x}}}$ by $\boldsymbol{F}_{\boldsymbol{x}} \otimes_{\boldsymbol{x}} \boldsymbol{F}_{\overline{\boldsymbol{x}}}$

Example of clause distribution

| $F_{\bar{x}}\left\{\begin{array}{ccc}(\bar{x} \vee a) & (x \vee \bar{a} \vee \bar{b}) \\ (\bar{x} \vee b) & (a \vee c) & (a \vee d) \\ (\bar{x} \vee \bar{e} \vee f) & (a \vee \bar{a} \vee \bar{b}) \\ (c \vee \bar{e} \vee f) & (d \vee \bar{e} \vee \bar{e} \vee f) & (\bar{b} \vee \bar{a} \vee \bar{b}) \\ (\bar{a} \vee \bar{b} \vee \bar{e} \vee f)\end{array}\right.$ |
| :---: | :---: | :---: | :---: |

In the example: $\left|F_{\boldsymbol{X}} \otimes F_{\overline{\boldsymbol{x}}}\right|>\left|F_{\boldsymbol{X}}\right|+\left|F_{\overline{\boldsymbol{x}}}\right|$
Exponential growth of clauses in general

VE by substitution

General idea
Detect gates (or definitions) $\boldsymbol{x}=\operatorname{GATE}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{\boldsymbol{n}}\right)$ in the formula and use them to reduce the number of added clauses

VE by substitution

General idea
Detect gates (or definitions) $\boldsymbol{x}=\operatorname{GATE}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{\boldsymbol{n}}\right)$ in the formula and use them to reduce the number of added clauses

Possible gates

gate	G_{x}	$G_{\bar{x}}$
AND $\left(a_{1}, \ldots, a_{n}\right)$	$\left(x \vee \bar{a}_{1} \vee \cdots \vee \bar{a}_{n}\right)$	$\left(\bar{x} \vee a_{1}\right), \ldots,\left(\bar{x} \vee a_{n}\right)$
OR($\left.a_{1}, \ldots, a_{n}\right)$	$\left(x \vee \bar{a}_{1}\right), \ldots,\left(x \vee \bar{a}_{n}\right)$	$\left(\bar{x} \vee a_{1} \vee \cdots \vee a_{n}\right)$
ITE (c, t, f)	$(x \vee \bar{c} \vee \bar{t}),(x \vee c \vee \bar{f})$	$(\bar{x} \vee \bar{c} \vee t),(\bar{x} \vee c \vee f)$

VE by substitution

General idea
Detect gates (or definitions) $\boldsymbol{x}=\operatorname{GATE}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{\boldsymbol{n}}\right)$ in the formula and use them to reduce the number of added clauses

Possible gates

gate	G_{x}	$G_{\bar{x}}$
AND $\left(a_{1}, \ldots, a_{n}\right)$	$\left(x \vee \bar{a}_{1} \vee \cdots \vee \bar{a}_{n}\right)$	$\left(\bar{x} \vee a_{1}\right), \ldots,\left(\bar{x} \vee a_{n}\right)$
OR($\left.a_{1}, \ldots, a_{n}\right)$	$\left(x \vee \bar{a}_{1}\right), \ldots,\left(x \vee \bar{a}_{n}\right)$	$\left(\bar{x} \vee a_{1} \vee \cdots \vee a_{n}\right)$
ITE (c, t, f)	$(x \vee \bar{c} \vee \bar{t}),(x \vee c \vee \bar{f})$	$(\bar{x} \vee \bar{c} \vee t),(\bar{x} \vee c \vee f)$

Variable elimination by substitution
Let $\boldsymbol{R}_{\boldsymbol{x}}=F_{\boldsymbol{x}} \backslash \boldsymbol{G}_{\boldsymbol{x}} ; \boldsymbol{R}_{\bar{x}}=F_{\bar{x}} \backslash \boldsymbol{G}_{\bar{x}}$.
Replace $\boldsymbol{F}_{\boldsymbol{x}} \wedge \boldsymbol{F}_{\bar{x}}$ by $\boldsymbol{G}_{\boldsymbol{x}} \otimes_{\boldsymbol{x}} \boldsymbol{R}_{\bar{x}} \wedge \boldsymbol{G}_{\bar{x}} \otimes_{\boldsymbol{x}} \boldsymbol{R}_{\boldsymbol{x}}$.
Always less than $\boldsymbol{F}_{\boldsymbol{x}} \otimes_{\boldsymbol{x}} \boldsymbol{F}_{\bar{X}}$!

VE by substitution

Example of gate extraction: $\boldsymbol{x}=\operatorname{AND}(\boldsymbol{a}, \boldsymbol{b})$

$$
\begin{aligned}
& \boldsymbol{F}_{x}=(x \vee c) \wedge(x \vee \bar{d}) \wedge(x \vee \bar{a} \vee \bar{b}) \\
& F_{\bar{x}}=(\bar{x} \vee a) \wedge(\bar{x} \vee b) \wedge(\bar{x} \vee \overline{\mathbf{e}} \vee f)
\end{aligned}
$$

VE by substitution

Example of gate extraction: $\boldsymbol{x}=\operatorname{AND}(\boldsymbol{a}, \boldsymbol{b})$

$$
\begin{aligned}
& \boldsymbol{F}_{x}=(x \vee c) \wedge(x \vee \bar{d}) \wedge(x \vee \bar{a} \vee \bar{b}) \\
& F_{\bar{x}}=(\bar{x} \vee a) \wedge(\bar{x} \vee b) \wedge(\bar{x} \vee \overline{\mathbf{e}} \vee f)
\end{aligned}
$$

Example of substitution

	$\boldsymbol{R}_{\boldsymbol{X}}$		G_{x}
	$(x \vee c)$	$(x \vee \bar{d})$	$(x \vee \overline{\mathbf{a}} \vee \overline{\boldsymbol{b}})$
$G_{\bar{X}}\left\{\begin{array}{l}(\bar{X} \vee a) \\ (\bar{x} \vee b)\end{array}\right.$	$\begin{aligned} & (a \vee c) \\ & (b \vee c) \end{aligned}$	$\begin{aligned} & (a \vee d) \\ & (b \vee d) \end{aligned}$	
$R_{\bar{\chi}}\{(\bar{x} \vee \overline{\mathbf{e}} \vee f)$			$(\overline{\boldsymbol{a}} \vee \overline{\boldsymbol{b}} \vee \overline{\mathbf{e}} \vee \boldsymbol{f})$

VE by substitution

Example of gate extraction: $\boldsymbol{x}=\operatorname{AND}(\boldsymbol{a}, \boldsymbol{b})$

$$
\begin{aligned}
& \boldsymbol{F}_{x}=(x \vee c) \wedge(x \vee \bar{d}) \wedge(x \vee \bar{a} \vee \bar{b}) \\
& F_{\bar{x}}=(\bar{x} \vee a) \wedge(\bar{x} \vee b) \wedge(\bar{x} \vee \overline{\mathbf{e}} \vee f)
\end{aligned}
$$

Example of substitution

	$\boldsymbol{R}_{\boldsymbol{X}}$		G_{x}
	$(x \vee c)$	$(x \vee \bar{d})$	$(x \vee \overline{\mathbf{a}} \vee \overline{\boldsymbol{b}})$
$G_{\bar{X}}\left\{\begin{array}{l}(\bar{X} \vee a) \\ (\bar{x} \vee b)\end{array}\right.$	$\begin{aligned} & (a \vee c) \\ & (b \vee c) \end{aligned}$	$\begin{aligned} & (a \vee d) \\ & (b \vee d) \end{aligned}$	
$R_{\bar{\chi}}\{(\bar{x} \vee \overline{\mathbf{e}} \vee f)$			$(\overline{\mathbf{a}} \vee \overline{\mathbf{b}} \vee \overline{\mathbf{e}} \vee \boldsymbol{f})$

using substitution: $\left|F_{\boldsymbol{X}} \otimes F_{\bar{x}}\right|<\left|F_{\boldsymbol{x}}\right|+\left|F_{\bar{x}}\right|$

Variable Elimination

- How to reconstruct the model?

Given F, we picked literal x, removed $F_{\boldsymbol{x}}$ and $F_{\bar{x}}$, and added $F_{\boldsymbol{x}} \otimes F_{\bar{x}}$

- A model J does not contain a value for \boldsymbol{x}.
- How can it work?

Bounded Variable Addition

Bounded Variable Addition

Main Idea
Given a CNF formula \boldsymbol{F}, can we construct a (semi)logically equivalent F^{\prime} by introducing a new variable $\boldsymbol{x} \notin \operatorname{VAR}(F)$
such that $\left|F^{\prime}\right|<|F|$?

Bounded Variable Addition

Main Idea

Given a CNF formula \boldsymbol{F}, can we construct a (semi)logically equivalent F^{\prime} by introducing a new variable $\boldsymbol{x} \notin \operatorname{VAR}(F)$
such that $\left|F^{\prime}\right|<|\boldsymbol{F}|$?
Reverse of Variable Elimination
For example, replace the clauses

$$
\begin{array}{lll}
(a \vee c) & (a \vee d) & \\
(b \vee \bar{c}) & (b \vee d) & \\
(c \vee \bar{e} \vee f) & (d \vee \bar{e} \vee f) & (\bar{a} \vee \bar{b} \vee \bar{e} \vee f)
\end{array}
$$

by

$$
\begin{array}{lll}
(\bar{x} \vee a) & (\bar{x} \vee b) & (\bar{x} \vee \bar{e} \vee f) \\
(x \vee c) & (x \vee d) & (x \vee \bar{a} \vee \bar{b})
\end{array}
$$

Bounded Variable Addition

Main Idea

Given a CNF formula \boldsymbol{F}, can we construct a (semi)logically equivalent F^{\prime} by introducing a new variable $\boldsymbol{x} \notin \operatorname{VAR}(F)$
such that $\left|F^{\prime}\right|<|\boldsymbol{F}|$?
Reverse of Variable Elimination
For example, replace the clauses

$$
\begin{array}{lll}
(a \vee c) & (a \vee d) & \\
(b \vee c) & (b \vee d) & \\
(c \vee \bar{e} \vee f) & (d \vee \bar{e} \vee f) & (\bar{a} \vee \bar{b} \vee \bar{e} \vee f)
\end{array}
$$

by

$$
\begin{array}{lll}
(\bar{x} \vee a) & (\bar{x} \vee b) & (\bar{x} \vee \bar{e} \vee f) \\
(x \vee c) & (x \vee d) & (x \vee \bar{a} \vee \bar{b})
\end{array}
$$

Challenge: how to find suitable patterns for replacement?

Factoring Out Subclauses

Example

Replace

$$
(a \vee b \vee c \vee d) \quad(a \vee b \vee c \vee \boldsymbol{e}) \quad(a \vee b \vee c \vee \boldsymbol{f})
$$

by

$$
(x \vee d) \quad(x \vee e) \quad(x \vee f) \quad(\bar{x} \vee a \vee b \vee c)
$$

adds 1 variable and 1 clause reduces number of literals by 2

Not compatible with VE, which would eliminate \boldsymbol{x} immediately!
. . . so this does not work . . .

Bounded Variable Addition

Example

Smallest pattern that is compatible: Replace

$$
\begin{array}{ll}
(a \vee d) & (a \vee e) \\
(b \vee d) & (b \vee e) \\
(c \vee d) & (c \vee e)
\end{array}
$$

by

$$
\begin{array}{lll}
(\overline{\boldsymbol{x}} \vee a) & (\overline{\boldsymbol{x}} \vee b) & (\overline{\boldsymbol{x}} \vee c) \\
(\boldsymbol{x} \vee d) & (\boldsymbol{x} \vee \boldsymbol{e}) &
\end{array}
$$

adds 1 variable

Bounded Variable Addition

Possible Patterns

$$
\begin{array}{ccc}
\left(\begin{array}{ll}
\left.X_{1} \vee L_{1}\right) & \ldots
\end{array}\right. & \left(X_{1} \vee L_{k}\right) \\
\vdots & & \vdots \\
\left(X_{n} \vee L_{1}\right) & \ldots & \left(X_{n} \vee L_{k}\right)
\end{array} \equiv \bigwedge_{i=1}^{n} \bigwedge_{j=1}^{k}\left(X_{i} \vee L_{j}\right)
$$

- Every k clauses share sets of literals L_{j}
- There are n sets of literals $\boldsymbol{X}_{\boldsymbol{i}}$ that appear in clauses with L_{j}

Bounded Variable Addition

Possible Patterns

$$
\begin{array}{ccc}
\left(\begin{array}{cc}
\left.X_{1} \vee L_{1}\right) & \ldots
\end{array}\right. & \left(X_{1} \vee L_{k}\right) \\
\vdots & & \vdots \\
\left(X_{n} \vee L_{1}\right) & \ldots & \left(X_{n} \vee L_{k}\right)
\end{array} \equiv \bigwedge_{i=1}^{n} \bigwedge_{j=1}^{k}\left(X_{i} \vee L_{j}\right)
$$

- Every k clauses share sets of literals L_{j}
- There are n sets of literals X_{i} that appear in clauses with L_{j}
- Reduction: $n \boldsymbol{k}-\boldsymbol{n}-\boldsymbol{k}$ clauses are removed by replacement

Bounded Variable Addition

Possible Patterns

$$
\begin{array}{ccc}
\left(\begin{array}{cc}
\left.X_{1} \vee L_{1}\right) & \ldots
\end{array}\right. & \left(X_{1} \vee L_{k}\right) \\
\vdots & & \vdots \\
\left(X_{n} \vee L_{1}\right) & \ldots & \left(X_{n} \vee L_{k}\right)
\end{array} \equiv \bigwedge_{i=1}^{n} \bigwedge_{j=1}^{k}\left(X_{i} \vee L_{j}\right)
$$

- Every k clauses share sets of literals L_{j}
- There are n sets of literals X_{i} that appear in clauses with L_{j}
- Reduction: $n \boldsymbol{k}-\boldsymbol{n}-\boldsymbol{k}$ clauses are removed by replacement

Bounded Variable Addition on AtMostOneZero (1)

Example encoding of AtMostOneZero $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right)$
$\left(x_{1} \vee x_{2}\right) \wedge\left(x_{9} \vee x_{10}\right) \wedge\left(x_{8} \vee x_{10}\right) \wedge\left(x_{7} \vee x_{10}\right) \wedge\left(x_{6} \vee x_{10}\right) \wedge$
$\left(x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{8} \vee x_{9}\right) \wedge\left(x_{7} \vee x_{9}\right) \wedge\left(x_{6} \vee x_{9}\right) \wedge$
$\left(x_{1} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{4}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(x_{7} \vee x_{8}\right) \wedge\left(x_{6} \vee x_{8}\right) \wedge$
$\left(x_{1} \vee x_{5}\right) \wedge\left(x_{2} \vee x_{5}\right) \wedge\left(x_{3} \vee x_{5}\right) \wedge\left(x_{4} \vee x_{5}\right) \wedge\left(x_{6} \vee x_{7}\right) \wedge$
$\left(x_{1} \vee x_{6}\right) \wedge\left(x_{2} \vee x_{6}\right) \wedge\left(x_{3} \vee x_{6}\right) \wedge\left(x_{4} \vee x_{6}\right) \wedge\left(x_{5} \vee x_{6}\right) \wedge$
$\left(x_{1} \vee x_{7}\right) \wedge\left(x_{2} \vee x_{7}\right) \wedge\left(x_{3} \vee x_{7}\right) \wedge\left(x_{4} \vee x_{7}\right) \wedge\left(x_{5} \vee x_{7}\right) \wedge$
$\left(x_{1} \vee x_{8}\right) \wedge\left(x_{2} \vee x_{8}\right) \wedge\left(x_{3} \vee x_{8}\right) \wedge\left(x_{4} \vee x_{8}\right) \wedge\left(x_{5} \vee x_{8}\right) \wedge$
$\left(x_{1} \vee x_{9}\right) \wedge\left(x_{2} \vee x_{9}\right) \wedge\left(x_{3} \vee x_{9}\right) \wedge\left(x_{4} \vee x_{9}\right) \wedge\left(x_{5} \vee x_{9}\right) \wedge$
$\left(x_{1} \vee x_{10}\right) \wedge\left(x_{2} \vee x_{10}\right) \wedge\left(x_{3} \vee x_{10}\right) \wedge\left(x_{4} \vee x_{10}\right) \wedge\left(x_{5} \vee x_{10}\right)$

Bounded Variable Addition on AtMostOneZero (1)

Example encoding of AtMostOneZero $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right)$

$$
\begin{aligned}
& \left(x_{1} \vee x_{2}\right) \wedge\left(x_{9} \vee x_{10}\right) \wedge\left(x_{8} \vee x_{10}\right) \wedge\left(x_{7} \vee x_{10}\right) \wedge\left(x_{6} \vee x_{10}\right) \wedge \\
& \left(x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{8} \vee x_{9}\right) \wedge\left(x_{7} \vee x_{9}\right) \wedge\left(x_{6} \vee x_{9}\right) \wedge \\
& \left(x_{1} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{4}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(x_{7} \vee x_{8}\right) \wedge\left(x_{6} \vee x_{8}\right) \wedge \\
& \left(x_{1} \vee x_{5}\right) \wedge\left(x_{2} \vee x_{5}\right) \wedge\left(x_{3} \vee x_{5}\right) \wedge\left(x_{4} \vee x_{5}\right) \wedge\left(x_{6} \vee x_{7}\right) \wedge \\
& \left(x_{1} \vee x_{6}\right) \wedge\left(x_{2} \vee x_{6}\right) \wedge\left(x_{3} \vee x_{6}\right) \wedge\left(x_{4} \vee x_{6}\right) \wedge\left(x_{5} \vee x_{6}\right) \wedge \\
& \left(x_{1} \vee x_{7}\right) \wedge\left(x_{2} \vee x_{7}\right) \wedge\left(x_{3} \vee x_{7}\right) \wedge\left(x_{4} \vee x_{7}\right) \wedge\left(x_{5} \vee x_{7}\right) \wedge \\
& \left(x_{1} \vee x_{8}\right) \wedge\left(x_{2} \vee x_{8}\right) \wedge\left(x_{3} \vee x_{8}\right) \wedge\left(x_{4} \vee x_{8}\right) \wedge\left(x_{5} \vee x_{8}\right) \wedge \\
& \left(x_{1} \vee x_{9}\right) \wedge\left(x_{2} \vee x_{9}\right) \wedge\left(x_{3} \vee x_{9}\right) \wedge\left(x_{4} \vee x_{9}\right) \wedge\left(x_{5} \vee x_{9}\right) \wedge \\
& \left(x_{1} \vee x_{10}\right) \wedge\left(x_{2} \vee x_{10}\right) \wedge\left(x_{3} \vee x_{10}\right) \wedge\left(x_{4} \vee x_{10}\right) \wedge\left(x_{5} \vee x_{10}\right)
\end{aligned}
$$

Replace $\left(x_{i} \vee x_{j}\right)$ with $\boldsymbol{i} \in\{1 . .5\}, \boldsymbol{j} \in\{6 . .10\}$ by $\left(x_{i} \vee \boldsymbol{y}\right),\left(x_{j} \vee \overline{\boldsymbol{y}}\right)$

Bounded Variable Addition on AtMostOneZero (2)

Example encoding of AtMostOneZero $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right)$
$\left(x_{1} \vee x_{2}\right) \wedge\left(x_{9} \vee x_{10}\right) \wedge\left(x_{8} \vee x_{10}\right) \wedge\left(x_{7} \vee x_{10}\right) \wedge\left(x_{6} \vee x_{10}\right) \wedge$
$\left(x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{8} \vee x_{9}\right) \wedge\left(x_{7} \vee x_{9}\right) \wedge\left(x_{6} \vee x_{9}\right) \wedge$
$\left(x_{1} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{4}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(x_{7} \vee x_{8}\right) \wedge\left(x_{6} \vee x_{8}\right) \wedge$
$\left(x_{1} \vee x_{5}\right) \wedge\left(x_{2} \vee x_{5}\right) \wedge\left(x_{3} \vee x_{5}\right) \wedge\left(x_{4} \vee x_{5}\right) \wedge\left(x_{6} \vee x_{7}\right) \wedge$
$\left(x_{1} \vee y\right) \wedge\left(x_{2} \vee y\right) \wedge\left(x_{3} \vee y\right) \wedge\left(x_{4} \vee y\right) \wedge\left(x_{5} \vee y\right) \wedge$
$\left(x_{6} \vee \bar{y}\right) \wedge\left(x_{7} \vee \overline{\boldsymbol{y}}\right) \wedge\left(x_{8} \vee \overline{\boldsymbol{y}}\right) \wedge\left(x_{9} \vee \overline{\boldsymbol{y}}\right) \wedge\left(x_{10} \vee \overline{\boldsymbol{y}}\right)$

Bounded Variable Addition on AtMostOneZero (2)

Example encoding of AtMostOneZero $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right)$

$$
\begin{aligned}
& \left(x_{1} \vee x_{2}\right) \wedge\left(x_{9} \vee x_{10}\right) \wedge\left(x_{8} \vee x_{10}\right) \wedge\left(x_{7} \vee x_{10}\right) \wedge\left(x_{6} \vee x_{10}\right) \wedge \\
& \left(x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{8} \vee x_{9}\right) \wedge\left(x_{7} \vee x_{9}\right) \wedge\left(x_{6} \vee x_{9}\right) \wedge \\
& \left(x_{1} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{4}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(x_{7} \vee x_{8}\right) \wedge\left(x_{6} \vee x_{8}\right) \wedge \\
& \left(x_{1} \vee x_{5}\right) \wedge\left(x_{2} \vee x_{5}\right) \wedge\left(x_{3} \vee x_{5}\right) \wedge\left(x_{4} \vee x_{5}\right) \wedge\left(x_{6} \vee x_{7}\right) \wedge \\
& \left(x_{1} \vee y\right) \wedge\left(x_{2} \vee y\right) \wedge\left(x_{3} \vee y\right) \wedge\left(x_{4} \vee \boldsymbol{y}\right) \wedge\left(x_{5} \vee y\right) \wedge \\
& \left(x_{6} \vee \overline{\boldsymbol{y}}\right) \wedge\left(x_{7} \vee \overline{\boldsymbol{y}}\right) \wedge\left(x_{8} \vee \overline{\boldsymbol{y}}\right) \wedge\left(x_{9} \vee \overline{\boldsymbol{y}}\right) \wedge\left(x_{10} \vee \overline{\boldsymbol{y}}\right)
\end{aligned}
$$

Replace matched pattern
$\left(x_{1} \vee \boldsymbol{z}\right) \wedge\left(x_{2} \vee \boldsymbol{z}\right) \wedge\left(x_{3} \vee \boldsymbol{z}\right) \wedge$
$\left(x_{4} \vee \overline{\boldsymbol{z}}\right) \wedge\left(x_{5} \vee \overline{\boldsymbol{z}}\right) \wedge(y \vee \overline{\boldsymbol{z}})$

Bounded Variable Addition on AtMostOneZero (3)

Example encoding of AtMostOneZero $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right)$

$\left(x_{1} \vee x_{2}\right) \wedge\left(x_{9} \vee x_{10}\right) \wedge\left(x_{8} \vee x_{10}\right) \wedge\left(x_{7} \vee x_{10}\right) \wedge\left(x_{6} \vee x_{10}\right) \wedge$
$\left(x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{8} \vee x_{9}\right) \wedge\left(x_{7} \vee x_{9}\right) \wedge\left(x_{6} \vee x_{9}\right) \wedge$
$\left(x_{1} \vee z\right) \wedge\left(x_{2} \vee z\right) \wedge\left(x_{3} \vee z\right) \wedge\left(x_{7} \vee x_{8}\right) \wedge\left(x_{6} \vee x_{8}\right) \wedge$
$\left(x_{4} \vee \bar{z}\right) \wedge\left(x_{5} \vee \bar{z}\right) \wedge(y \vee \bar{z}) \wedge\left(x_{4} \vee x_{5}\right) \wedge\left(x_{6} \vee x_{7}\right) \wedge$
$\left(x_{4} \vee y\right) \wedge\left(x_{5} \vee y\right) \wedge\left(x_{6} \vee \bar{y}\right) \wedge\left(x_{7} \vee \bar{y}\right) \wedge\left(x_{8} \vee \bar{y}\right)$
$\left(x_{9} \vee \bar{y}\right) \wedge\left(x_{10} \vee \bar{y}\right)$

Bounded Variable Addition on AtMostOneZero (3)

Example encoding of AtMostOneZero $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right)$
$\left(x_{1} \vee x_{2}\right) \wedge\left(x_{9} \vee x_{10}\right) \wedge\left(x_{8} \vee x_{10}\right) \wedge\left(x_{7} \vee x_{10}\right) \wedge\left(x_{6} \vee x_{10}\right) \wedge$
$\left(x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{8} \vee x_{9}\right) \wedge\left(x_{7} \vee x_{9}\right) \wedge\left(x_{6} \vee x_{9}\right) \wedge$
$\left(x_{1} \vee z\right) \wedge\left(x_{2} \vee z\right) \wedge\left(x_{3} \vee z\right) \wedge\left(x_{7} \vee x_{8}\right) \wedge\left(x_{6} \vee x_{8}\right) \wedge$
$\left(x_{4} \vee \overline{\mathbf{z}}\right) \wedge\left(x_{5} \vee \overline{\mathbf{z}}\right) \wedge(y \vee \overline{\mathbf{z}}) \wedge\left(x_{4} \vee x_{5}\right) \wedge\left(x_{6} \vee x_{7}\right) \wedge$
$\left(x_{4} \vee y\right) \wedge\left(x_{5} \vee y\right) \wedge\left(x_{6} \vee \bar{y}\right) \wedge\left(x_{7} \vee \bar{y}\right) \wedge\left(x_{8} \vee \bar{y}\right)$
$\left(x_{9} \vee \bar{y}\right) \wedge\left(x_{10} \vee \overline{\boldsymbol{y}}\right)$
Replace matched pattern
$\left(x_{6} \vee \boldsymbol{w}\right) \wedge\left(x_{7} \vee \boldsymbol{w}\right) \wedge\left(x_{8} \vee \boldsymbol{w}\right) \wedge$
$\left(x_{9} \vee \overline{\boldsymbol{w}}\right) \wedge\left(x_{10} \vee \overline{\boldsymbol{w}}\right) \wedge(\bar{y} \vee \overline{\boldsymbol{w}})$

TECHNISCHE
UNIVERSITAT

Bounded Variable Addition

- How to reconstruct the model?

Blocked Clause Elimination

Blocked Clauses

Definition (Blocking literal)
A literal \boldsymbol{I} in a clause \boldsymbol{C} of a CNF \boldsymbol{F} blocks \boldsymbol{C} w.r.t. \boldsymbol{F} if for every clause $\boldsymbol{D} \in \boldsymbol{F}_{\boldsymbol{I}}$, the resolvent $(\boldsymbol{C} \backslash\{\boldsymbol{I}\}) \cup(\boldsymbol{D} \backslash\{\overline{\boldsymbol{l}}\})$ obtained from resolving \boldsymbol{C} and \boldsymbol{D} on \boldsymbol{I} is a tautology.
With respect to a fixed CNF and its clauses we have:
Definition (Blocked clause)
A clause is blocked if it contains a literal that blocks it.

Blocked Clauses

Definition (Blocking literal)

A literal \boldsymbol{I} in a clause \boldsymbol{C} of a CNF \boldsymbol{F} blocks \boldsymbol{C} w.r.t. \boldsymbol{F} if for every clause $\boldsymbol{D} \in \boldsymbol{F}_{\boldsymbol{I}}$, the resolvent $(\boldsymbol{C} \backslash\{\boldsymbol{I}\}) \cup(\boldsymbol{D} \backslash\{\overline{\boldsymbol{I}}\})$ obtained from resolving \boldsymbol{C} and \boldsymbol{D} on \boldsymbol{I} is a tautology.
With respect to a fixed CNF and its clauses we have:
Definition (Blocked clause)
A clause is blocked if it contains a literal that blocks it.

Example

Consider the formula $(\mathbf{a} \vee \boldsymbol{b}) \wedge(\boldsymbol{a} \vee \overline{\mathbf{b}} \vee \overline{\boldsymbol{c}}) \wedge(\overline{\boldsymbol{a}} \vee c)$. First clause is not blocked.
Second clause is blocked by both a and \bar{c}.
Third clause is blocked by c

Blocked Clauses

Definition (Blocking literal)

A literal \boldsymbol{I} in a clause \boldsymbol{C} of a CNF \boldsymbol{F} blocks \boldsymbol{C} w.r.t. \boldsymbol{F} if for every clause $\boldsymbol{D} \in \boldsymbol{F}_{\boldsymbol{l}}$, the resolvent $(\boldsymbol{C} \backslash\{\boldsymbol{I}\}) \cup(\boldsymbol{D} \backslash\{\overline{\boldsymbol{l}}\})$ obtained from resolving \boldsymbol{C} and \boldsymbol{D} on \boldsymbol{I} is a tautology.
With respect to a fixed CNF and its clauses we have:
Definition (Blocked clause)
A clause is blocked if it contains a literal that blocks it.

Example

Consider the formula $(\mathbf{a} \vee \boldsymbol{b}) \wedge(\boldsymbol{a} \vee \overline{\mathbf{b}} \vee \overline{\boldsymbol{c}}) \wedge(\overline{\boldsymbol{a}} \vee c)$.
First clause is not blocked.
Second clause is blocked by both a and \bar{c}.
Third clause is blocked by c
Proposition
Removal of an arbitrary blocked clause preserves satisfiability.

Blocked Clause Elimination (BCE)

Definition (BCE)

While there is a blocked clause \boldsymbol{C} in a CNF \boldsymbol{F}, remove \boldsymbol{C} from \boldsymbol{F}.

Example

Consider $(\boldsymbol{a} \vee \boldsymbol{b}) \wedge(\boldsymbol{a} \vee \overline{\boldsymbol{b}} \vee \overline{\boldsymbol{c}}) \wedge(\overline{\boldsymbol{a}} \vee \boldsymbol{c})$.
After removing either $(\mathbf{a} \vee \overline{\boldsymbol{b}} \vee \overline{\boldsymbol{c}})$ or $(\overline{\boldsymbol{a}} \vee \boldsymbol{c})$, the clause $(\mathbf{a} \vee \boldsymbol{b})$ becomes blocked (no clause with either $\overline{\mathbf{b}}$ or $\overline{\mathbf{a}}$).
An extreme case in which BCE removes all clauses!

Blocked Clause Elimination (BCE)

Definition (BCE)

While there is a blocked clause \boldsymbol{C} in a CNF \boldsymbol{F}, remove \boldsymbol{C} from \boldsymbol{F}.

Example

Consider $(\boldsymbol{a} \vee \boldsymbol{b}) \wedge(\boldsymbol{a} \vee \overline{\boldsymbol{b}} \vee \overline{\boldsymbol{c}}) \wedge(\overline{\boldsymbol{a}} \vee \boldsymbol{c})$.
After removing either $(\mathbf{a} \vee \overline{\boldsymbol{b}} \vee \overline{\boldsymbol{c}})$ or $(\overline{\boldsymbol{a}} \vee \boldsymbol{c})$, the clause $(\mathbf{a} \vee \boldsymbol{b})$ becomes blocked (no clause with either $\overline{\boldsymbol{b}}$ or $\overline{\mathbf{a}})$.
An extreme case in which BCE removes all clauses!
Proposition
BCE is confluent, i.e., has a unique fixpoint

- Blocked clauses stay blocked w.r.t. removal

BCE very effective on circuits

- BCE converts the Tseitin encoding to Plaisted Greenbaum encoding
\triangleright Only one implication is needed in the translation
- BCE simulates Pure literal elimination
\triangleright There are no resolvents
- BCE simulates Cone of influence
\triangleright The used variable appears only as (unused) gate output

Blocked Clause Elimination

- How to reconstruct the model?
- Given F, we picked clause C with blocking literal x
- C was blocked with respect to $F_{\bar{x}}$
- A model J might falsify C
- How can it work?

Simplification Techniques - The Bad and Powerful

- Equisatisfiability Preserving Techniques:
\triangleright (Bounded) Variable Elimination
\triangleright Bounded Variable Addition
\triangleright Blocked Clause Elimination
\triangleright Covered Clause Elimination
\triangleright Equivalent Literal Substitution
- based on SCCs in binary implication graph
\# based on structural hashing
\rightarrow based on Probing
\triangleright Resolution Asymmetric Tautology Elimination
- Need to store extra information to construct the model
- Not discussed here:
\triangleright Adding redundant clauses
\triangleright Minimizing redundant clauses

Solving a Problem with SAT

- Research topics:
\triangleright encode problems into CNF
\triangleright simplify the problem
\triangleright and search for a solution or prove there does not exist one

Solving a Problem with SAT

- Research topics:
\triangleright encode problems into CNF
\triangleright simplify the problem
\triangleright and search for a solution or prove there does not exist one
\triangleright simplification during search

Solving a Problem with SAT

- Research topics:
\triangleright encode problems into CNF
\triangleright simplify the problem
\triangleright and search for a solution or prove there does not exist one
\triangleright simplification during search
\triangleright automatically translate naive encodings into sophisticated encodings

