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Simplification – Warm Up

I Given a formiula F , when preserves removing a clause C ∈ F equivalence?

I How is the above check performed?

I How complex is this check?

I Are there other redundancies to preserve satisfiability?
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Simplification – Warm Up

I Which of the following hold:

I F ∧ x ≡ F |x

I F ∧ x ≡SAT F |x

I F ∧ x |= F |x

I Let C and D be clauses with D ⊂ C : F ∧ D |= F ∧ C

I Let D ⊂ C : F ∧ C |= F ∧ D
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Simplification – Warm Up

I How many (relevant partial) models has the formula F = (a ∨ ¬b) ∧ (¬a ∨ b) ?

I Enumerate the models!
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I Enumerate the models!

I Do you see a connection ?
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Revision – Notation

I Given a formula F in CNF and a literal x , then Fx = {C ∈ F | x ∈ C}.
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Equivalence Preserving Techniques
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Tautologies and Subsumption

Definition (Tautology)
A clause C is a tautology iff it contains a complementary pair of literals.

Example
The clause (a ∨ b ∨ b̄) is a tautology.

Definition (Subsumption)
Clause C subsumes clause D iff C ⊆ D.

Example
The clause (a ∨ b) subsumes clause (a ∨ b ∨ c̄).
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Self-Subsuming Resolution

Self-Subsuming Resolution

C ∨ l D ∨ l̄
D C ⊆ D (a ∨ b ∨ l) (a ∨ b ∨ c ∨ l̄)

(a ∨ b ∨ c)

resolvent D subsumes D ∨ l̄

Example
Assume a CNF contains both antecedents
. . . (a ∨ b ∨ l)(a ∨ b ∨ c ∨ l̄) . . .

If D is added, then D ∨ l̄ can be removed

which in essence removes l̄ from D ∨ l̄
. . . (a ∨ b ∨ l)(a ∨ b ∨ c) . . .

Initially in the SATeLite preprocessor,
now common in most solvers (i.e., as pre- and inprocessing)
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Self-Subsuming Example

Self-Subsuming Resolution

C ∨ l D ∨ l̄
D C ⊆ D (a ∨ b ∨ l) (a ∨ b ∨ c ∨ l̄)

(a ∨ b ∨ c)

resolvent D subsumes D ∨ l̄

Example: Remove literals using self-subsumption

(a∨b∨ c ) ∧ ( ā∨b∨ c ) ∧
(ā∨b∨ c̄ ) ∧ ( a∨ b̄∨ c ) ∧
(ā∨ b̄∨d ) ∧ ( ā∨ b̄∨ d̄ ) ∧
(a∨ c̄ ∨d ) ∧ ( a∨ c̄ ∨ d̄ )
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(a ∨ b ∨ c)

resolvent D subsumes D ∨ l̄

Example: Remove literals using self-subsumption

( b∨ c ) ∧ ( ā∨b∨ c ) ∧
( ) ∧ ( a ) ∧
(ā∨ b̄ ) ∧ ( ā∨ b̄∨ d̄ ) ∧
(a∨ c̄ ) ∧ ( a∨ c̄ ∨ d̄ )

Steffen Hölldobler and Norbert Manthey – Slides by Marijn Heule
SAT Solving – Simplification 31



Probing
I Idea: use unit propagation do derive extra information

I Vivification of a clause C = (l1 ∨ · · · ∨ ln), C ∈ F

1. Unit propagation results in the empty clause:
F :: (l1, . . . , li ) ;∗UNIT F :: J, where [] ∈ F |J , i < n

2. Unit propagation implies another literal of the clause C
F :: (l1, . . . , li ) ;∗UNIT F :: J, where lj ∈ J, i < j < n:

3. Unit propagation implies another negated literal of the clause C
F :: (l1, . . . , li ) ;∗UNIT F :: J, where lj ∈ J, i < j < n:

I Exploit: F |= ((̄l1 ∧ · · · ∧ l̄i )→ x), hence F ≡ F ∧ (l1 ∨ · · · ∨ li ∨ x)

I Then, replace C with

1. C := (l1 ∨ · · · ∨ li )
2. C := (l1 ∨ · · · ∨ li ∨ lj )
3. C := C \ {lj}, by above statement, and self-subsuming
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Probing

I Failed Literal test for some literal l

. F :: (l) ;∗UNIT F :: J, where [] ∈ F |J , then add the unit clause ¬l

. Could also apply conflict analysis

. Then: learn all UIP clauses (have to be units)

I Test for entailed literals (also backbones, necessary assignments), and
equivalent literals wrt F

. F :: (l) ;∗UNIT F :: Jl , Jl is the set of all implied literals of l

. F :: (¬l) ;∗UNIT F :: J¬l , J¬l is the set of all implied literals of ¬l

I l′ is an entailed literal if l′ ∈ Jl ∩ J¬l ,

I l′ and l are equivalent if l′ ∈ Jl and ¬l′ ∈ J¬l
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Simplification Techniques – Equivalence Preserving
I Equivalence Preserving Techniques:

. Unit Propagation

. Subsumption

. Resolution, (lazy) Hyper Binary Resolution

. Self-Subsuming Resolution (or Strengthening)

. Hidden Tautology Elimination

. Asymmetric Tautology Elimination

both based on hidden or asymmetric literal addition

. Probing

II Clause Vivification

II Necessary Assignments

II Failed Literals

. Adding and removing transitive implications (binary clauses)

. Higher reasoning: Gaussian Elimination, Fourier-Motzkin method

I No need to construct a model, the found model can be used
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Equisatisfiability Preserving Techniques

Steffen Hölldobler and Norbert Manthey
SAT Solving – Simplification 42



Model Reconstruction

I Techniques preserve equisatisfiability, thus, model needs to be constructed

I Information required for model construction can be stored on a stack

I Reason: F ;bad F ′ ;bad F ′′ ;bad F ′′′ . . .

I Reconstruction processes this chain in the opposite direction

I . . . J′′′ → J′′ → J′ → J

I Thus, techniques can be run in any order, and mixed with the good ones

I For all currently used techniques, this process is polynomial (linear in the
stack)
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Equivalent Literal Substitution
I Given a formula F , and F |= (l1 ↔ l2),

then replace each occurrence of l1 and l1 in F by l2 and l2, respectively,

and remove double negation

I How to find equivalences

. By probing

. By analyzing the binary implication graph (each SCC is an equivalence)

II F |= (a → b) ∧ (b → c) ∧ (c → a), then F |= a ↔ b ↔ c.

. By structural hashing

II F |= (x ↔ (a ∧ b)) ∧ (y ↔ (a ∧ b), then F |= (x ↔ y)

II Works for many other gate types, and variable definitions

II Weakness: definitions have to be found (structural or semantically)

I How to construct the model J from J′?:

. If l2 ∈ J′, then J := (J′ \ {l1,¬l1}) ∪ {l1}

. If ¬l2 ∈ J′, then J := (J′ \ {l1,¬l1}) ∪ {¬l1}
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. If ¬l2 ∈ J′, then J := (J′ \ {l1,¬l1}) ∪ {¬l1}
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Equivalent Literal Substitution
I Given a formula F , and F |= (l1 ↔ l2),

then replace each occurrence of l1 and l1 in F by l2 and l2, respectively,

and remove double negation

I How to find equivalences

. By probing

. By analyzing the binary implication graph (each SCC is an equivalence)

II F |= (a → b) ∧ (b → c) ∧ (c → a), then F |= a ↔ b ↔ c.

. By structural hashing

II F |= (x ↔ (a ∧ b)) ∧ (y ↔ (a ∧ b), then F |= (x ↔ y)

II Works for many other gate types, and variable definitions

II Weakness: definitions have to be found (structural or semantically)

I How to construct the model J from J′?:

. If l2 ∈ J′, then J := (J′ \ {l1,¬l1}) ∪ {l1}
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Example VE by clause distribution

Definition (Variable elimination (VE))
Given a CNF formula F , variable elimination (or DP resolution) removes
a variable x by replacing Fx and Fx̄ by Fx ⊗x Fx̄

Example of clause distribution
Fx︷ ︸︸ ︷

(x ∨ c) (x ∨ d̄) (x ∨ ā ∨ b̄)

Fx̄

{
(x̄ ∨ a) (a ∨ c) (a ∨ d) (a ∨ ā ∨ b̄)
(x̄ ∨ b) (b ∨ c) (b ∨ d) (b ∨ ā ∨ b̄)

(x̄ ∨ ē ∨ f ) (c ∨ ē ∨ f ) (d ∨ ē ∨ f ) (ā ∨ b̄ ∨ ē ∨ f )

In the example: |Fx ⊗ Fx̄ | > |Fx |+ |Fx̄ |
Exponential growth of clauses in general
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VE by substitution

General idea
Detect gates (or definitions) x = GATE(a1, . . . , an) in the formula and
use them to reduce the number of added clauses

Possible gates

gate Gx Gx̄
AND(a1, . . . , an) (x ∨ ā1 ∨ · · · ∨ ān) (x̄ ∨ a1), . . . , (x̄ ∨ an)
OR(a1, . . . , an) (x ∨ ā1), . . . , (x ∨ ān) (x̄ ∨ a1 ∨ · · · ∨ an)
ITE(c, t, f ) (x ∨ c̄ ∨ t̄), (x ∨ c ∨ f̄ ) (x̄ ∨ c̄ ∨ t), (x̄ ∨ c ∨ f )

Variable elimination by substitution
Let Rx = Fx \ Gx ; Rx̄ = Fx̄ \ Gx̄ .
Replace Fx ∧ Fx̄ by Gx ⊗x Rx̄ ∧ Gx̄ ⊗x Rx .
Always less than Fx ⊗x Fx̄ !
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VE by substitution

General idea
Detect gates (or definitions) x = GATE(a1, . . . , an) in the formula and
use them to reduce the number of added clauses

Possible gates
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VE by substitution

Example of gate extraction: x = AND(a, b)

Fx = (x ∨ c) ∧ (x ∨ d̄) ∧ (x ∨ ā ∨ b̄)
Fx̄ = (x̄ ∨ a) ∧ (x̄ ∨ b) ∧ (x̄ ∨ ē ∨ f )

Example of substitution
Rx Gx︷ ︸︸ ︷ ︷ ︸︸ ︷

(x ∨ c) (x ∨ d̄) (x ∨ ā ∨ b̄)

Gx̄

{
(x̄ ∨ a) (a ∨ c) (a ∨ d)
(x̄ ∨ b) (b ∨ c) (b ∨ d)

Rx̄ { (x̄ ∨ ē ∨ f ) (ā ∨ b̄ ∨ ē ∨ f )

using substitution: |Fx ⊗ Fx̄ | < |Fx |+ |Fx̄ |
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VE by substitution

Example of gate extraction: x = AND(a, b)

Fx = (x ∨ c) ∧ (x ∨ d̄) ∧ (x ∨ ā ∨ b̄)
Fx̄ = (x̄ ∨ a) ∧ (x̄ ∨ b) ∧ (x̄ ∨ ē ∨ f )

Example of substitution
Rx Gx︷ ︸︸ ︷ ︷ ︸︸ ︷

(x ∨ c) (x ∨ d̄) (x ∨ ā ∨ b̄)

Gx̄

{
(x̄ ∨ a) (a ∨ c) (a ∨ d)
(x̄ ∨ b) (b ∨ c) (b ∨ d)

Rx̄ { (x̄ ∨ ē ∨ f ) (ā ∨ b̄ ∨ ē ∨ f )

using substitution: |Fx ⊗ Fx̄ | < |Fx |+ |Fx̄ |
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VE by substitution

Example of gate extraction: x = AND(a, b)

Fx = (x ∨ c) ∧ (x ∨ d̄) ∧ (x ∨ ā ∨ b̄)
Fx̄ = (x̄ ∨ a) ∧ (x̄ ∨ b) ∧ (x̄ ∨ ē ∨ f )

Example of substitution
Rx Gx︷ ︸︸ ︷ ︷ ︸︸ ︷

(x ∨ c) (x ∨ d̄) (x ∨ ā ∨ b̄)

Gx̄

{
(x̄ ∨ a) (a ∨ c) (a ∨ d)
(x̄ ∨ b) (b ∨ c) (b ∨ d)

Rx̄ { (x̄ ∨ ē ∨ f ) (ā ∨ b̄ ∨ ē ∨ f )

using substitution: |Fx ⊗ Fx̄ | < |Fx |+ |Fx̄ |
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Variable Elimination

I How to reconstruct the model?

I Given F , we picked literal x , removed Fx and Fx̄ , and added Fx ⊗ Fx̄

I A model J does not contain a value for x .

I How can it work?
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Bounded Variable Addition
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Bounded Variable Addition

Main Idea
Given a CNF formula F , can we construct a (semi)logically equivalent
F ′ by introducing a new variable x /∈ VAR(F )
such that |F ′| < |F |?

Reverse of Variable Elimination
For example, replace the clauses

(a ∨ c) (a ∨ d)
(b ∨ c) (b ∨ d)

(c ∨ ē ∨ f ) (d ∨ ē ∨ f ) (ā ∨ b̄ ∨ ē ∨ f )
by

(x̄ ∨ a) (x̄ ∨ b) (x̄ ∨ ē ∨ f )
(x ∨ c) (x ∨ d) (x ∨ ā ∨ b̄)

Challenge: how to find suitable patterns for replacement?
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Factoring Out Subclauses

Example
Replace

(a ∨ b ∨ c ∨ d) (a ∨ b ∨ c ∨ e) (a ∨ b ∨ c ∨ f )

by

(x ∨ d) (x ∨ e) (x ∨ f ) (x̄ ∨ a ∨ b ∨ c)

adds 1 variable and 1 clause reduces number of literals by 2

Not compatible with VE, which would eliminate x immediately!

. . . so this does not work . . .
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Bounded Variable Addition

Example
Smallest pattern that is compatible: Replace

(a ∨ d) (a ∨ e)
(b ∨ d) (b ∨ e)
(c ∨ d) (c ∨ e)

by

(x̄ ∨ a) (x̄ ∨ b) (x̄ ∨ c)
(x ∨ d) (x ∨ e)

adds 1 variable removes 1 clause
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Bounded Variable Addition

Possible Patterns

(X1 ∨ L1) . . . (X1 ∨ Lk )
...

...
(Xn ∨ L1) . . . (Xn ∨ Lk )

≡
n∧

i=1

k∧
j=1

(Xi ∨ Lj)

replaced by
n∧

i=1
(y ∨ Xi) ∧

k∧
j=1

(ȳ ∨ Lj)

I Every k clauses share sets of literals Lj

I There are n sets of literals Xi that appear in clauses with Lj

I Reduction: nk − n − k clauses are removed by replacement
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(ȳ ∨ Lj)

I Every k clauses share sets of literals Lj

I There are n sets of literals Xi that appear in clauses with Lj

I Reduction: nk − n − k clauses are removed by replacement

Steffen Hölldobler and Norbert Manthey – Slides by Marijn Heule
SAT Solving – Simplification 67



Bounded Variable Addition

Possible Patterns

(X1 ∨ L1) . . . (X1 ∨ Lk )
...

...
(Xn ∨ L1) . . . (Xn ∨ Lk )

≡
n∧

i=1

k∧
j=1

(Xi ∨ Lj)

replaced by
n∧

i=1
(y ∨ Xi) ∧

k∧
j=1
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Bounded Variable Addition on AtMostOneZero (1)

Example encoding of AtMostOneZero (x1, x2, . . . , xn)

(x1 ∨ x2) ∧ (x9 ∨ x10)∧ (x8 ∨ x10)∧ (x7 ∨ x10)∧ (x6 ∨ x10)∧
(x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x8 ∨ x9) ∧ (x7 ∨ x9) ∧ (x6 ∨ x9) ∧
(x1 ∨ x4) ∧ (x2 ∨ x4) ∧ (x3 ∨ x4) ∧ (x7 ∨ x8) ∧ (x6 ∨ x8) ∧
(x1 ∨ x5) ∧ (x2 ∨ x5) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5) ∧ (x6 ∨ x7) ∧
(x1 ∨ x6) ∧ (x2 ∨ x6) ∧ (x3 ∨ x6) ∧ (x4 ∨ x6) ∧ (x5 ∨ x6) ∧
(x1 ∨ x7) ∧ (x2 ∨ x7) ∧ (x3 ∨ x7) ∧ (x4 ∨ x7) ∧ (x5 ∨ x7) ∧
(x1 ∨ x8) ∧ (x2 ∨ x8) ∧ (x3 ∨ x8) ∧ (x4 ∨ x8) ∧ (x5 ∨ x8) ∧
(x1 ∨ x9) ∧ (x2 ∨ x9) ∧ (x3 ∨ x9) ∧ (x4 ∨ x9) ∧ (x5 ∨ x9) ∧
(x1 ∨ x10)∧ (x2 ∨ x10)∧ (x3 ∨ x10)∧ (x4 ∨ x10)∧ (x5 ∨ x10)

Replace (xi ∨ xj) with i ∈ {1..5}, j ∈ {6..10} by (xi ∨ y), (xj ∨ ȳ)
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Bounded Variable Addition on AtMostOneZero (1)

Example encoding of AtMostOneZero (x1, x2, . . . , xn)

(x1 ∨ x2) ∧ (x9 ∨ x10)∧ (x8 ∨ x10)∧ (x7 ∨ x10)∧ (x6 ∨ x10)∧
(x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x8 ∨ x9) ∧ (x7 ∨ x9) ∧ (x6 ∨ x9) ∧
(x1 ∨ x4) ∧ (x2 ∨ x4) ∧ (x3 ∨ x4) ∧ (x7 ∨ x8) ∧ (x6 ∨ x8) ∧
(x1 ∨ x5) ∧ (x2 ∨ x5) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5) ∧ (x6 ∨ x7) ∧
(x1 ∨ x6) ∧ (x2 ∨ x6) ∧ (x3 ∨ x6) ∧ (x4 ∨ x6) ∧ (x5 ∨ x6) ∧
(x1 ∨ x7) ∧ (x2 ∨ x7) ∧ (x3 ∨ x7) ∧ (x4 ∨ x7) ∧ (x5 ∨ x7) ∧
(x1 ∨ x8) ∧ (x2 ∨ x8) ∧ (x3 ∨ x8) ∧ (x4 ∨ x8) ∧ (x5 ∨ x8) ∧
(x1 ∨ x9) ∧ (x2 ∨ x9) ∧ (x3 ∨ x9) ∧ (x4 ∨ x9) ∧ (x5 ∨ x9) ∧
(x1 ∨ x10)∧ (x2 ∨ x10)∧ (x3 ∨ x10)∧ (x4 ∨ x10)∧ (x5 ∨ x10)

Replace (xi ∨ xj) with i ∈ {1..5}, j ∈ {6..10} by (xi ∨ y), (xj ∨ ȳ)
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Bounded Variable Addition on AtMostOneZero (2)

Example encoding of AtMostOneZero (x1, x2, . . . , xn)

(x1 ∨ x2)∧ (x9 ∨ x10)∧ (x8 ∨ x10)∧ (x7 ∨ x10)∧ (x6 ∨ x10)∧
(x1 ∨ x3)∧ (x2 ∨ x3) ∧ (x8 ∨ x9) ∧ (x7 ∨ x9) ∧ (x6 ∨ x9) ∧
(x1 ∨ x4)∧ (x2 ∨ x4) ∧ (x3 ∨ x4) ∧ (x7 ∨ x8) ∧ (x6 ∨ x8) ∧
(x1 ∨ x5)∧ (x2 ∨ x5) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5) ∧ (x6 ∨ x7) ∧
(x1 ∨ y) ∧ (x2 ∨ y) ∧ (x3 ∨ y) ∧ (x4 ∨ y) ∧ (x5 ∨ y) ∧
(x6 ∨ ȳ) ∧ (x7 ∨ ȳ) ∧ (x8 ∨ ȳ) ∧ (x9 ∨ ȳ) ∧ (x10 ∨ ȳ)

Replace matched pattern
(x1 ∨ z) ∧ (x2 ∨ z) ∧ (x3 ∨ z) ∧
(x4 ∨ z̄) ∧ (x5 ∨ z̄) ∧ (y ∨ z̄)
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Bounded Variable Addition on AtMostOneZero (2)

Example encoding of AtMostOneZero (x1, x2, . . . , xn)

(x1 ∨ x2)∧ (x9 ∨ x10)∧ (x8 ∨ x10)∧ (x7 ∨ x10)∧ (x6 ∨ x10)∧
(x1 ∨ x3)∧ (x2 ∨ x3) ∧ (x8 ∨ x9) ∧ (x7 ∨ x9) ∧ (x6 ∨ x9) ∧
(x1 ∨ x4)∧ (x2 ∨ x4) ∧ (x3 ∨ x4) ∧ (x7 ∨ x8) ∧ (x6 ∨ x8) ∧
(x1 ∨ x5)∧ (x2 ∨ x5) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5) ∧ (x6 ∨ x7) ∧
(x1 ∨ y) ∧ (x2 ∨ y) ∧ (x3 ∨ y) ∧ (x4 ∨ y) ∧ (x5 ∨ y) ∧
(x6 ∨ ȳ) ∧ (x7 ∨ ȳ) ∧ (x8 ∨ ȳ) ∧ (x9 ∨ ȳ) ∧ (x10 ∨ ȳ)

Replace matched pattern
(x1 ∨ z) ∧ (x2 ∨ z) ∧ (x3 ∨ z) ∧
(x4 ∨ z̄) ∧ (x5 ∨ z̄) ∧ (y ∨ z̄)
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Bounded Variable Addition on AtMostOneZero (3)

Example encoding of AtMostOneZero (x1, x2, . . . , xn)

(x1 ∨ x2)∧ (x9 ∨ x10)∧ (x8 ∨ x10)∧ (x7 ∨ x10)∧ (x6 ∨ x10)∧
(x1 ∨ x3)∧ (x2 ∨ x3) ∧ (x8 ∨ x9) ∧ (x7 ∨ x9) ∧ (x6 ∨ x9) ∧
(x1 ∨ z) ∧ (x2 ∨ z) ∧ (x3 ∨ z) ∧ (x7 ∨ x8) ∧ (x6 ∨ x8) ∧
(x4 ∨ z̄) ∧ (x5 ∨ z̄) ∧ (y ∨ z̄) ∧ (x4 ∨ x5) ∧ (x6 ∨ x7) ∧
(x4 ∨ y) ∧ (x5 ∨ y) ∧ (x6 ∨ ȳ) ∧ (x7 ∨ ȳ) ∧ (x8 ∨ ȳ)
(x9 ∨ ȳ) ∧ (x10 ∨ ȳ)

Replace matched pattern
(x6 ∨ w) ∧ (x7 ∨ w) ∧ (x8 ∨ w) ∧
(x9 ∨ w̄) ∧ (x10 ∨ w̄) ∧ (ȳ ∨ w̄)
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Bounded Variable Addition

I How to reconstruct the model?
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Blocked Clause Elimination
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Blocked Clauses

Definition (Blocking literal)
A literal l in a clause C of a CNF F blocks C w.r.t. F if
for every clause D ∈ Fl̄ , the resolvent (C \ {l}) ∪ (D \ {̄l}) obtained
from resolving C and D on l is a tautology.
With respect to a fixed CNF and its clauses we have:

Definition (Blocked clause)
A clause is blocked if it contains a literal that blocks it.

Example
Consider the formula (a ∨ b) ∧ (a ∨ b̄ ∨ c̄) ∧ (ā ∨ c).
First clause is not blocked.
Second clause is blocked by both a and c̄.
Third clause is blocked by c

Proposition
Removal of an arbitrary blocked clause preserves satisfiability.
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Blocked Clauses

Definition (Blocking literal)
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Blocked Clause Elimination (BCE)

Definition (BCE)
While there is a blocked clause C in a CNF F , remove C from F .

Example
Consider (a ∨ b) ∧ (a ∨ b̄ ∨ c̄) ∧ (ā ∨ c).
After removing either (a ∨ b̄ ∨ c̄) or (ā ∨ c), the clause
(a ∨ b) becomes blocked (no clause with either b̄ or ā).

An extreme case in which BCE removes all clauses!

Proposition
BCE is confluent, i.e., has a unique fixpoint

I Blocked clauses stay blocked w.r.t. removal
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BCE very effective on circuits

I BCE converts the Tseitin encoding to Plaisted Greenbaum encoding
. Only one implication is needed in the translation

I BCE simulates Pure literal elimination
. There are no resolvents

I BCE simulates Cone of influence
. The used variable appears only as (unused) gate output

Steffen Hölldobler and Norbert Manthey
SAT Solving – Simplification 82



Blocked Clause Elimination

I How to reconstruct the model?

I Given F , we picked clause C with blocking literal x

I C was blocked with respect to Fx̄

I A model J might falsify C

I How can it work?
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Simplification Techniques - The Bad and Powerful
I Equisatisfiability Preserving Techniques:

. (Bounded) Variable Elimination

. Bounded Variable Addition

. Blocked Clause Elimination

. Covered Clause Elimination

. Equivalent Literal Substitution

II based on SCCs in binary implication graph

II based on structural hashing

II based on Probing

. Resolution Asymmetric Tautology Elimination

I Need to store extra information to construct the model

I Not discussed here:

. Adding redundant clauses

. Minimizing redundant clauses
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Solving a Problem with SAT

Problem

ENCODER

PREPROCESSOR

SAT SOLVER

preprocess

search

I Research topics:
. encode problems into CNF
. simplify the problem
. and search for a solution or prove there does not exist one

. simplification during search

. automatically translate naive encodings into sophisticated encodings
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Solving a Problem with SAT

Problem

ENCODER

PREPROCESSOR

SAT SOLVER

preprocess

search

inprocess

re-encode

I Research topics:
. encode problems into CNF
. simplify the problem
. and search for a solution or prove there does not exist one
. simplification during search
. automatically translate naive encodings into sophisticated encodings
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