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Abstract
It is commonly known that the conjunctive query entailment problem for certain ex-

tensions of (the well-known ontology language) ALC is computationally harder than their
knowledge base satisfiability problem while for others the complexities coincide, both under
the standard and the finite-model semantics. We expose a uniform principle behind this
divide by identifying a wide class of (finitely) locally-forward description logics, for which we
prove that (finite) query entailment problem can be solved by a reduction to exponentially
many calls of the (finite) knowledge base satisfiability problem. Consequently, our algorithm
yields tight ExpTime upper bounds for locally-forward logics with ExpTime-complete
knowledge base satisfiability problem, including logics between ALC and µALCHbregQ (and
more), as well as ALCSCC with global cardinality constraints, for which the complexity of
querying remained open. Moreover, to make our technique applicable in future research, we
provide easy-to-check sufficient conditions for a logic to be locally-forward based on several
novel versions of the model-theoretic notion of unravellings.

Together with existing results, this provides a nearly complete classification of the “be-
nign” vs. “malign” primitive modelling features extending ALC, missing out only the Self
operator. We then show a rather surprising result, namely that the conjunctive entailment
problem for ALCSelf is exponentially harder than for ALC. This places the seemingly in-
nocuous Self operator among the “malign” modelling features, like inverses, transitivity
or nominals.

1. Introduction

Formal ontologies are of significant importance in artificial intelligence, playing a central
role in the Semantic Web, ontology-based information integration, or peer-to-peer data
management. In such scenarios, an especially prominent role is played by description logics
(DLs) (Baader, Horrocks, Lutz, & Sattler, 2017) – a robust family of logical formalisms used
to describe ontologies and serving as the logical underpinning of contemporary standardised
ontology languages. To put knowledge bases to full use as core part of intelligent information
systems, much attention is being devoted to the area of ontology-based data-access, with
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conjunctive queries (CQs) being employed as a fundamental querying formalism (Ortiz &
Simkus, 2012).

In recent years, it has become apparent that various modelling features of DLs affect
the complexity of conjunctive query entailment in a rather strong sense. Let us focus on the
most popular DL, namely ALC. It was first shown by Lutz (2008a) that CQ entailment is
exponentially harder than the consistency problem for ALC extended with inverse roles (I).
Shortly after, a combination of transitivity and role hierarchies (SH) was shown as another
culprit of higher worst-case complexity of reasoning (Eiter, Lutz, Ortiz, & Simkus, 2009).
Finally, also nominals (O) turned out to be problematic (Ngo, Ortiz, & Simkus, 2016). Never-
theless, there are also more benign DL constructs regarding the complexity of CQ entailment.
Examples are counting (Q) (Lutz, 2008a) (the complexity stays the same even for expressive
arithmetical constraints (Baader, Bednarczyk, & Rudolph, 2020)), role-hierarchies alone (H)
(Eiter, Ortiz, & Simkus, 2012) or a tamed use of higher-arity relations (Bednarczyk, 2021a).

Despite the considerable effort in establishing the complexity of the query entailment
problem over ALC extended with various primitive features, for many of the extensions the
precise computational complexity is still unknown. To be more precise, the complexity of
CQ entailment problem for ALC extended with any of safe-boolean role combinations (b),
transitive closure of roles (·+), regular role expressions (·reg), fixed points (µ), or the self
operator (Self) is not known. Doubly-exponential upper bounds for querying any of the
mentioned logics follow from existing results, e.g. from the results on the Z family of
DLs (Calvanese, Eiter, & Ortiz, 2009) or from the guarded-negation fixpoint logic (Bárány,
ten Cate, & Segoufin, 2015). However, it is not at all clear whether such complexity bounds are
tight. And even more intriguingly, we do not know whether the previously established upper
bounds for CQ entailment can be adapted to a slightly more general class of queries, namely
to the case of entailment of unions of conjunctive queries (UCQs). While it is known that for
the case of ALCH, the complexities of querying with CQs and UCQs coincide (Ortiz, 2010,
Thm. 6.5.1), the case of ALCQ is not yet resolved. There is no reason to believe that for some
DL the complexity of UCQ entailment differs from the complexity of UCQ entailment, but
jumping to the class of even more expressive queries, like positive existential queries (PEQs)
or conjunctive regular path queries (CRPQs) results in an increase of complexity (Ortiz &
Simkus, 2014, Thm. 1).

The aim of this paper is to provide robust answers to the questions above, and more
generally, to clarify why the query entailment problem for certain extensions of ALC is
computationally harder than their knowledge base satisfiability problem while for others the
complexities coincide. By “robustness”, we mean that the developed technique should cover
multiple extensions ofALC in one go, without the need of reproducing nearly-identical proofs
for freshly defined logics and should be based on well-established notions from the literature.

1.1 Overview of Our Results and Organisation of the Paper

We start by introducing the classes Clf and Cflf of locally-forward and finitely locally-forward
description logics. These are classes of ontology languages extending1 ALC∩ in which any
description logic DL ∈ Cflf (resp. DL ∈ Clf) enjoys a property that each (finitely) satisfiable

1. The use of a role conjunction operator ∩, allowing for specifying that two elements are connected via a
conjunction of roles, is essential for our querying algorithm to work. See Preliminaries for the definition.
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DL-knowledge-base K has a (finite) model that locally resembles a forward tree. Afterwards,
we revisit a classical algorithm for conjunctive querying ALCHQ designed by Lutz (2008a)
based on the so-called spoiler technique, and improve the technique in several ways: (i) our
algorithm can be applied to unions of CQs rather than plain CQs, (ii) our algorithm works for
any logic DL ∈ Clf , (iii) our algorithm can be applied to the finite query entailment problem
for logics from Cflf . Despite the employment of Lutz’s technique, most of our proofs are done
from scratch in order to adjust them to the new, more abstract and more general, setting.
In particular, in the case of finite model reasoning, or in reasoning about logics with global
cardinality constraints, the intended models are no longer trees (and hence the proof sketches
by Lutz that work for SHQ cannot be taken for granted in our setting). Moreover, we stress
that we stick to the usual definition of conjunctive queries, where only role names and
concept names are allowed (in particular we do not allow for complex role expressions).
Allowing for the presence of complex roles in the query would change the picture drastically,
as happens already for the description logic S: if transitive roles are forbidden in queries,
the CQ entailment problem over S-knowledge-bases is ExpTime-complete (Lutz, 2008b,
Thm. 1), and coNExpTime-hard otherwise (Eiter et al., 2009, Thm. 2). As a transitive role
can be mimicked with a transitive closure of a fresh role, the results on the query entailment
problem for S without transitivity in queries can be reproved in our setting (i.e. they follow
from our results on the query entailment problem for ALCreg).

Theorem 1.1. Let DL be a DL from Clf (resp. from Cflf). The problem of (finite) entailment
of unions of conjunctive queries over DL-knowledge-bases can be solved by an exponential-
time procedure involving exponentially many (finite) satisfiability calls as a subroutine.

Theorem 1.1 implies a tight ExpTime upper bound for querying for all DLs from Cflf∪Clf
enjoying ExpTime-complete knowledge base satisfiability problems. This yields new tight
single exponential-time complexity bounds for the entailment of unions of conjunctive queries
over many description logics, including expressive sublogics of ALCHbregQ and (for several
of which only a 2ExpTime upper bound was known, see the discussion on the previous
page), or ALC with very expressive counting (no previous results on querying). We stress
that we cover all of these logics with a single proof, in an abstract and fully uniform way.

To apply Theorem 1.1 to freshly discovered logics, one may need to check if a given
logic belongs to the classes Clf or Cflf . This task is however relatively difficult, due to the
quite technical definition of (finitely) locally-forward DLs. To simplify such a process, we
propose several sufficient conditions based on novel model-theoretic notions of unravellings.
Hence, with a bit of luck, this relatively tedious task boils down to routine proofs involving
structural induction. What is more, each of our construction is supplemented with a handy
list of properties preserved by our unravellings, that can simplify the reasoning even further.

Theorem 1.2. Let DL extend ALC∩. If DL is preserved under forward-unravellings (resp.
scattered forward-unravellings with or without rebalancing) then DL ∈ Clf (resp. DL ∈ Cflf).

Theorems 1.1–1.2 provide a nearly complete classification of the “querying-satisfiability
trade-off” for ALC extended with popular primitive2 features. This is summarised by the

2. We do not consider role axioms like role disjointness or reflexivity from SROIQ (Horrocks, Kutz, &
Sattler, 2006) as primitives, as they can be expressed with other features.
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table below; references for logics having harder query entailment than satisfiability were given
in the introduction. Definitions of standard DL features are given in Preliminaries. The only
non-standard feature are SCC (Baader, 2017), which allows the logic for specifying expressive
cardinality constraints by means of Presburger arithmetics, (µ) introduces recursion by means
of fixed-points. Despite their quite technical definitions and the fact that we need them only
for corollaries, we use fully define them in appendix.

Feature θ with name ALCθ∩ ∈ Clf? SAT=CQEnt?
functionality F and various counting: N/Q/SCC
trans. closure ·∗, regular expr. ·reg, fixed-points µgood

role hierar. H, safe boolean comb. of roles b
[new!]

inverses of roles I
nominals Obad

transitivity S, complex role inclusions R
bad self-loops Self [new!]

We stress that the features F , N , Q, H and b are subsumed by SCC, while ·∗ and ·reg are
subsumed by µ (Baader, Calvanese, McGuinness, Nardi, & Patel-Schneider, 2003, p. 204).
Hence, the µALCSCC is a super-logic that comprises all the positive features together.
The above classification does not settle the case of the Self operator, a modelling feature
supported by the OWL 2 Web Ontology Language and the DL SROIQ (Horrocks et al.,
2006). The Self operator allows us to specify the situation when an element is related to
itself by a binary relationship. Among other things, this allows us to formalise the concept
of a “narcissist” with Narcissist v ∃loves.Self. Due to the simplicity of the Self operator (it
only refers to one element), it is easy to accommodate for automata techniques (Calvanese
et al., 2009) or consequence-based methods (Ortiz, Rudolph, & Simkus, 2010) and thus,
so far, there has been no real indication that the added expressivity provided by Self may
change anything, complexity-wise. Arguably, this impression is further corroborated by the
observation that Self features in two profiles of OWL 2 (the EL and the RL profile), again
without harming tractability (Krötzsch, Rudolph, & Hitzler, 2008).

In Section 5 however, we show a rather surprising result, namely that CQ entailment
for ALCSelf is exponentially harder than for ALC. Hence, it places the seemingly innocuous
Self operator among the “malign” modelling features, like (I), (S), or (O).
Theorem 1.3. Conjunctive query entailment over ALCSelf TBoxes is 2ExpTime-hard.

Our proof goes via encoding of computation trees of alternating Turing machines working
in exponential space and follows the general hardness-proof-scheme by Lutz (2008a). How-
ever, to adjust the schema to ALCSelf, novel ideas are required: the ability to speak about
self-loops is exploited to produce a single query that traverses trees in a root-to-leaf manner
and to simulate disjunction inside conjunctive queries, useful to express that certain paths are
repeated inside the tree. Theorem 1.3 can be additionally employed to establish 2ExpTime-
hardness of query entailment for the Z family (a.k.a. ALCHbSelf

reg ) of DLs (Calvanese et al.,
2009), which until now has remained open3 as well as the 2ExpTime-hardness of query-
3. We stress that 2ExpTime hardness of CQ entailment over Z ontologies does not follow from 2ExpTime-

hardness of the same problem for SH since we cannot define in Z that a given role is transitive nor that
it is a transitive closure of another role (to simulate transitivity).
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ing ontologies formulated in the fluted guarded fragment (Bednarczyk, 2021a) with equality.4

To improve the readability of the paper and keep its length in control, most of our proofs
are written in two different versions. The main body of the paper provides proof sketches,
whose intention is to communicate ideas required to reproduce proofs in a couple of minutes
with pen and paper. The online appendix provides their very detailed counterparts.

1.2 Relationship to Prior Conference Publications

This work is a revised version of our existing papers extended with some new results. Section 3
extends the unpublished results from an arXiV note by the first author (Bednarczyk, 2021b).
Some results from Section 4 were first presented as part of joint work with F. Baader (2020)
published at ECAI’2020; except a few ideas5, this material has been completely reworked
here. Finally, Section 5 is a full version of our AAAI (2022) paper.

2. Preliminaries

We recap the basics on description logics (DLs) (Baader et al., 2017) and query entailment
over description logic ontologies (Ortiz & Simkus, 2012). As usual, the letter N (resp. N+)
denotes the set of (positive) natural numbers. With Zn we denote the set {0, 1, . . . , n−1}.

2.1 Basics on DLs

We fix countably infinite pairwise disjoint sets of individual names NI, concept names NC,
and role names NR and introduce a description logic ALC∩. Starting from NC and NR,
the set C of ALC∩ concepts is built using the following concept constructors: negation (¬),
conjunction (u), existential restriction (∃(... ∩ . . . ∩ ...)) and the bottom concept (⊥), with
the grammar:

C,D ::= ⊥ | A | ¬C | C uD | ∃(r1 ∩ . . . ∩ rn).C,

where C,D ∈ C, A ∈ NC and r1, r2, . . . , rn ∈ NR. As convenient abbreviations, we of-
ten employ disjunction C t D := ¬(¬C u ¬D), universal restriction ∀(r1 ∩ . . . ∩ rn).C :=
¬∃(r1 ∩ . . . ∩ rn).¬C, top concept > := ¬⊥, and – not quite as widely used – “inline-impli-
cation” C→ D := ¬C tD.

Assertions are expressions of the form C(a), r(a,b), or ¬r(a,b) for a,b ∈ NI, C ∈ C and
r ∈ NR. A general concept inclusion (GCI) has the form C v D for concepts C,D ∈ C.
We use C ≡ D as a shorthand for the joint occurrence of the two GCIs C v D and D v C.
A knowledge base (KB) K := (A, T ) is composed of a finite set A (ABox) of assertions and
a finite non-empty set T (TBox) of GCIs. We call the elements of A∪T axioms. The set of
all individual names appearing in K is denoted with ind(K).

The semantics of ALC∩ is defined via interpretations I = (∆I , ·I) composed of a non-
empty set ∆I called the domain of I and an interpretation function ·I mapping individual

4. Self can be expressed with ∀x1selfr(x1)→∃x2 (r(x1, x2) ∧ x1=x2) ∧ ∀x1∀x2r(x1, x2)→(x1=x2→selfr(x2)).
5. Speaking more precisely: the notion of forward unravelling and duplication are nearly the same here

as in the ECAI paper (except the fact that here they are presented in the broader context with more
properties and full proofs) nearly the same while the notion of loosening is replaced by completely new
construction under the name of scattered forward unravellings.
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names to elements of ∆I , concept names to subsets of ∆I , and role names to subsets
of ∆I ×∆I . This mapping is inductively extended to concepts via

⊥I := ∅,
(¬C)I := ∆I \ CI ,

(C uD)I := CI ∩DI ,
(∃(r1 ∩ . . . ∩ rn).C)I := {d | ∃e ∈ CI . (d, e) ∈

n⋂
i=1

rIi },

and finally used to define satisfaction of assertions and GCIs in an interpretation I by letting

I |= C v D if and only if CI ⊆ DI ,
I |= C(a) if and only if aI ∈ CI ,
I |= r(a,b) if and only if (aI ,bI) ∈ rI ,
I |= ¬r(a,b) if and only if (aI ,bI) /∈ rI .

We define ALC-concepts and knowledge bases analogously, by requiring n = 1 in ex-
istential restrictions. Given an interpretation I and a pair of elements d, e ∈ ∆I , with
ConcI(d) := {C ∈ NC | d ∈ CI} we denote the set of all atomic concepts satisfied by d in I,
and with RolI(d, e) := {r ∈ NR | (d, e) ∈ rI} we denote the set of all atomic roles satisfied
by the pair (d, e) in I.

Structures are like interpretations, with the only exception that the assignment of indi-
vidual names may be partial, that is some individual names from NI may not be “used”.
We say that an interpretation I satisfies a KB K := (A, T ) (or I is a model of K, written:
I |= K) if it satisfies all axioms of A∪T . An interpretation I is finite (resp. countable) iff its
domain ∆I is finite (resp. countable). A KB is (finitely) consistent (or (finitely) satisfiable)
if it has a (finite) model, and (finitely) inconsistent (or (finitely) unsatisfiable) otherwise.

Given a set of individual names N ⊆ NI we denote with NI the set of N-named domain
elements of I, i.e. the set of all d ∈ ∆I for which d = aI holds for some name a ∈ N. The
elements from ∆I\NI are called N-anonymous. We also employ ind(I) := {a ∈ NI | aI ∈ ∆I}
to collect all individual names whose interpretation appears in a structure I.

The presented notions are straightforwardly lifted to any description logic DL semanti-
cally extending ALC∩ and allowing for polynomial expressivity of ALC∩ concepts, i.e. for
every ALC∩-concept C there exists some (at most) polynomially larger, logically equivalent,
DL-concept. Throughout the paper, such logics will be called abstract expressive description
logics or simply abstract DLs.6

2.2 Various Primitive DL Features

We next provide various further DL modelling features mentioned in the introduction. We
focus on the most popular ones, whereas the less known features (SCC) and (µ) are defined
in appendix.

6. We have decided not to formally define what a semantic extension of ALC∩ is, suggesting that this
notion should rather be understood naively. Promising examples of abstract DLs are well-known DLs like
ALC∩,ALCOIQ∩,SHQ∩,Z, µALC∩ etc. Of course, the notion of abstract DLs can be made formal, by
employing abstract model theory. Consult PhD thesis of Piro (2012, Section 1.2).
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1. Functionality (F) allows us to specify, by means of a new axiom type of the form
func(r), that a given role name r must be interpreted as a functional relation, i.e.
whenever (d, e) ∈ rI and (d, e′) ∈ rI holds in an interpretation I satisfying func(r),
then e = e′ must hold.

2. Qualified number restrictions (Q). We extend the definition of concepts with constructs
of the form (≥n r).C, where n ∈ N is a number r ∈ NR is a role name, and C is a
concept. Given I, the interpretation of (≥n r).C is defined as follows:

d ∈ ((≥n r).C)I if and only if |{e ∈ ∆I : (d, e) ∈ rI and e ∈ CI}| ≥ n

In unqualified number restrictions (N ), the concept C in the expression (≥n r).C must
be > (and is usually omitted). Note that (Q) can express both (N ) and (F).

3. Role hierarchies (H) allow us to specify inclusions between atomic roles by means of
an extra axiom type of the shape r ⊆ s for role names r , s ∈ NR. Formally I |= (r ⊆ s)
if and only if rI ⊆ sI .

4. Safe boolean role combinations (b) introduce a notion of a simple role, that is defined
inductively as follows: (i) every role name is simple (ii) intersection, union and set
difference of two simple roles is also simple. The semantics of simple roles is defined
in an obvious way, employing the usual set-theoretic semantics of ∪,∩, \. Simple roles
can then be used in existential and universal restrictions (as well as in the number
restrictions whenever they are admitted in the logic considered), replacing the usual
notion of roles. Note that I |= (∃(s \ r).>) v ⊥ is equivalent to I |= (r ⊆ s), thus (b)
subsumes (H).

5. The feature (I) introduces, per each role name r ∈ NR, a fresh role name r− interpreted
via (r−)I = {(e,d) | (d, e) ∈ rI}.

6. The feature (O) introduces, per each individual name a ∈ NI, a fresh concept {a},
interpreted via {a}I := {aI}.

7. Transitivity (S) allows us for specifying, by means of a new axiom type of the form
trans(r), that a given role name r is interpreted as a transitive relation. The feature (R)
allows us for specifying chains of complex role inclusions (Horrocks et al., 2006, p. 2–3)
that generalise transitivity. We assume that if a role name r occurs in a transitivity
statement trans(r) or on the right hand side of a complex role inclusion, then it is
disallowed from number restrictions.

8. The feature (Self) introduces concepts of the form ∃r .Self, where r ∈ NR. Its semantics
is defined as follows: (∃r .Self)I := {d ∈ CI | (d,d) ∈ rI}.

9. Enriching a description logic with the transitive closure construct (·+) gives rise to
fresh concepts of the form ∃r+.C and ∀r+.C, where r is a role name and C is a (possibly
complex) concept. The semantics of ∃r+.C is defined as follows:

(∃r+.C)I :=
{

d | ∃e ∈ CI .
∞∨
k=1

(
(d, e) ∈ (rI)k

)}
,

where (rI)k denotes the k-fold composition of rI .
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10. The (·reg) feature introduces new concepts of the form ∃t.C and ∀t.C, where t is a
regular role expression defined according to the grammar:

t ::= r ∈ NR | t ∪ t | t ◦ t | t∗ | id(C).

The use of role names in the above grammar can be replaced by simple roles, whenever
the DL feature (b) is included in the language. The semantics of role intersection, union
and composition are defined as in the case of (b) and (R), while the reflexive-transitive
closure t∗ is interpreted in I as:

t∗ =
∞⋃
k=0

tk,

where tk is the k-fold composition of t. Finally, we define the satisfaction of “concept
tests” in I as (id(C))I := {(d, d) | d ∈ CI}. Obviously (·reg) subsumes (·+).

2.3 A Tiny Bit of Graph Theory and Dendrology

We revisit the classical notions of substructures, paths and connectivity. The restriction of
a structure I to a set S ⊆ ∆I , is the structure I�S with ∆I�S := S defined by:

rI�S := rI ∩ (S × S), AI�S := AI ∩ S, aI�S := aI if aI ∈ S and undefined otherwise,

for all concept names A ∈ NC, role names r ∈ NR and individual names a ∈ NI. A sub-
structure of I is any of its restrictions I�S for any sets S ⊆ ∆I .

The notion of paths is introduced next. An undirected path (resp. a directed path) of
length k−1 in I is a word ρ = ρ1ρ2 . . . ρk ∈ (∆I)+ such that for any index i < k we have
that (ρi, ρi+1) ∈ rI or (ρi+1, ρi) ∈ rI for some role name r ∈ NR (or just (ρi, ρi+1) ∈ rI
in the directed case). An element e ∈ ∆I is reachable from d ∈ ∆I via an (un)directed
path if there exists an (un)directed path ρ = ρ1ρ2 . . . ρk in I with ρ1 = d and ρk = e. We
say that I is connected if any of its domain elements are reachable from any other via an
undirected path. A structure J is a connected component of I if it is a ⊆-maximal (in the
sense of inclusion of domains) connected substructure of I. For any number k ≥ 0 we define
the k-neighbourhood of d in I, denoted with NbdkI(d), as the restriction of I to elements
reachable from d in I by undirected paths of length ≤ k.

Given a set D, we say that a structure I is a D-forward-forest, if ∆I is a prefix-closed
subset of D+, and for all role names r ∈ NR, if (d, e) ∈ rI then either d, e ∈ D or e = d · c for
some c ∈ D. Here the superscript + denotes Kleene plus and the · operator (often omitted)
denotes word concatenation. The elements of ∆I ∩ D are called the roots of I. We call
I a D-forward-tree if it is a connected D-forward-forest with a unique root. We omit the
set D and the adjective “forward” in the naming whenever it is known from the context or
unimportant. An interpretation is forward-tree-shaped if it is a D-forward-tree for some D.

When working with forests it is convenient to employ the tailored terminology, borrowed
from graph theory. Given a D-forward-forest I we define an ordering (∆I ,�) on it in such
a way that d � e holds iff d is a prefix of e and use the following naming scheme:

• If d ≺ e holds (i.e. d � e but d 6= e) then d is an ancestor of e (e is a descendant of d).
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• If d1 � d2 but there is no element e such that d1 ≺ e ≺ d2 we call d1 a parent of d2
or, alternatively, say that d2 is a child of d1. Note that it implies that there exists a
value c ∈ D such that d2 = d1c.

• A branch in I is a (possibly infinite) sequence of elements d1, d2, . . . such that for any
index i ≥ 0 if an element di+1 exists, then di+1 is a child of di.

• The ≺-maximal elements are called leaves.
• Given d ∈ ∆I we denote the set of its children and its descendants, respectively, with

ChldsI(d) and DescI(d). We also define the subtree rooted at d, denoted: I [d�], i.e. the
restriction of I to the set {d} ∪ DescI(d).

We conclude by lifting the notion of “being a forest” to models of knowledge bases. Take
a set of individual names N ⊆ NI. We say that a forward forest I is N-rooted whenever:

• for all names a ∈ N we have that aI is defined and it is a root of I, and
• for each root d ∈ ∆I there is a name a ∈ N satisfying d = aI .

For convenience, we refer to forward trees as ∅-rooted forests. A forward forest model of a
KB K = (A, T ) is an ind(A)-rooted forest satisfying K.

2.4 Morphisms

Let I,J be structures and let N ⊆ NI. An N-homomorphism f : I → J is a function that:

• maps ∆I to ∆J ,
• preserves individual names from N, i.e. for all a ∈ N if aI is defined then aJ = f(aI),
• preserves atomic concepts, i.e. d ∈ AI implies f(d) ∈ AJ for all A ∈ NC,
• and preserves atomic roles, i.e. (d, e) ∈ rI implies (f(d), f(e)) ∈ rJ for all r ∈ NR.

An N-isomorphism f : I → J is a bijection such that f and f−1 are N-homomorphisms.
We write I CN J to indicate that there is an N-homomorphism from I to J . In this case
I is said to be N-homomorphically mapped to J . Structures I,J are N-homomorphically
equivalent, written: I �N J , if I CN J and J CN I hold. Finally, I and J are N-isomorphic,
written: I ∼=N J , if there exists an N-isomorphism between them. We often use the term
homomorphism (resp. isomorphism) rather than ∅-homomorphism (resp. ∅-isomorphism).

Note that the composition of N-homomorphisms is also an N-homomorphism. Similarly,
the composition of N-isomorphisms is also an N-isomorphism.

2.5 Queries

Queries employ variables from a countably infinite set NV. A conjunctive query (CQ) is a
conjunction of atoms of the form r(x, y) or A(z), where r is a role name, A is a concept
name and x, y, z are variables. More expressive query languages are also considered: a union
of conjunctive queries (UCQ) is a disjunction of CQs and a positive existential query (PEQ)
is a positive boolean combination of CQs.7 Note that any PEQ can be converted to a UCQ
of (possibly) exponential size by turning it into disjunctive normal form.

7. PEQs are generated with the following grammar: q ::= A(x) | r(x, y) | q ∧ q | q ∨ q.
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Let q be a PEQ and let I be a structure. The set of variables appearing in q is denoted
with Var(q) and the number of atoms of q (i.e. the size of q) is denoted with |q|. The fact
that r(x, y) appears in q is indicated with r(x, y) ∈ q. Whenever some subset V ⊆ Var(q) is
given, let q�V denote the sub-query of q where all the atoms containing any variable outside
V are removed. Let π : Var(q) → ∆I be a variable assignment. We write I |=π r(x, y)
if (π(x), π(y)) ∈ rI and I |=π A(z) if π(z) ∈ AI . Similarly, we write I |=π q1 ∧ q2 (resp.
I |=π q1 ∨ q2) iff I |=π q1 and (resp. or) I |=π q2, for queries q1, q2. We say that π is a match
for I and q if I |=π q holds and that I satisfies q (denoted with: I |= q) whenever I |=π q
for some match π. The definitions are lifted to knowledge bases: q is (finitely) entailed by
a knowledge base K (written: K |=(fin) q) if every (finite) model I of K satisfies q. We
stress that the entailment relations |= and |=fin may not coincide (this is the case for the
description logic SQ (Gutiérrez-Basulto, Ibáñez-García, & Jung, 2018, Example 3)). When
I |= K but I 6|= q, we call I a countermodel for K and q. Note that q is (finitely) entailed
by K if there is no (finite) countermodel for K and q.

Observe that a CQ q can be seen as a structure Iq = (Var(q), ·Iq ), having the interpre-
tation of roles and concepts fixed as AIq = {x | A(x) ∈ q} and rIq = {(x, y) | r(x, y) ∈ q}
for all A ∈ NC and r ∈ NR and with aIq undefined for all a ∈ NI. Hence, any match π
for I and CQ q can be seen as an NI-homomorphism from Iq to I. We say that a CQ q is
forward-tree-shaped whenever Iq is forward-tree-shaped.

For the class of path-shaped conjunctive queries, namely conjunctive queries whose query
structure looks like a path, we often employ an alternative path syntax for conciseness. Thus,
by a path-shaped conjunctive query we understand an expression of the form

(A0?; r1; A1?; r2; A2?; . . . ; An−1?; rn; An?)(x0, xn)

with all ri ∈ NR and Ai ∈ NC ∪ {>}, serving as a shorthand for

n∧
i=0

Ai(xi) ∧
n∧
i=1

ri(xi−1, xi).

Whenever Ai happens to be >, it will be removed from the expression; this does not create
ambiguities. We stress that the alternative syntax for path-shaped CQs is just syntactic
sugar and our queries should not be mistaken e.g. for regular path queries (RPQs).

Let us conclude the section by discussing the differences between our definitions of queries
and the ones that are present in the literature. First, our queries are always assumed to be
Boolean, i.e. we do not allow for answer variables. This assumption is done (Glimm, Lutz,
Horrocks, & Sattler, 2008, p. 164) w.l.o.g. as answer variables can be simulated with quantified
variables and additional concept names. Second, individual names are not present in atoms
in queries. This is again w.l.o.g. as one can proceed for any knowledge-base K := (A, T )
and any PEQ q as follows. Take any individual name a appearing in query q and proceed
as follows: (i) introduce a fresh variable xa and fresh concept name Aa, (ii) replace each
atom α in q involving a by α∧Aa(xa), (iii) replace every occurrence of the individual name a
in q by xa, and (iv) append Aa(a) to the ABox A. Let q ′, K′ be the resulting query and the
resulting knowledge base. It is not difficult to show that K |=(fin) q if and only if K′ |=(fin) q ′.
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2.6 Decision Problems

For a given description logic DL we consider the classical decision problems, namely the
(finite) satisfiability problem and the (finite) CQ/UCQ/PEQ entailment problem. The for-
mer asks if an input knowledge base has a (finite) model, while in the latter asks if an
input CQ/UCQ/PEQ is (finitely) entailed by an input knowledge base. Here we mention a
few results on ALC and sister logics. It is well-known that ALC has the finite model prop-
erty (Grädel, 1999, Thm. 3.10), i.e. the satisfiability and the finite satisfiability problems
coincide. Moreover, ALC is finitely controllable (Bárány, Gottlob, & Otto, 2014, Thm. 1.2)
that is, any UCQ is entailed by an ALC knowledge base iff it is finitely entailed. These two
results rely on the fact that ALC can be encoded (Baader et al., 2017, Ch. 2.6.1) in the
so-called guarded fragment of first-order logic GF (Andréka, Németi, & van Benthem, 1998).
Regarding the complexity results, the satisfiability problem (De Giacomo & Lenzerini, 1996,
Thm. 6) and the CQ-entailment problem forALC (Ortiz, Simkus, & Eiter, 2008, Thm. 6) (and
even ALCHQ (Lutz, 2008b, Thm. 1)) are ExpTime-complete, while the PEQ-entailment
problem for ALC was shown to be 2ExpTime-hard (Ortiz & Simkus, 2014, Thm. 1). The
2ExpTime upper bound can be obtained even for very expressive extensions of ALC and
regular queries extending PEQs (Calvanese, Eiter, & Ortiz, 2014, Thm. 5.23). The UCQ
entailment problem for ALCH is known to be ExpTime-complete (Ortiz, 2010, Thm. 6.5.1),
while the exact complexity of UCQ-querying for many logics, including ALCQ, is still un-
known. The absence of such results is even more intriguing in the light of the existing
2ExpTime-hardness proofs of CQ entailment for ALCO (Ngo et al., 2016, Thm. 9) and
ALCI (Lutz, 2007, Thm. 2), i.e. the extensions of ALC with nominals or inverses of roles.

2.7 Alternating Turing Machines

We next fix the notation of alternating Turing machines over a binary alphabet {0,1}
working in exponential space (simply: ATMs). As a convention, when speaking about ATMs,
their configurations and tape contents, we employ the typewriter font. An ATM is a tuple
M := (N, Q, Q∃, sI , sA, sR, T), where Q is a finite set of states (usually denoted with s); Q∃ ⊆ Q
is a set of existential states; sI , sA, sR ∈ Q are, respectively, pairwise different initial, accepting,
and rejecting states; we assume that sI ∈ (Q\Q∃); T ⊆ (Q×{0,1})× ({0,1}×Q×{−1,+1})
is the transition relation; and the natural number N (encoded in unary) is a parameter
governing the size of the working tape. We call the states from Q∀ := Q \ Q∃ universal. The
size ofM, denoted with |M|, is defined as N + |Q|+ |Q∃|+ 3 + |T|.

A configuration ofM is a word wsw′ ∈ {0,1}∗Q{0,1}∗ with |ww′| = 2N. We call wsw′ (i)
existential (resp. universal) if s is existential (resp. universal), (ii) final if s is either sA or sR
(iii) non-final if it is not final (iv) accepting if s = sA. Successor configurations are defined in
terms of the transition relation T. For a, b, c, d ∈ {0,1} and v, v′, w, w′ ∈ {0,1}∗ with |v| = |w|,
we let wbs′w′ be a quasi-successor configuration of vsav′ whenever (s, a, b, s′,+1) ∈ T, and
we let ws′dbw′ be a quasi-successor configuration of vcsav′ whenever (s, a, b, s′,−1) ∈ T. If
additionally w = v, w′ = v′, and c = d hold we speak of successor configurations.8

W.l.o.g we make the following additional assumptions aboutM: First, for each non-final
(i.e. non-accepting and non-rejecting) state s and every letter a ∈ {0,1} the set T(s, a) :=

8. In words, this corresponds to the common definition of successor configurations, while for quasi-successor
configurations, untouched tape cells may change arbitrarily during the transition.
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{(s, a, b, s′, d) ∈ T} contains exactly two elements, denoted T1(s, a) and T2(s, a). Hence, every
configuration has exactly two successor configurations. Second, for any (s, a, b, s′, d) ∈ T, if s
is existential then s′ is universal and vice versa. Third, the machine reaches a final state no
later than after 22N steps (for configuration sequences). Fourth and last,M never attempts
to move left (resp. right) on the left-most (resp. right-most) tape cell.

A run ofM is a finite tree, with nodes labelled by configurations ofM, that satisfies
all the conditions below:

• the root is labelled with the initial configuration sI02N ,
• each node labelled with a non-final existential configuration wsw′ has a single child

node which is labelled with one of the successor configurations of wsw′,
• each node labelled with a non-final universal configuration wsw′ has two child nodes

which are labelled with the two successor configurations (wrt. T1 and T2) of wsw′,
• no node labelled with a final configuration has successors.

Quasi-runs ofM are defined analogously by replacing the notions of successors with quasi-
successors. Note that every run is also a quasi-run but not vice versa.

An ATM M is (quasi-)accepting if it has an accepting (quasi)-run, i.e. one whose all
leaves are labelled by accepting configurations. By results of Chandra et al. (1981, Corollary
3.6) the problem of checking if a given ATM is accepting is 2ExpTime-hard.

3. Query Entailment in Locally-Forward Description Logics

In this section, we provide a worst-case optimal algorithm for solving (U)CQ entailment
problem for the classes Clf and Cflf of (finitely) locally-forward abstract DLs. Let us start
by defining what locally-forward abstract DLs actually are.
Definition 3.1. For n ∈ N and a set of names N ⊆ NI, we say that an interpretation I is
(n,N)-locally-forward-forest-like (short: (n,N)-lff-like) iff every n-neighbourhood J in I is
(ind(J ) ∩ N)-homomorphically equivalent to some (ind(J ) ∩ N)-rooted forward forest.

Informally, any sufficiently small (of radius n) neighbourhood of (n,N)-lff-like structures
resembles a forward tree or a forward forest. We stress here that lff-like structures may
contain undirected cycles composed of anonymous elements:
Remark 3.2. Consider a forward tree In (right), and a structure Jn (left) that is com-
posed of In and its mirrored image glued together, depicted below. Clearly In and Jn are
homomorphically-equivalent. On the other hand In is acyclic and Jn contains an undirected
cycle of size > n. Thus lff-like structures may contain arbitrarily large undirected cycles.
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Locally-forward-forest-like structures are next employed as “coverings” of interpreta-
tions. The property below is inspired by the quasi-forest homomorphism-covers by Bourhis,
Krötzsch, and Rudolph (2014, p. 8).

Definition 3.3 (coverable by lffs). Let DL be an abstract DL and let K be an DL-KB. Call K
(finitely) coverable by locally-forward-forest-like structures (short: lff-coverable) iff for any
(finite) model I |= K and for every n ∈ N there is a (finite) (n, ind(K))-lff-like model J |= K
that covers I, i.e. any n-neighbourhood of J can be ind(K)-homomorphically-mapped to I.

Finally we employ coverings and lff-like interpretations to define locally-forward DLs.

Definition 3.4. An abstract DL DL is said to be (finitely) locally-forward iff all DL-KBs
are (finitely) lff-coverable. We write Clf and Cflf to denote the classes of locally-forward and
finitely locally-forward abstract DLs.

The above-defined notion of coverability is just a technicality, which is not very informa-
tive when dealing with logics from Clf ∪Cflf . What actually matters is the following property,
relying on the fact that UCQs are closed under homomorphisms.

Property 3.5. For any (finitely) locally-forward DL, any DL-KB K and any UCQ q of the
form

∨m
i=1 qi with K 6|= q, there is a (finite) (|q|, ind(K))-lff-like countermodel for K and q.

Proof sketch. Take a countermodel I for K and q, and its promised locally-forward cover J .
Towards contradiction assume J |= qi for some qi. By coverability, any |q|-neighbourhood
of J can be homomorphically mapped to I, thus transferring a match of qi from J to I.

One can provide multiple examples of locally-forward abstract DLs. To do so, observe
that any logic DL extending ALC∩ and having the forward-forest-countermodel property is
immediately locally-forward. More precisely, for any DL-KB K, a guaranteed forward-forest
countermodel I for K and a (U)CQ of size n is (n, ind(K))-lff-like. The following statement
is a straightforward consequence of existing work.

Corollary 3.6. Any extension of ALC∩ contained in µALCSCC has an ExpTime-complete
knowledge base satisfiability problem and belongs to Clf .

Proof sketch. The first part of the statement follows by a minor adaptation of a proof by
Bonatti et al. (2008, Theorem 3.3) (a self-contained proof can be obtained by employing
sufficient conditions presented in Section 4). The second claim follows from a work of Kupke
et al. (2022), presented under a very general, co-algebraic setting.

There are also logics for which only the finite model semantics makes sense. One such
example is ALCSCC extended with ERCBoxes (Baader et al., 2020), i.e. positive boolean
combinations of linear inequalities over the domain (such constraints become trivial outside
the realm of finite models). In Section 4.3, we prove the membership of ALCSCC+ERCBoxes
in Cflf , which will allow us to deduce precise upper bounds on the complexity of its querying.

There is a plethora of logics that are not (finitely) locally-forward, for instance ALC∩
extended with nominals, inverses, the Self operator, or transitivity. Although all these logics
enjoy “forest-like” models, they are not locally-forward due to the presence of “backlinks”
(edges going back from an element to a nominal), bidirectional edges, self-loops or edges link-
ing an element to its distant descendant. We leave the verification of this fact to the reader.
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3.1 An Informal Explanation of Lutz’s Spoiler Technique

We start by giving a rather informal explanation of Lutz’s spoiler technique, dedicated to
the readers that are not familiar with the original work of Lutz on querying ALCHQ (2008b,
Sec. 3).9 Most of the forthcoming notions are inspired by those from the work of Lutz (2008b)
and actually we aimed at reusing as much material from his work as possible. However, many
of our statements require separate proofs in order to make them logic-independent and to
adjust the proof to locally-forest-like structures.

Recall that our goal is to decide, given a finitely lff-coverable DL-KB K and a conjunctive
query q, whetherK |=(fin) q holds, which boils down to checking if there is a (finite or arbitrary,
depending on the problem) countermodel forK and q. Due to Property 3.5 we can restrict our
attention to (n, ind(K))-lff-like interpretations. An important observation is that a match π
of q over an (|q|, ind(K))-lff-like I induces a very specific partition of Var(q), namely π divides
the variables of q into three disjoint categories: (i) the variables mapped to the N-named
elements of I, (ii) the variables forming a forward subtree “dangling” from one of the N-
named elements of I and (iii) the variables forming forward-trees that lie “far” from N-named
elements. The notion of a splitting abstractly describes such a partition, independently of
the choice of π and I. The existence of a splitting compatible with a (|q|, ind(K))-lff-like I
implies that I |= q holds and vice versa. Hence, to show K 6|=(fin) q, it suffices to find a (finite)
(|q|, ind(K))-lff-like model IU of K such that no splitting is compatible with it, or, in other
words, that IU spoils all the splittings. Next, for a splitting Πq of q we design an DL-KB KU

Πq
,

called a spoiler for Πq with the intended meaning that every (|q|, ind(K))-locally-forward-
forest-like model of K ∪ KU

Πq
spoils its compatibility with Πq . The construction of spoilers

employs, among other ingredients, the well-known rolling-up technique (Horrocks & Tessaris,
2000, Sec. 4) that is used to detect forward-tree-shaped query matches from points (ii)–(iii)
above (the name of the technique comes from the fact that we traverse an input forward-tree
in a bottom-up manner and gradually “rolling-up” its forward subtrees into predicates, until
the root is reached). This is the only reason why we require that DL polynomially encodes
ALC∩ concepts. Having the splittings defined, we observe that (finite) (|q|, ind(K))-lff-like
models of K ∪⋃Πq

KU

Πq
are (finite) countermodels for K and q.

This yields decidability, but with a suboptimal complexity when the (finite) satisfiability
problem for DL is ExpTime-complete. To get the optimal (exponential) upper bound
in such a case, we parallelise the construction of ⋃Πq

KU

Πq
. This means, intuitively, that

the KB ⋃
Πq
KU

Πq
is divided into exponentially many chunks called super-spoilers KU

(

q with
the meaning that K 6|=(fin) q iff K ∪ KU

(

q has a (finite) (|q|, ind(K))-lff-like model for some
super-spoiler KU

(

q . We then show that each super-spoiler is of polynomial size and the set of
super-spoilers can be enumerated in exponential time. This gives us a Turing reduction from
the (finite) query entailment problem to exponentially many (finite) satisfiability checks of
polynomial-size DL-KBs, which yields an optimal complexity.

9. Lutz works with SHQ, an extension of ALCHQ with transitive roles, but he does not allow for transitive
roles in queries. This is crucial since their presence makes the CQ entailment problem exponentially
harder (Eiter et al., 2009, Thm. 1). Hence, Lutz’s work is more about querying ALCHQ than SHQ.
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3.2 Step I: Rolling-up Forward-Tree-Shaped Queries

We next recall the well-known rolling-up technique (Horrocks & Tessaris, 2000, Sec. 4) of
transforming forward-tree-shaped queries into ALC∩-concepts. Our goal is to construct, for
every x ∈ Var(q), a concept Subtx

q stating that d ∈ (Subtx
q)I holds whenever the subtree of Iq

rooted at the variable x can be mapped below d in I (made precise in Lemma 3.8). A formal,
inductive definition is given next. The main idea behind the definition is to traverse the
input tree in a bottom-up manner, describing its shape with ALC∩ concepts, and gradually
“rolling-up” the input forward-tree into smaller chunks until the root is reached.

Definition 3.7. For a forward-tree-shaped CQ q and any of its variables v ∈ Var(q) we
define an ALC∩-concept Subtv

q as:

Subtv
q := ⊔

A(v)∈q
A u ⊔

u∈Chlds(v)
∃

 ⋂
r(v,u)∈q

r

 .Subtu
q ,

where the empty conjunction equals >. We use Matchq as an abbreviation of Subtvr
q with vr

being the root of Iq.

From the presented construction we can easily estimate the size (i.e. the number of
sub-concepts) of Matchq . Note that the size of Matchq is linear in |q| since every query atom
contributes to exactly one sub-concept of Matchq . The following lemma is folklore:

Lemma 3.8. For any interpretation I, any forward-tree-shaped conjunctive query q and
any of its variables v ∈ Var(q), the following equivalence holds: d ∈ (Subtv

q)I iff there exists a
homomorphism h : I [v�]

q → I with h(v) = d, where I [v�]
q denotes the subtree of Iq rooted at v.

Proof sketch. Routine induction over (Var(q),�) with the inductive assumption given above.

By unravelling the definition of Matchq and by applying Lemma 3.8 for the root variable
of q, as an immediate consequence we conclude:

Corollary 3.9. For any interpretation I and a forward-tree-shaped conjunctive query q we
have that (Matchq)I 6= ∅ iff there exists a homomorphism h : Iq → I.

Informally, any element belonging to the interpretation of Matchq “detects” a match
of the forward-tree-shaped q. Thus, one can employ Corollary 3.9 to design an algorithm
for the entailment problem for forward-tree-shaped queries: for a given input query q and
a KB K, it suffices to test whether K ∪ {> v ¬Matchq} has a model. Unfortunately, the
presented method of detecting query matches works only for forward-tree-shaped queries.
To detect matches of arbitrary CQs, we require a stronger mechanism, namely the notions
of fork rewritings and splittings, which we will introduce in the following sections.

3.3 Step II: Fork Rewritings

A conjunctive query can induce many different query matches. In our case the target
structures are lff-like, thus such matches are of a very specific form. For instance, every
node inside a forward-tree has a unique parent. Thus, whenever we have a query match π of

399



Bednarczyk & Rudolph

a query containing a “fork” r(x, z)∧ s(y, z), it clearly must be that the variables x and y are
mapped via π to the same element. We formalise this intuition with the forthcoming notion
of fork rewritings (Lutz, 2008b, p. 4), that removes this kind of “redundancy” from queries.

Definition 3.10. Let q, q ′ be CQs. We say that q ′ is obtained from q by fork elimination,
and denote this fact with q  fe q ′, if q ′ can be obtained from q by selecting two atoms r(y, x),
s(z, x) of q (where r and s are not necessarily different) and identifying the variables y, z. We
also say that q ′ is a fork rewriting of q if q ′ is obtained from q by applying fork elimination
on q possibly multiple times. When the fork elimination process is applied exhaustively on q
we say that the resulting query, denoted with maxfr(q), is the maximal fork rewriting of q.

The proof of the following lemma is by Lutz (2008b, Appendix A).

Lemma 3.11 (Lemma 1 by Lutz (2008b)). For any conjunctive query q, there exists its
(up to a variable renaming) unique maximal fork rewriting maxfr(q).

To gain more intuitions on how the fork elimination works, consult the example below.

Example 3.12. Consider a conjunctive query q := r(x, y) ∧ r(x, z) ∧ s(v, y) ∧ r(v, z) ∧
A(x) ∧ B(y) ∧ C(z) ∧ D(v). By applying fork elimination for variables x and v we obtain
the maximal fork rewriting of q, i.e. the conjunctive query maxfr(q) := r(xv, y) ∧ s(xv, y) ∧
r(xv, z) ∧ B(y) ∧A(xv) ∧D(xv) ∧ C(z), with xv being a fresh variable.

x A

yB z Cv
D

r r
s r

y

B
xv

A,D
z
C

r

s

r

Figure 1: An example conjunctive query (left) and its maximal fork rewriting (right).

A rather immediate application of Definition 3.10 yields that an entailment of a fork
rewriting of a query implies the entailment of the input query itself.

Lemma 3.13. Let q, q ′ be conjunctive queries, such that q ′ is obtained from q by fork
rewriting, and let I be a structure. Then I |= q ′ implies I |= q.

Proof sketch. Assuming I |= q ′, there is derivation q=qn  fe qn−1  fe . . .  fe q0=q ′.
Reason inductively employing the fact that given a homomorphism hi : Iqi → I one can
obtain a homomorphism hi+1 : Iqi+1 → I from hi simply by assigning to both hi+1(x) and
hi+1(y) the value hi(x), where x and y were identified during the i-th fork elimination.

3.4 Step III: Splittings

The next notion of splittings provides an abstraction of how a CQ q matches a (|q|,N)-
locally-forward-forest-like interpretation, while referring neither to a concrete interpretation
nor to a concrete match. Intuitively, the role of splittings is to partition the variables v of
some fork rewriting q of the input query, depending on the three possible scenarios:

• either v is expected to be mapped to one of the N-named elements,
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• or v, together with some other variables, are expected to be mapped such that they
form a subtree dangling from one of the N-named elements,

• or v is expected to be mapped somewhere “further down” inside the structure, discon-
nected from the N-named elements.

Definition 3.14. Let N ⊆ NI and let q be a CQ. An N-splitting ΠN
q of q is a tuple

ΠN
q := (Roots, name, SubTree1, SubTree2, . . . , SubTreen, root-of, Trees) ,

where the sets Roots, SubTree1, . . . , SubTreen, Trees induce a partition of Var(q), name :
Roots→ N is a function naming the roots and root-of : {1, 2, . . . , n} → Roots assigns to
each SubTreei an element from Roots. Moreover, to be an N-splitting, ΠN

q has to satisfy all
the conditions below:
(a) the query q�Trees is a conjunction of variable-disjoint forward-tree-shaped queries,
(b) the queries q�SubTreei

are forward-tree-shaped for all indices i ∈ {1, 2, . . . , n},
(c) for any atom r(x, y) ∈ q the variables x, y either belong to the same set or there is an

index i ∈ {1, 2, . . . , n} such that root-of(i) = x ∈ Roots and y ∈ SubTreei is the root
of q�SubTreei

,
(d) For any index i ∈ {1, 2, . . . , n} there is an atom r(root-of(i), xi) ∈ q with xi being the

root of q�SubTreei
.

It may help to think that a splitting represents an abstraction of an image of the query in
a target structure, consisting of named roots, corresponding to the ABox part of the model,
together with some of their subtrees and of some auxiliary forward-trees lying somewhere
detached from the roots.
Example 3.15. Consider an {a,b,c}-rooted forward forest I and a (non-tree-shaped) CQ q:

q := (A(x0) ∧ r(x0, x1) ∧ r(x1, x0) ∧ B(x1)) ∧ (s(x0, x00) ∧ r(x00, x000))
∧ (r(x0, x01) ∧ s(x01, x010) ∧ r(x010, x0100)) ∧ (A(x200) ∧ r(x200, x2001) ∧ B(x2001)) .
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Roots = {x0, x1}

SubTree1 = {x00, x000}

SubTree2 = {x01, x010, x0100}

Trees = {x200, x2001}

name(x0) = a, name(x1) = b

root-of(1) = x0, root-of(2) = x0

Figure 2: The left part of the picture depicts an example forest I that satisfies the query q.
An example match of q, defined as xi 7→ i, is visualized by highlighted areas of the picture.
The query itself is not depicted here. The right part of the pictures gives an example splitting
Π{a,b,c}q of q, which corresponds to the presented match, and which is compatible with I.
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Then a splitting Π{a,b,c}q := (Roots, name, SubTree1, SubTree2, root-of, Trees) defined
in Figure 2 is compatible with I (consult Definition 3.16).

We finish the section by showing that splittings indeed fulfil their purposes. In order
to do it, we first introduce an immediate definition of compatibility of a splitting with a
(|q|,N)-locally-forward-forest-like interpretation.

Definition 3.16. Let N ⊆ NI, q be a CQ and I be a (|q|,N)-locally-forward-forest-like
interpretation. We say that an N-splitting ΠN

q of q is compatible with I if all the conditions
below are satisfied.

(A) for each connected component q̂ of q�Trees there is d ∈ ∆I satisfying d ∈ (Matchq̂)I ,
(B) for all atoms A(x) ∈ q with x ∈ Roots we have (name(x))I ∈ AI ,

(C) for all atoms r(x, y) ∈ q with x, y ∈ Roots we have
(
name(x)I , name(y)I

)
∈ rI ,

(D) for all indices i ∈ {1, 2, . . . , n} the following property, for xi being the root of q�SubTreei
,

is satisfied:

name(root-of(i))I ∈

∃
 ⋂

r(root-of(i),xi)∈q
r

 .Matchq�SubTreei

I .
The forthcoming lemmas link together all the notions presented in this section. Their

proof is quite delicate and relies on an exhaustive case analysis: we give the main ideas below.

Lemma 3.17. Let q be a CQ, N ⊆ NI and I be a (|q|,N)-lff-like interpretation. Then I |= q
if and only if there is a fork rewriting q ′ of q and an N-splitting ΠN

q′ of q ′, such that ΠN
q′ is

compatible with I.

Proof sketch (⇐). By Lemma 3.13, it suffices to show I |= q ′. We define a homomorphism
h : Var(q ′)→ I, witnessing I |= q ′, as follows:

• For every root variable x ∈ Roots we put h(x) := (name(x))I .
• Fix an index 1 ≤ i ≤ n. By Item (b) of Definition 3.14 we know that q ′�SubTreei

is
forward-tree-shaped and let xi be its root. Moreover, by Item (D) of Definition 3.16
there exists an element di ∈ ∆I satisfying:

(
name(root-of(i))I ,di

)
∈

 ⋂
r(root-of(i),xi)∈q′

rI
 and di ∈

(
Matchq′�SubTreei

)I
.

From the forward-tree-shapedness of q ′�SubTreei
and Lemma 3.8 we conclude the exis-

tence of a homomorphism hi from Iq′�SubTreei
to I with hi(xi) = di. Thus we can simply

put h(x) := hi(x) for all x ∈ SubTreei.
• Take any connected component q̂ of q ′�Trees, which by Item (a) of Definition 3.14 is

forward-tree-shaped. From the compatibility of ΠN
q′ with I and Item (A) of Defini-

tion 3.16 we know that there is an element d ∈ ∆I satisfying d ∈ (Matchq̂)I . Invoking
Corollary 3.9, we deduce that there exists a homomorphism hq̂ : Iq̂ → I. Finally, we
put h(x) := hq̂(x) for all x ∈ Var(q̂).
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Showing that the definition of h is correct relies on a routine case analysis, employing
Definition 3.14 and Definition 3.16.

Proof sketch (⇒). Let π be a match witnessing I |=π q. As a preliminary step, we modify
both π and q slightly, to make them “forest-like”. An appropriate splitting is given afterwards.

The query q ′ is constructed by exhaustive application of fork elimination on all “forks”
r(x, z), s(y, z) with π(x) = π(y) (where r , s are not necessarily different). Obviously I |= q ′
holds, witnessed by some match π′. Take any connected substructure I ′ of I induced by
π′ and let N′ ⊆ N be names given to elements from I ′. Let V be the set of all variables
mapped to I ′. Depending on whether N′ is empty or not, we invoke the assumption that I ′ is
homomorphically equivalent to some forward-tree (resp. appropriately rooted forward forest)
and modify the match π′ on V so that π′(V ) is also a forward-tree (resp. forward-forest).

Finally, we define an N-splitting

ΠN
q′ := (Roots, name, SubTree1, SubTree2, . . . , SubTreen, root-of, Trees) ,

where the definitions of its components are provided below.

• The set Roots is composed of all variables x ∈ Var(q ′) for which π′(x) is an N-named
element of I. For all such variables x we set name(x) := a for any corresponding a ∈ N.

• The sets SubTreei, as their name suggests, are defined by taking subtrees connected
to the roots. To simplify the definition, we say that a variable x is dangling from a root
if there exists a variable xr ∈ Roots and an atom r(xr, x) in q ′. Let D be the subset-
maximal set of variables from (Var(q ′) \ Roots) dangling from roots. Take n := |D|
and fix an ordering x1, x2, . . . , xn on the elements from D. For any index 1 ≤ i ≤ n
we define SubTreei as the set composed of xi and all variables reachable from xi via a
directed path of positive length in the query structure Iq′�Var(q′)\Roots

.

• We put root-of(i) := x ir, where x ir is the root from which xi ∈ D is dangling.
• The set Trees contains all other variables from Var(q ′).

Showing that ΠN
q′ is indeed a splitting is quite delicate and relies on a careful analysis of

multiple cases. We leave it for the appendix.

Following Lutz, we say that a role conjunction s1∩ . . .∩sn occurs in a CQ q if we can find
two variables v, v′ ∈ Var(q) such that {r ∈ NR | r(v, v′) ∈ q} = {s1, s2, . . . , sn}. Similarly,
we speak about concept/role names occurring in q. Note that the role conjunctions and
concept/role names used in Definition 3.16 occur in q.

We will next link maximal fork rewritings and splittings. Let q be a CQ and let
QTree(maxfr(q)) denote the set of all forward-forest-shaped queries maxfr(q)�Reach(v), where
v ∈ Var(maxfr(q)) and Reach(v) denotes the set of all variables reachable from v in Imaxfr(q)
via a directed path. Note that the size of QTree(maxfr(q)) is polynomial in the size of
maxfr(q), thus also in |q|. The following lemma was shown in Appendix A by Lutz (2008b).

Lemma 3.18. Let ΠN
q′ = (Roots, name, SubTree1, . . . , SubTreen, root-of, Trees) be an N-

splitting of q ′, a fork rewriting of a CQ q, let q ′1, q ′2, . . . , q ′k be the disconnected components
of q ′�Trees, and let x1, x2, . . . , xn be the root variables of the corresponding q ′�SubTreei

. Then:
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• q ′i ∈ QTree(maxfr(q)) for all 1 ≤ i ≤ k,
• for all 1 ≤ i ≤ n we have q ′�SubTreei

∈ QTree(maxfr(q)), and
• ⋂

r∈{r |r(root-of(i),xi)∈q′} .r occurs in maxfr(q).

Proof. A notational variant of a proof by Lutz (2008b, Lemma 4) assuming the naming
convention from his Appendix A.10

3.5 Step IV: Spoilers

Spoilers (Lutz, 2008b, p. 6) are ALC∩ knowledge bases dedicated for “blocking” query
matches over locally forward forest-like structures. We define them formally below.

Definition 3.19. Let N ⊆ NI, q be a CQ and let

ΠN
q := (Roots, name, SubTree1, . . . , SubTreen, root-of, Trees)

be an N-splitting ΠN
q of q. An N-spoiler KU

ΠN
q
for ΠN

q is an ALC∩-KB satisfying at least one of:

(A) (> v ¬Matchq̂) ∈ KU

ΠN
q
for some forward-tree-shaped query q̂, a connected component

of q�Trees,
(B) (¬A(name(x))) ∈ KU

ΠN
q
for some atom A(x) ∈ q with x ∈ Roots,

(C) (¬r(name(x), name(y))) ∈ KU

ΠN
q
from some atom r(x, y) ∈ q with x, y ∈ Roots,

(D)
(
¬∃
(⋂

r(root-of(i),xi)∈q r
)
.Matchq�SubTreei

)
(name(root-of(i))) ∈ KU

ΠN
q
for some index

1 ≤ i ≤ n (where xi denotes the root variable of q�SubTreei
).

Observe a tight correspondence between Items (A)–(D) of the above definition and
Items (A)–(D) from Definition 3.14. We may see these cases as potential ways of “blocking”
the compatibility of a given splitting.

Definition 3.20. Let N ⊆ NI and let q be a CQ. An ALC∩-KB KU
(

q is an N-super-spoiler
for q if it is a ⊆-minimal KB such that for all fork rewritings q ′ of q and all N-splittings
ΠN

q′ of q ′ we have that KU
(

q is an N-spoiler for ΠN
q′.

The forthcoming lemmas show that the existence of an N-super-spoiler “spoils” the
(finite) entailment of an input CQ over (finite) (|q|,N)-lff-interpretations.

Lemma 3.21. Let I be a (finite) (|q|,N)-lff-like interpretation and let q be a CQ. Then
I 6|= q implies that there is an N-super-spoiler KU

(

q for q such that I |= KU
(

q .

Proof. We inductively construct a sequence K0 := ∅,K1,K2, . . . of ALC∩-KBs converging
to an N-super-spoiler for q. To do so, we first fix some ordering on pairs Pi := (q ′,ΠN

q′) of
fork rewritings q ′ and N-splittings of q ′, and then proceed inductively with the i-th such
pair. Note that ΠN

q′ is not compatible with I. Indeed, Lemma 3.17 would then imply I |= q.
Thus, there is at least one item of Definition 3.16 that is violated and there exists the

10. Watch out! There is a glitch in Lutz’s proof. In the inductive assumption no. 4, there should be {v, v′} 6=
{v, v′} ∩ Sj 6= ∅ rather than {v, v′} ∩ Sj 6= ∅.
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corresponding axiom α for which I 6|= α holds. Let β be the corresponding “negated”
axiom from Definition 3.19. We put Ki := Ki−1 ∪ {β}. From the definition of a spoiler
and by construction, we see that Ki is an N-spoiler for Pi as well as for all previous pairs.
Moreover, I |= β. There are only finitely many pairs Pi to consider, hence we can take K to
be the last knowledge base on the list. Clearly I |= K. After replacing K with its ⊆-minimal
subset that entails K, we obtain the desired N-super-spoiler KU

(

q for q.

Lemma 3.22. Let I be a (finite) (|q|,N)-lff-like interpretation and let q be a CQ. Then if
I |= KU

(

q for some N-super-spoiler KU
(

q for q then I 6|= q.

Proof. Ad absurdum, suppose that I |= q. Hence, by Lemma 3.17 we infer that there is
a fork rewriting q ′ of q and an N-splitting ΠN

q′ of q ′ that is compatible with I. Since KU
(

q
is an N-super-spoiler for q we have that, by Definition 3.20, it is also an N-spoiler for ΠN

q′ .
This implies that for ΠN

q′ at least one of the conditions (A)–(D) from Definition 3.19 hold,
contradicting the compatibility of ΠN

q′ with I.

Relying on the presented lemmas we conclude a reduction from the (U)CQ entailment
problem to the problem of checking the existence of an ind(K)-super-spoiler spoiling the
(finite) satisfiability of K.

Lemma 3.23. Let DL be (finitely) locally-forward abstract DL, K be a DL-KB and q :=∨m
i=1 qi be a UCQ. Then K 6|=(fin) q iff there are ind(K)-super-spoilers KU

(

qi
for all qi s.t.

K ∪
⋃
iKU

(

qi
is (finitely) satisfiable.

Proof sketch. Similar to the proofs of Lemma 3.21 and Lemma 3.22.

3.6 Step V: Super-Spoilers Made Small and Efficient

To get the optimal complexity bounds, we need to show that there are exponentially many
super-spoilers that can be enumerated in exponential time and that the size of each super-
spoiler is only of polynomial size.

We first show the following lemma (an analogue to Lutz’s work (2008b, Lemma 5)),
showing that super-spoilers have “small” sizes.

Lemma 3.24. Let N ⊆ NI be finite, q be a CQ, and let KU
(

q be an N-super-spoiler for q.
Then all the axioms contained in KU

(

q are of one of the following forms:

(A ′) > v ¬Matchq̂ for some forward-tree-shaped query q̂ ∈ QTree(maxfr(q)),
(B ′) ¬A(a) for some name a ∈ N and a concept name A occurring in maxfr(q),
(C ′) ¬r(a,b) for some names a,b ∈ N and a role name r occurring in maxfr(q),
(D ′) (¬∃ (s1 ∩ s2 ∩ . . . ∩ sk) .Matchq̂) (a) for some forward-tree-shaped q̂ ∈ QTree(maxfr(q)),

name a ∈ N and a role conjunction s1 ∩ s2 ∩ . . . ∩ sk that occurs in maxfr(q).

Proof. Take any N-super-spoiler for q and let α be any of its axioms. We show that α is of
the shape above. If α is of the form of Item (B) or Item (C) we are done by the fact that (1)
if r/A occurs in q then it also occurs in the maximal fork rewriting, and (2) name assigns
values from N. If α is of the form of Item (A) we invoke Lemma 3.18. Applying all mentioned
arguments we are also done with the case when α has the form from Item (D).
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As a direct consequence of the above lemma we obtain:

Lemma 3.25. The size of every N-super-spoiler for a CQ q is polynomial in |q|+ |N|, and
the total number of N-super-spoilers is exponential in |q|+ |N|.

Proof. Let q∗ := maxfr(q). To bound the size of N-super-spoilers we invoke Lemma 3.24 and
see that the axioms of the corresponding items can be bounded, respectively, by |QTree(q∗)|,
|q| · |N|, |q| · |N|2 and |q| · |QTree(q∗)| · |N|. Since |QTree(q∗)| is bounded polynomially in |q|
we are done. The latter part is now immediate.

The last property in our path leading to an algorithm solving the (U)CQ-entailment is
the ability to enumerate N-super-spoilers in exponential time.

Lemma 3.26. The set of all N-super-spoilers for a CQ q can be enumerated in time expo-
nential in |N|+ |q|.

Proof. We enumerate N-super-spoilers as follows. We first enumerate all ALC∩-KBs contain-
ing only the axioms stated in Lemma 3.24 (requires time exponential in |N|+ |q). To check
if a knowledge-base is indeed an N-super-spoiler, we go through all fork rewritings (there
are exponentially many in |q| of them) and all splittings for them (exponential in |N|+ |q|).
Then we apply the definition of N-spoilers to check if the considered knowledge-base indeed
blocks the splitting, which can be performed, after fixing an N-spoiler and an N-splitting,
in polynomial time. The execution times are multiplied, hence the overall algorithm works
in time exponential in |N|+ |q|.

3.7 Step VI: The Algorithm

We are now ready to present an algorithm for deciding (finite) (U)CQ entailment problem
over (finitely) locally-forward DLs, that is worst-case optimal in many scenarios, e.g. in
the case when the (finite) satisfiability problem for a given DL is ExpTime-complete. We
present it in pseudocode below.
Procedure 1: (Finite) UCQ entailment for (finitely) locally-forward DLs
Input: UCQ q := ∨m

i=1 qi and DL-KB K, where DL ∈ Clf (DL ∈ Cflf in the finite
case).

1 If K is not (finitely) satisfiable return True. // Checkable in SATDL(poly(|K|)).
2 foreach selection of ind(K)-super spoilers KU

(

q1 , . . . ,K
U

(

qm
for q1, . . . , qm

// In exp(|ind(K)|+|q|) by Lemma 3.26

3 do
4 If K ∪⋃iKU

(

qi
is (finitely) satisfiable return False.

// In SATDL(poly(|K| + |q|)) by Lemma 3.25

5 return True.

Lemma 3.27. Procedure 1 returns True iff K |=(fin) q. Moreover, Procedure 1 can be
implemented to work in time exp(|K| + |q|) · SATDL(poly(|K|+|q|)) for some polynomial
function poly and an exponential function exp, where SATDL denotes the worst-case optimal
running time of the (finite) satisfiability problem for DL-KBs.
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Proof sketch. The first statement follows immediately from the pseudocode and Lemma 3.23.
The second part of the lemma follows from Lemma 3.25 and Lemma 3.26.

Relying on the above lemma, we conclude our main theorem.

Theorem 3.28. For any (finitely) locally-forward DL DL with (finite) DL-KB-satisfiability
problem decidable in time SATDL(·), there exists a polynomial and an exponential function
poly and exp such that the (finite) UCQ-entailment problem over DL-KB is decidable, for
an input K, q, in time exp(|K|+ |q|) · SATDL(poly(|K|+|q|)).

The most important application of our work is when the (finite) knowledge base satisfiabil-
ity problem forDL is ExpTime-complete. The function exp(|K|+|q|)·SATDL(poly(|K|+|q|))
reduces then to a single exponential function, and hence, we have the following corollary
(where the corresponding lower bound follows from ALC (Schild, 1991, Prop. 3)).

Corollary 3.29. The (finite) (U)CQ entailment problem is ExpTime-complete for any
(finitely) locally-forward abstract DL with ExpTime-complete (finite) knowledge base satis-
fiability problem.

Recall from the beginning of the section that ALCSCC+ERCBoxes is finitely locally-
forward (to be shown in Corollary 4.24) and that any abstract DL DL contained in µALCSCC
is locally-forward, cf. Corollary 3.6. Their corresponding knowledge base satisfiability prob-
lems are ExpTime-complete (cf. Theorem 7 by Baader et al. (2020) and Corollary 3.6).

Corollary 3.30. The UCQ entailment problem over DL-KBs for any DL contained in
µALCSCC is ExpTime-complete. The finite UCQ entailment problem for ALCSCC w.r.t
ERCBoxes is ExpTime-complete.

Corollary 3.30 closes numerous gaps in the complexity of query entailment that were
present in the literature, e.g. the complexities of CQ entailment for ALCb, ALCHbregQ,
µALC, or the UCQ entailment for ALCHQ were, up to our knowledge, unknown. This
also proves that neither regular role expressions nor safe boolean role combinations from
ALCHbregQ do increase the complexity of querying, as it is the case for nominals and inverses.
Call Z− the logic ALCHbreg (this is the logic Z (Calvanese et al., 2009) without the Self
operator). It was recently shown that ZOQ is finitely controllable (Bednarczyk & Kieroński,
2022, Theorem 3.1), hence by applying Corollary 3.30 we infer:

Corollary 3.31. The finite UCQ entailment problem over DL-KBs for any ALC ⊆ DL ⊆
Z−Q is ExpTime-complete.

As the last remark: any PEQ can be transformed into a (U)CQ of exponential size. This
yields us 2ExpTime-completeness of PEQ querying for any logics mentioned in the above
theorem. The lower bound holds already for ALC (Ortiz & Simkus, 2014, Theorem 1).

4. Sufficient Conditions for an Abstract DL to be “Locally-Forward”

This section is dedicated to providing model-theoretic constructions and sufficient conditions
useful for determining whether a given abstract DL DL is locally-forward. Our aim is to
make such conditions easier to check than applying Definition 3.4 directly.
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Our agenda is as follows. We first introduce a concept of forward unravellings that
turn interpretations into (usually infinite) forward forests. If the satisfaction of DL-KBs is
preserved under such unravellings, then DL is locally-forward. To obtain suitable conditions
in the finite model reasoning scenario, we develop the notion of scattered forward unravellings.
Their main advantage is that the scattered forward unravellings of finite interpretations are
indeed finite whilst from the queries’ view point they are indistinguishable from infinite
forward forests. We conclude that DL is finitely locally-forward whenever the satisfaction of
any DL-KB is preserved under scattered forward unravellings. Finally, we will discuss the
case of logics expressing statistical constraints over the domain, and see how the notion of
scattered forward unravellings can be adjusted to them.

4.1 Forward unravellings of interpretations

Forward unravellings make interpretations forward-forest-shaped. Such a notion differs only
slightly from classical unravellings (Baader et al., 2017, Definition 3.21). The crucial difference
is that forward unravellings preserve substructures induced by the selected named individuals.
More precisely, the sequences starting with two named individuals are excluded from the
domain and roles linking named individuals are assigned “manually”(cf. the last item from
Definition 4.1). Before reading the definition we suggest consulting Figure 3.

Definition 4.1. Let N ⊆ NI be non-empty. An N-rooted forward unravelling of an inter-
pretation I is an interpretation I #‰ω

N := (∆I
#‰ω

N , ·I
#‰ω

N ) satisfying all four conditions below:

1. The domain of I #‰ω
N consists of all non-empty words of elements from ∆I , except those,

where the first two elements are named or where two consecutive elements are “discon-
nected”. In symbols: ∆I

#‰ω
N := (∆I)+ \

(
NI · NI · (∆I)∗ ∪ (∆I)∗ · {de | d, e ∈ ∆I ,RolI(d, e) = ∅} · (∆I)∗

)
.

For convenience, we do not syntactically distinguish elements from ∆I and single-letter
words from ∆I

#‰ω
N . In particular, this means that ∆I ⊆ ∆I

#‰ω
N . We often use last, i.e. the

function that maps a sequence to its last element.

2. For all individual names a ∈ N we have aI
#‰ω

N = aI and for all other names a ∈ (NI \N)
there is some b ∈ N fulfilling aI

#‰ω
N = bI

#‰ω
N .

3. For any concept name A ∈ NC the equality AI
#‰ω

N = {w | last(w) ∈ AI} holds.

4. For all role names r ∈ NR we define rI
#‰ω

N as the intersection of ∆I
#‰ω

N ×∆I
#‰ω

N and the set

(
rI ∩ (NI × NI)

)
∪
{

(w,w · d) | (last(w),d) ∈ rI
}
.

Intuitively, the above set is composed of two parts, where the first component preserves
N-named parts, while the other one preserves roles, mimicking the classical unravelling.
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Figure 3: An interpretation I (left) with a fragment of its {a,b,c}-rooted forward unravelling
I #‰ω
{a,b,c} (right). Note that I #‰ω

{a,b,c} is a forest with two connected components. Nodes of the
same colour satisfy the same atomic concepts.

It is not difficult to see that forward unravellings produce forest-shaped interpretations
that can be homomorphically mapped to the original structures.

Lemma 4.2. Let I be an interpretation, N ⊆ NI be a set of names and let I #‰ω
N be any

N-rooted forward unravelling of I. Then I #‰ω
N is N-rooted forest-shaped and the function

last : ∆I
#‰ω

N → ∆I is an N-homomorphism from I #‰ω
N to I.

Proof sketch. Routine case analysis, essentially unfolding Definition 4.1.

This leads us to a sufficient condition for a DL to be locally-forward. Call an abstract
DL DL preserved under forward unravellings if for all DL-KBs K the ind(K)-rooted forward
unravellings are consistency-preserving, i.e. for all I we have I |= K implies I #‰ω

ind(K) |= K.

Theorem 4.3. If an abstract DL DL is preserved under forward unravellings then DL ∈ Clf .

Proof. By unfolding Definition 3.4 and Definition 3.3, it suffices to take any satisfiable
DL-KB K, any of its models I and any n ∈ N and show that there exists an (n, ind(K))-
lff-like model J |= K, whose all n-neighbourhoods can be ind(K)-homomorphically-mapped
to I. Take J := I #‰ω

ind(K), and take any of its n-neighbourhoods J ′. Since last is an ind(K)-
homomorphism from J to I, it is also an ind(K)-homomorphism from J ′ to I.

We conclude by presenting several useful properties of forward unravellings that may be
useful for a quick test to see whether the modelhood of some knowledge base is preserved.

Property 4.4. Let I be an interpretation, let N ⊆ NI be a set of names and let I #‰ω
N be any

N-rooted forward unravelling of I. Then the following conditions are satisfied:

(A) The interpretations I and I #‰ω
N restricted to all N-named elements are isomorphic.

(B) For any concept name A ∈ NC we have that AI is non-empty iff AI
#‰ω

N is. Similarly,
for any role name r ∈ NR we have that rI is non-empty iff rI

#‰ω
N is.
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(C) For any w ∈ ∆I
#‰ω

N we have ConcI(last(w)) = ConcI #‰ω
N

(w). Moreover, for all v satisfying
(w, v) ∈ rI

#‰ω
N for some r ∈ NR, we have RolI(last(w), last(v)) = RolI #‰ω

N
(w, v).

(D) For any w ∈ ∆I
#‰ω

N we have that w in I #‰ω
N and last(w) in I have the same number

of successors satisfying the same roles and concepts. Formally, for any non-empty
set of role names R ⊆ NR and any set of concept names C ⊆ NC we have that the
cardinalities of the two sets below coincide:{

v ∈ ∆I
#‰ω

N | ConcI #‰ω
N

(v) = C and RolI #‰ω
N

(w, v) = R
}
,

{
e ∈ ∆I | ConcI(e) = C and RolI(last(w), e) = R

}
.

(E) For any w ∈ ∆I
#‰ω

N we have that w and last(w) are directed-path-equivalent, that is:

• If ρ with ρ1 := w is a (possibly infinite) directed path in I #‰ω
N then ρ′, defined as ρ′i :=

last(ρi) for all i, is a directed path in I such that for all i we have ConcI #‰ω
N

(ρi) =
ConcI(ρ′i), and for all i > 1 we have RolI #‰ω

N
(ρi−1, ρi) = RolI(ρ′i−1, ρ

′
i).

• If ρ with ρ1 := last(w) is a (possibly infinite) directed path in I then ρ′ defined as:
(i) ρ′1 := w, and
(ii) ρ′i := ρi if both ρ′i−1 and ρi are N-named, and ρ′i := ρ′i−1ρi otherwise for all

remaining i,
is a directed path in I #‰ω

N such that for all i we have ConcI #‰ω
N

(ρ′i) = ConcI(ρi), and
for all i > 1 we have RolI #‰ω

N
(ρ′i−1, ρ

′
i) = RolI(ρi−1, ρi).

Proof sketch. Follows immediately from the construction of I #‰ω
N , cf. Definition 4.1.

One can employ Property 4.4 to show that forward unravellings, among other properties,
preserve: the satisfaction of ABoxes (via Item (A)), the existence of “unary-types” and
“role-types” (via Item (B)), cardinality constraints on the total number of successors (via
Item (D)), role hierarchies and safe boolean role combinations (via Item (C)), regular role
expressions and fixed points (via Item (E)). Hence, they can be easily used to give a self-
contained proof of Corollary 3.6 saying that the logic µALCSCC is locally forward. We leave
as an exercise to the reader to see that (in most of the cases) our unravellings do not preserve
inverse roles, nominals, transitivity, or self-loops.

4.2 Scattered Forward Unravellings of Interpretations

We have seen that for a certain class of logics, namely for DLs preserved under forward
unravellings, forward unravellings produce forest (counter)models out of (possibly) non-forest
ones. The presented construction is sufficient to employ Lutz’s spoiler method (described
in the previous section) over the class of arbitrary structures, but it is useless once we want
to achieve results in the finite-model scenario. The reason is trivial: forward unravellings of
finite interpretations are nearly always infinite. To find a suitable counterpart of forward
unravellings in the finite realm, we design the notion of scattered forward unravellings.
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The aim of scattered forward unravellings is, given a threshold n, a set of names N,
and a finite interpretation I, to turn I #‰ω

N into a finite (n,N)-lff-like interpretation (consult
again Definition 3.1 if needed). The construction is a little bit involved and relies on cutting
out finitely many tree-like components from I #‰ω

N and then glueing them together mimicking
“parent-to-leaf connections”, so that any neighbourhood of size n from the desired structure
is homomorphically-equivalent to some n-neighbourhood from the forward unravelling. The
novel model construction presented here took some inspiration from similar constructions,
namely the ones by Bednarczyk and Kieroński (2022, Sec. 3), by Otto (2004, Sec. 4.2), and
by Emerson and Halpern (1985, Sec. 3.5).

We start the construction by defining basic building blocks, called here the components.

Definition 4.5. Fix a number n ∈ N, a finite set of names N ⊆ NI and a finite interpreta-
tion I whose domain is linearly ordered. We select certain auxiliary substructures of I #‰ω

N .

• The (N, n)-king component Iª of I is obtained from I #‰ω
N by a restriction to all words

from ∆I
#‰ω

N of length at most 2n+1.
• Call d ∈ ∆I deep whenever there is a word w := u · d in ∆I

#‰ω
N such that |u| > n.

The lexicographically smallest word such w is called the deep realisation of d. The
(N, n)-pawn component I¬,d of a deep element d is obtained by restricting I #‰ω

N to all
words of the from w · v, where w is the deep realisation of d and |v| ≤ 2n.

Let I (n,N, I) be the set of all components of I. With L(n,N, I) we denote the maximal
number of leaves among all components in I (n,N, I). Thus we can assign a number 1 ≤ ` ≤
L(n,N, I) to any leaf in any component of I (n,N, I) and refer to it as this component’s `-th
leaf. For future purposes, we define origI #‰ω

N
: (⋃I (n,N, I))→ I #‰ω

N that maps an element from
any component to the element from whom it originated. We also employ origI := origI #‰ω

N
◦ last.

The king component Iª is simply the forward unravelling cut off after 2n+1 steps, while
each pawn component I¬,d is a subtree of depth 2n rooted at some deep enough copy of some
element of ∆I . Note that Iª is a finite N-rooted forward forest, while all I¬,d are forward trees.
As the next step, we provide sufficiently many copies of interpretations from I (n,N, I).

Iª

I #‰ω
N :=

I¬,c
I¬,d

I¬,e

Figure 4: Visualization of the selection of components out of the forward unravelling of I.

Definition 4.6. Take (n,N, I) as in Definition 4.5. The set J (n,N, I) of copies of com-
ponents is composed of the king component Iª ∈ I (n,N, I) and isomorphic copies I(`,s)

¬,d,h
of pawn components I¬,d that are indexed by: a deep element d ∈ ∆I , h ∈ {0, 1}, 1 ≤ ` ≤
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L(n,N, I), and s ∈
(
∆I ∪ {ª}

)
, that are called, respectively, the target, the hue, the leaf

number, and the source of a component. We often employ ∗ that serves as a wildcard which
can be used in place of various parameters, whenever such parameters are of no importance.
For convenience, we will also speak about the “hue” of a domain element, meaning the “hue”
of the unique copy of the pawn component to which such an element belongs.

The main idea behind the quite loaded notation of I(`,s)
¬,d,h is that the root of I(`,s)

¬,d,h “can
serve as a d-witness for the `-th leaf of any copy of I¬,s of hue 1−h”. Note that it follows
immediately from the finiteness of ∆I and n, that J (n,N, I) is finite.

We are finally ready to present the definition of n-scattered forward unravellings.

Iª

I(`,ª)
¬,d,0

`

`

I(∗,∗)
¬,e,h

I(`,e)
¬,d,1−h

d

e d

Figure 5: Linking components in the construction of (n,N)-scattered unravelling of I. The
left hand side of the picture illustrates connections between the king component and pawn
components, while its right hand side depicts connections between two pawn components.

Definition 4.7. Suppose that (n,N, I) are as in Definition 4.5. The (n,N)-scattered-
forward-unravelling I #‰n

N is obtained by taking the disjoint sum of structures from J (n,N, I),
and then extending the interpretation of each role name r ∈ NR, with a pair (u, v) of I #‰n

N ,
whenever: (origI(u), origI(v)) ∈ rI holds and either

(i) u is the `-th leaf of Iª, and v is the root of I(`,ª)
¬,origI(v),0, or

(ii) u is the `-th leaf of I(∗,∗)
¬,e,h for an e ∈ ∆I and h ∈ {0, 1}, and v is the root of I(`,e)

¬,origI(v),1−h.

Our next goal is to show that the aforementioned construction fulfils its purposes. i.e.
that (N, n)-scattered forward unravellings of finite structures are indeed finite (which we
already discussed) and that they are (n,N)-locally-forest-like. As the first step we establish:
Lemma 4.8. Assume (n,N, I) are as in Definition 4.5. Then every undirected path in I #‰n

N
leading from a root of some pawn component to any of its leaves has length ≥ 2n.
Proof sketch. By construction of I #‰n

N , the path ρ crosses more than one component and does
not contain two consecutive positions being roots of different components. Then ρ has the
shape ρ′0d1 . . . ρ

′
2kd2k+1, where the even-numbered paths ρ′2i are (possibly single-element)

leaf-to-leaf paths traversing a single component, while the odd-numbered elements d2i+1
are roots of components. Moreover, if ρi is a leaf and ρi+1 is a root, then their “hues” are
different. This yields a contradiction, since the first and the last element of ρ are of different
“hue”, and thus clearly cannot be in the same component.
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Call a neighbourhood safe if it is fully contained in some (copy of a) component. The
above lemma, together with the definition of the king component, yield a general overview
on how n-neighbourhoods interact with components in scattered unravellings.

Corollary 4.9. Let n, N, I be as in Definition 4.5, and let N be any unsafe n-neighbourhood
of I #‰n

N . Then N does not contain any N-named elements. Moreover, for all components J
of J (n,N, I) sharing a common element with N , we have the dichotomy: either N contains
some leaf of J (we call such component N -upper) or N contains the root of J (we call
such component N -lower).

N -upper comp.

N -lower comp.

glueing

Figure 6: Visualisation of N -lower and N -upper components of some n-neighbourhood N
of I #‰n

N . The right part of the picture presents the notion of glueing, to be defined later.

As the second step, we show that all N -upper components look alike.

Lemma 4.10. Let (n,N, I) be as in Definition 4.5, and take any unsafe n-neighbourhood
N of I #‰n

N . Then either the only N -upper component is the king component, or there exists
an element d ∈ ∆I such that every N -upper component is of the from I(∗,∗)

¬,d,∗ . In particular,
this means that all N -upper components are isomorphic.

Proof sketch. Follows from the proof scheme of Lemma 4.8, by analysing the shape of ρ.

Given an unsafe n-neighbourhood N of I #‰n
N , a glueing glue(I) of N is defined as the

restriction of N to all elements from all N -lower components and all elements from one
single N -upper component. By Lemma 4.10 all N -upper components are isomorphic copies
of the same component, thus the glueing of N is unique up to isomorphism. It follows
from the construction of I #‰n

N that the glueing of N is a forward tree. Moreover, the identity
function is clearly a homomorphism from glue(N ) to N . A homomorphism in the other
direction is established next.

Lemma 4.11. Let (n,N, I) be as in Definition 4.5, and take any unsafe n-neighbourhood N
of I #‰n

N . Then the glueing glue(N ) of N is a forward tree, homomorphically equivalent to N .

Proof sketch. Show that a function h : N → glue(N ), defined as the identity on N -lower
components, and as a mapping of elements from N -upper components to their corresponding
elements in the unique glue(N )-upper component is the desired homomorphism. This follows
by a case analysis. The key property is that whenever the `-th leaf d′ of some I(∗,∗)

¬,c,h component
satisfies (d′, e) ∈ rN for a root of some N -lower component then all `-th leaf d′ from all I(∗,∗)

¬,c,h
component satisfy (d′, e) ∈ rN . The other parts of the proof were already discussed.
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As an immediate corollary of the previous lemma we conclude the following.

Corollary 4.12. For any finite n ∈ N, any set of names N ⊆ NI, and any finite interpre-
tation I, every (n,N)-scattered-forward-unravelling I #‰n

N of I is (n,N)-lff-like.

We say that an abstract DL DL is preserved under scattered forward unravellings if for
all finitely satisfiable DL-KBs K, their finite models I, and for all but finitely-many positive
integers n ∈ N, the n, ind(K)-scattered forward unravelling I #‰n

ind(K) of I is a finite model
of K. Relying on Corollary 4.12 one can finally show that any DL preserved under scattered
forward unravellings is also finitely locally forward. Indeed:

Theorem 4.13. If a description logic DL is preserved under scattered forward unravellings
then DL belongs to Cflf .

Proof sketch. The proof is analogous to the proof of Theorem 4.3.

Similarly to the end of the previous section, we conclude with a list of useful properties of
scattered forward unravellings. The idea is that for future applications one can employ Prop-
erty 4.14 in order to show preservation of: satisfaction of ABoxes (via Item (A)), existence of
“unary-types” and “role-types” (via Item (B)), cardinality constraints on the total number of
successors (via Item (D)), role hierarchies and safe boolean role combinations (via Item (C)),
regular role expressions and fixed points (via Item (E)). Consult the following lemma:

Property 4.14. Assume the parameters (n,N, I) as in Definition 4.5 and let I #‰n
N be any

(n,N)-scattered-forward-unravelling of I. Then the following conditions are satisfied:

(A) The interpretations I and I #‰n
N restricted to all N-named elements are isomorphic.

(B) For any concept name C we have that CI is non-empty iff CI
#‰n

N is non-empty. Similarly,
for any role name r we have that rI is non-empty iff rI

#‰n
N is non-empty.

(C) For any w ∈ ∆I
#‰n

N we have ConcI(origI(w)) = ConcI #‰n
N

(w). Moreover, for all v satisfy-
ing (w, v) ∈ rI

#‰n
N for some r ∈ NR, we have RolI(origI(w), origI(v)) = RolI #‰n

N
(w, v).

(D) For all w ∈ ∆I
#‰n

N we have that w in I #‰n
N and origI(w) in I have the same number

of successors satisfying the same roles and concepts, i.e. an analogue of Item (D)
of Property 4.4 holds.

(E) For any w ∈ ∆I
#‰n

N we have that w and origI(w) are directed-path-equivalent, i.e. an
analogue of Item (E) of Property 4.4 holds.

Proof sketch. Follows by case-analysing the construction of I #‰n
N and employing Property 4.4.

4.3 Scattered Unravellings with Rebalancing

Some description logics can express both local cardinality constraints (i.e. constraints con-
cerning the role successors of specific individuals) and global cardinality constraints (i.e.
constraints on the overall cardinality of concepts). Prominent examples of such DLs are,
e.g. Statistical ALC (Peñaloza & Potyka, 2017), and ALCSCC with Restricted Cardinality
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Boxes (Baader, 2017). In this section we will see how the notion of scattered forward un-
ravellings can be adjusted so that the construction from the previous section additionally
preserves ERCBoxes, a broad class of linear constraints over the domain.

Definition 4.15. A semi-restricted cardinality constraint is an expression δ of the form11

δ := N1 · xC1 + . . .+ Nk · xCk
+M ≤ Nk+1 · xCk+1 + . . .+ Nk+` · xCk+`

,

where all Ci are concept names, xCi are non-negative integer variables, and all Ni as well as
M are non-negative integer constants, for all 1 ≤ i ≤ k+`. A solution s for δ is a mapping
of variables to non-negative integers under which δ evaluates to true. An interpretation I
satisfies δ (written I |= δ) whenever the mapping xC 7→ |CI | is a solution for δ.

An extended restricted cardinality box (ERCBox) (Baader et al., 2020) is a positive
boolean combination of semi-restricted cardinality constraints. The notion of solutions and
satisfaction by interpretations is lifted to ERCBoxes in the obvious way.

An important property of ERCBoxes is that they enjoy arbitrarily large solutions:

Lemma 4.16. If an ERCBox E has a solution s, then for any positive integer n, the
mapping s′ : x 7→ n · s(x) is also a solution for E. Thus solvable ERCBoxes have arbitrarily
large solutions.

Proof sketch. Routine calculations.

Having a finite model I of an ERCBox E , it can happen that none of the scattered forward
unravellings of I is a model of E , as we did not care about statistical quantities of elements in
the constructed models. In order to produce finite models of ERCBoxes, we design a way of
“repairing” scattered forward unravellings, in order to restore the satisfaction of ERCBoxes.

Before we move to the main result, we introduce a handy notion of forward duplication
of domain elements, which is completely independent from the presented unravellings (and
thus can be potentially useful for future applications). The key idea is to make a copy of an
input element and connect it to all neighbours of the original.

Definition 4.17. Let I be an interpretation and let d ∈ ∆I be a domain element. The
d-forward-duplication of I is an interpretation I+d defined as follows:

• ∆I+d := ∆I ·∪ {d′} for a fresh element d′ (where ·∪ denotes disjoint union).

• I+d restricted to ∆I is isomorphic to I.

• For each concept name C ∈ NC we have d′ ∈ CI+d iff d ∈ CI .

• For each role name r ∈ NR and all e ∈ ∆I we have (d′, e) ∈ rI+d iff (d, e) ∈ rI .

We will call d′ a copy of d. We stress that d′ has no “incoming edges” even if d has.

11. Note the asymmetry in the definition: we do not allow for “spare” integer constants on the RHS. This is
because we do not want to give cardinality constraints the power to express nominals.
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The notion of d-forward-duplication can be visualised as follows:

d
d′

I

I+d :=

The process of duplication can be repeated multiple times, which we formalise next.
Given an interpretation I and finite set S := {(d1, n1), (d2, n2), . . . , (dk, nk)} ⊆ 2(∆I×N+),
the S-forward-duplication of I is an interpretation obtained by iterative application of
di-forward-duplication ni times for each 1 ≤ i ≤ k. For readers eager to see the definition:

Definition 4.18. Let I be an interpretation and take S := {(d1, n1), (d2, n2), . . . , (dk, nk)}
⊆ 2(∆I×N+). The S-forward-duplication of I is an interpretation I+S defined as follows:

• ∆I+S := ∆I ·∪ {d(ji)
i | 1 ≤ i ≤ k, 1 ≤ ji ≤ ni}, where all the elements d(j)

i are fresh.
• I+S restricted to ∆I and I are isomorphic.

• For each concept name C ∈ NC we have d(j)
i ∈ CI+S iff di ∈ CI .

• For each role name r ∈ NR and all e ∈ ∆I we have (d(j)
i , e) ∈ rI+S iff (di, e) ∈ rI .

The key property of duplication, which is immediate from the definition, is as follows:

Fact 4.19. Let I be a finite interpretation. Then for any finite S := {(d1, n1), . . . , (dk, nk)}
⊆ 2(∆I×N+) and any concept name A ∈ NC, the following equation holds:

|AI+S | = |AI |+
∑

i∈{1,2,...,k}, di∈AI
ni

With a suitable notion of duplication at hand, we will first see that duplication can be
used to restore satisfaction of ERCBoxes by scattered unravellings, and second, that all the
good properties of scattered forward unravellings are preserved. More precisely we will show:

Lemma 4.20. Let I be a finite model of an ERCBox E. Then for every positive n ∈ N and
every finite set of names N, there exists a finite set S ⊆ 2(∆I×N+) for which (I #‰n

N )+S |= E.

Proof sketch. By introducing fresh concept names Cd per each d ∈ ∆I and interpreting
them by I as singletons {d}, we rewrite an input ERCBox into an ERCBox E ′ employing
the equations

xC =
∑

d∈CI
xCd .

Having the solution s for E based on cardinalities of concepts in I, we take a large solution
s′ for E ′ (obtained by multiplying s), which assigns positive values that are greater than the
size of the domain of I #‰n

N (existence guaranteed by Lemma 4.16). We conclude by duplicating
d ∈ ∆I with S sufficiently many times in order to fulfill the equation |C

(I #‰n
N )+S

d | = s′(Cd).
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For the preservation of good properties of scattered unravellings treated by duplication,
we are going to show that the analogue of Corollary 4.12 and Property 4.14 hold.

Lemma 4.21. Assume (n,N, I) as in Definition 4.5, and take any finite S ⊆ 2(∆I×N+).
Then (I #‰n

N )+S is a finite (n,N)-lff-like interpretation, whose every n-neighbourhood can be
N-homomorphically mapped to I.

Proof. Finiteness of (I #‰n
N )+S follows from the following three facts: (i) finiteness of I #‰n

N , (ii)
finiteness of S, (iii) Fact 4.19. For the rest of the proof, it suffices to employ Lemma 4.11 after
observing that the function mapping duplicated elements to their originals (and behaving
as the identity function on other elements) is an N-homomorphism from (I #‰n

N )+S to I #‰n
N .

We are ready to proceed with our usual list of properties.

Property 4.22. Assume the parameters (n,N, I, S) as in Lemma 4.21. Then the analogue
of Property 4.14 holds, namely:

(A) The interpretations I and (I #‰n
N )+S restricted to all N-named elements are isomorphic.

(B) For any concept name C we have that CI is non-empty iff C(I #‰n
N )+S is non-empty.

Similarly, for any role name r we have that rI is non-empty iff r (I #‰n
N )+S is non-empty.

(C) For any w ∈ ∆(I #‰n
N )+S we have ConcI(orig?I(w)) = Conc(I #‰n

N )+S
(w). Also, for all v with

(w, v) ∈ r (I #‰n
N )+S for some r ∈ NR, we have RolI(orig?I(w), orig?I(v)) = Rol(I #‰n

N )+S
(w, v).

(D) For all w from (I #‰n
N )+S we have that w in (I #‰n

N )+S and orig?I(w) in I have the same
number of successors satisfying the same roles and concepts, i.e. an analogue of Item (D)
of Property 4.4 holds.

(E) For any w from (I #‰n
N )+S we have that w and orig?I(w) are directed-path-equivalent, i.e.

an analogue of Item (E) of Property 4.4 holds.

The function orig?I mentioned above is the mapping that first maps all duplicates to their
originals (and behaves like identity on other elements) and then employs origI .

Proof sketch. It suffices to apply Property 4.14 after noticing that for any element w from
I #‰n

N and its duplicated copy w′ in (I #‰n
N )+S , the sets of successors of w and w′ are equal.

We say that an abstract DL DL is preserved under scattered forward unravellings with
rebalancing if for all finitely satisfiable DL-KBs K, their finite models I, and for all but finitely
many positive integers n ∈ N, there is a finite set S ⊆ 2(∆I×N+) for which (I #‰n

N )+S |= K.

Theorem 4.23. If an abstract DL DL is preserved under scattered forward unravellings
with rebalancing then DL ∈ Cflf .

Proof sketch. The proof is analogous to the proof of Theorem 4.3.

A direct application of Theorem 4.23 is the exact complexity for the UCQ entailment
problem over ALCSCC ontologies with ERCBoxes (Baader et al., 2020, Section 2 and Defini-
tion 6). LetK := (A, T , E) be a satisfiable ALCSCC knowledge base, composed of an ABox A,
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a TBox T , and an ERCBox E . W.l.o.g. we can assume that (by routine renaming à la Scott)
that all concepts names appearing in K are of depth at most one, and that the ERCBox E
is of the form from Definition 4.15 (the original definition is broader). Take a finite model
I |= K and any positive integer n, and let J be the (n, ind(K))-scattered-forward-unravelling
of I. Applying Lemma 4.20 we infer the existence of a set S for which J+S |= E . By Item (A)
we deduce J+S |= A and by Item (D) we deduce J+S |= T . Thus J+S |= K. Since J+S is
an (n, ind(K))-lff-like model that covers I (consult Lemma 4.21), we conclude:
Corollary 4.24. The description logic ALCSCC with ERCBoxes belongs to Cflf .

5. Query Entailment in the Presence of the Self Operator

As we mentioned in the introduction, the results obtained in the previous sections provide a
nearly-complete classification of the complexity of conjunctive query entailment over ALC
extended with popular primitive features. Such a classification excludes the Self operator,
supported by the OWL 2 Web Ontology Language and the DL SROIQ (Horrocks et al.,
2006). The logic ALCSelf is obtained by extending ALC with concepts of the form (∃r .Self)
for all r ∈ NR. Their interpretation (∃r .Self)I is defined simply as {d | (d, d) ∈ rI}.

The main result of the forthcoming section is rather surprising: we will show that CQ
entailment over ALCSelf KBs is exponentially harder than CQ entailment over ALC KBs.

5.1 A High-Level Overview of the Encoding

LetM be an ATM. The core contribution of this section is to present a polynomial-time
reduction that, givenM, constructs a pair (KM, qM) — composed of an ALCSelf knowledge
base and a conjunctive query — such that KM 6|= qM iff M is accepting. Intuitively, the
models of K will encode accepting quasi-runs of M, i.e. trees in which every node is a
meaningful configuration ofM, but the tape contents of consecutive configurations might
not be in sync as they should. The query qM will be responsible for detecting such errors.
Hence, the existence of a countermodel for KM and qM will coincide with the existence of
an accepting run ofM. The intended models of KM look as follows:

The depicted triangles are called the configuration trees and encode configurations ofM.
The information contained in these configuration trees is “superimposed” on identical con-
figuration units: full binary trees of height N+1 decorated with many self-loops12 that will
12. The concrete purpose of the abundant presence of self-loops will only become clear later, starting

from Corollary 5.5.
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provide the “navigational infrastructure” for the query qM to detect “tape mismatches”.
Every such tree has 2N nodes at its N-th level and each of these nodes represents a single tape
cell of a machine. However, somehow unexpectedly, we do not just label them directly with
concepts representing a letter from the alphabet. Instead, every node at the N-th level also
has two children labelled (from left to right) respectively with either 0 and 1, or with 1 and 0.
Whenever the left child is in 0 and the right child is in 1, we think that their parent represents
a cell filled with the letter 0, while the converse situation encodes a cell filled with 1.

encoding of tape cell encoding of tape cell
carrying symbol 0 carrying symbol 1

This encoding will be useful to avoid a seemingly required disjunction in the construction
of qM. Lastly, the roots of configuration units store all remaining necessary information
required for encoding: the current state ofM, the previous and the current head position as
well as the transition used to arrive at this node from the previous configuration. Finally, the
roots of configuration trees are interconnected by the role next indicating that (r, r′) ∈ nextI
holds iff the configuration represented by r′ is a quasi-successor of the configuration of r.

5.2 Configuration Units

In our encoding, a vital role is played by n-configuration units, which will later form the
backbone of configuration trees. Roughly speaking, each n-configuration unit is a full binary
tree of depth n, decorated with certain concepts, roles, and self-loops. We introduce con-
figuration units by providing the formal definition, followed by a graphical depiction and
an intuitive description. In order to represent configuration units inside interpretations, we
employ role names from Runit as well as concept names from Cunit:

Runit := {`i, ri,next | 1 ≤ i ≤ n}, Cunit := {Lvl0,Lvli,L,R,Ad0
i ,Ad1

i | 1 ≤ i ≤ n}.

Definition 5.1 (configuration unit). Given a positive integer n, an n-configuration unit U
is an interpretation (∆U , ·U ) fulfilling all the conditions below:

• ∆U = {0, 1}≤n := {w ∈ {0, 1}∗ | |w| ≤ n},

• LU \{ε} = {w0 ∈ ∆U}, RU = ∆U \ LU ,

• LvlUi = {w ∈ ∆U | |w| = i}, nextU = {(w,w) | |w| = n},

• `Ui = {(w,w0) | |w| = i−1} ∪ {(w,w) | w ∈ ∆U},

• rUi = {(w,w1) | |w| = i−1} ∪ {(w,w) | w ∈ ∆U},

• (Adbi)U = {w ∈ ∆U | |w| ≥ i and its i-th letter is b}.

The following drawing depicts a 2-configuration unit.
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As one can see, the nodes in the tree are layered into levels according to their distance
from the root. Nodes at the i-th level are members of the Lvli concept and their distance
from the root is equal to i. Next, each non-leaf node at the i-th level has two children, the
left one and the right one (satisfying, respectively, the concepts L and R) and is connected
to them via the role `i and ri, respectively. All nodes are equipped with `i- and ri-self-loops
and all leaves are additionally endowed with next-loops. With all nodes inside the tree, we
naturally associate their addresses, i.e. their “numbers” when nodes from the i-th level are
enumerated from left to right. In order to encode the address of a given node at the i-th
level, we employ concepts Adb1,Adb2, . . . ,Adbi with “values” b either 0 or 1, meaning that a
node is in Adbj iff the j-th bit of its address is equal to b. The most significant bit is Adb1.

We next proceed with an axiomatisation of n-configuration units in ALCSelf, obtained
with the forthcoming GCIs. As usual in such encodings, we cannot formalise such structures
up to isomorphism, but the axiomatisation provided is sufficient in a sense made formally
precise in the subsequent lemmas.

1. Each node is at exactly one level.

(LvlCov) > v
⊔n
i=0 Lvli

(LvlDisj[i,j]) Lvli u Lvlj v ⊥ (with 0 ≤ i < j ≤ n)

2. All nodes carry self-loops for all role names from Runit except next and all leaf nodes
(and only they) carry a next-loop.

(all-loops-but-next) > v ⊔s∈Runit\{next} ∃s.Self

(leaves-next-loop) Lvln ≡ ∃next.Self

3. Every node is either a “left” node or a “right” node.

(LRCov) > v L t R (LRDisj) L u R v ⊥

4. Each node at any level 0 ≤ i < n has two successors (one left and one right).

(LsuccLvl[i]) Lvli v ∃`i+1.(Lvli+1) u ∀`i+1.(Lvli+1 → L)
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(RsuccLvl[i]) Lvli v ∃ri+1.(Lvli+1) u ∀ri+1.(Lvli+1 → R)

5. Address information for the nodes is created bit-wise and propagated down the tree.
That is, once we are in the left (resp. right) node on the i-th level, this node and all
nodes further below will have the i-th bit of their address set to 0 (resp. 1). Below we
have 1 ≤ i ≤ n, b ∈ {0, 1} and 0 ≤ j < i.

(LBitZero[i]) Lvli u L v Ad0
i

(AdDisj[i]) Ad0
i uAd1

i v ⊥
(RBitOne[i]) Lvli u R v Ad1

i

(AdLvlDisj[i,j]) Adbi u Lvlj v ⊥

(PropBit[i]) Adbi v ⊔nj=1 ∀`j .Adbi u ∀rj .Adbi

This finishes the axiomatisation of n-configuration units. Let Knunit denote the KB com-
posed of all GCIs presented so far. What remains to be done is to show that our axiomati-
sation is correct, in the sense of the following two lemmas. Their proofs are routine, hence
the reader may skip them at first reading.

Lemma 5.2. Each n-configuration unit is a model of Knunit.

Proof sketch. Take any n-configuration unit U and go through all axioms α of Knunit showing
that U |= α. This is tedious but there is no hidden difficulty there.

The proof of the next lemma is by constructing an n-configuration unit by starting from
an element d and recursively traversing `i and ri roles.

Lemma 5.3. For any model I of Knunit and any d ∈ LvlI0 there is an n-configuration unit
U and a homomorphism h from U into I with h(ε) = d.

Proof sketch. Let U be an n-configuration unit with ε ∈ LU iff d ∈ LI , and that interprets
of all role and concept names outside Runit ∪Cunit as empty sets. It is obvious that exactly
one such unit exists. We are going to define a function h : ∆U → ∆I inductively. Denoting
the restriction of h to {0, 1}≤k by h≤k, our inductive assumption states, for a given k ≤ n,
that h≤i is defined for all i < k and h≤i is a homomorphism from U�{0,1}≤k to I.

We first set h(ε) := d. For the inductive step, we assume the hypothesis for 1 ≤ k ≤ n
and take a word w ∈ {0, 1}k−1. We are going to define h(w0) as follows (the case of h(w1)
is symmetric). Note that since h(w) ∈ LvlIk−1 (by the fact that h≤k−1 is a homomorphism)
and since I |= (LsuccLvl[i]) (for i equal to k−1) we conclude the existence of d′ ∈ LvlIk
satisfying (h(w),d′) ∈ `Ik . Note that also d′ ∈ LI ∩ (Ad0

k)I holds (by I |= (LsuccLvl[i]) and
I |= (LBitZero[i]) with i = k). Thus, we simply let h(w0) := d′. Establishing the property
that h≤k is an injective homomorphism is routine and shown in appendix.

At this point, we would like to give the reader some intuitions on why units are decorated
with different self-loops. First, we show that their presence can be exploited to navigate
top-down through a given unit.

Lemma 5.4. Let U be an n-configuration unit. Then for all w ∈ ∆U we have (ε, w) ∈
`1
U ◦r1

U ◦ . . .◦`nU ◦rnU with “◦” denoting the composition of relations, i.e. sU ◦ tU := {(c,e) |
(c,d)∈ sU and (d,e)∈ tU for some d}.
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Proof sketch. Use sUi as an abbreviation of `1U ◦r1
U ◦ . . .◦`iU ◦riU . Employ induction, stating

that for all 1 ≤ i ≤ n we have that all words w of length at most i satisfy (ε, w) ∈ sUi .

We can now conclude that there is a single CQ detecting root-leaf pairs in units.

Corollary 5.5. Let U be an n-configuration unit. There is a single conjunctive query qrl
with x0, x2n∈Var(qrl) and of size polynomial in n, such that the set M = {(π(x0), π(x2n)) |
U |=π qrl} is equal to the set of root-leaf pairs from U , i.e. LvlU0 × LvlUn .

Proof. Take qrl := (Lvl0?; `1; r1; . . . ; `n; rn; Lvln?)(x0, x2n) and apply Lemma 5.4.

We encourage the reader to play with a query q := (Lvl0?; `1; r1; Lvl1?; `2; r2; Lvl2?)(x0, x4)
and an example 2-configuration unit U depicted after Definition 5.1. This will make the
reader more familiar with the path-syntax of CQs, provide more intuition on the key role
played by self-loops in our construction, and justify that indeed any root-leaf pair can be
taken as x0 and x4 in an example match π witnessing U |=π q.

5.3 From Units to Configuration Trees

In the next step, we enrich (N+1)-configuration units with additional concepts, allowing the
units to represent a meaningful configuration of our ATMM = (N, Q, Q∃, sI , sA, sR, T). To
this end, we employ a variety of new concept names from Cconf consisting of

Cconf :=
{
HdHere,NoHdHere,Sts,HdPosbi ,HdLeta,Leta, 0, 1 |

s ∈ Q, b ∈ {0, 1}, i ∈ {1, . . . , N}, a ∈ {0,1}
}
.

Before turning to a formal definition we first describe how configurations are structurally
represented in models. Recall that a configuration of M is a word wsw′ with |ww′| = 2N

(called tape) and s ∈ Q. In our encoding, this configuration will be represented by an (N+1)-
configuration unit C decorated by concepts from Cconf. The interpretation C stores the state
s, by associating the state concept Sts to its root. The tape content ww′ is represented by
the internal nodes of C: the i-th letter of ww′ (i.e. the content of the ATM’s i-th tape cell)
is represented by the i-th node (according to their binary addresses) at the N-th level. In
case this letter is 0, the corresponding node will be assigned the concept Let0, while 1
is represented by Let1. Yet, for reasons that will become clear only later, the tape cells’
content is additionally represented in another way: if it is 0, then we label the i-th node’s
left child with 0 and its right child with 1. The reverse situation is implemented when the
node represents the letter 1. Finally, there is a unique tape cell that is visited by the head of
M and the node corresponding to this cell is explicitly marked by the concept HdHere while
all other “tape cell nodes” are marked by NoHdHere. In order to implement this marking
correctly, the head’s position’s address needs to be explicitly recorded. Consequently, C’s
root node stores this address (binarily encoded using the HdPosbi concepts) and from there,
these concept assignments are broadcast to and stored in all tape cell nodes on the N-th
level. Similarly, we decorate C’s root with the concept HdLeta meaning that the current
letter scanned by the head is a.
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After this informal description and depiction, the formal definition of configuration trees
should be plausible.

Definition 5.6 (configuration tree). A configuration tree C of M is an interpretation
C = (∆C , ·C) such that C is an (N+1)-configuration unit additionally satisfying:

• There exists a unique state s ∈ Q such that (Sts)C = {ε} and (Sts′)C = ∅ for all s′ 6= s.
• (LvlN+1)C = 0C ∪ 1C and 0C ∩ 1C = ∅.
• (Let0)C = {w | w0 ∈ 0C , w1 ∈ 1C}, (Let1)C = {w | w0 ∈ 1C , w1 ∈ 0C},

and (Let0)C ∪ (Let1)C = LvlCN .
• There is a unique word whead of length N witnessing

HdHereC={whead} and NoHdHereC=LvlCN \ {whead}.
• For 1 ≤ i ≤ N and b ∈ {0, 1} satisfying whead ∈ (Adbi)C we put13

(HdPosbi)C = LvlC0∪LvlCN and (HdPos1−b
i )C = ∅.

• HdLetCa = {ε}, HdLetC1−a = ∅, where a ∈ {0,1} is the unique letter with whead ∈ LetCa .

We next proceed with the corresponding axiomatisation.

1. To express that C is an (N+1)-configuration unit we integrate all the GCIs from KN+1
unit.

2. The root of C is labelled with a unique state concept.

(StCov) Lvl0 ≡
⊔

s∈Q Sts

(StDisj[s,s′]) Sts u Sts′ v ⊥ (for all s 6= s′)

3. To axiomatise the coherent representation of the tape’s content we employ:

13. This is well-defined since for any i, we have that whead belongs to exactly one of (Ad0
i )C , (Ad1

i )C by the
definition of a unit.
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(LetDisj) 0 u 1 v ⊥
(LetCov) LvlN+1 ≡ 0 t 1

(LetConDisj) Let0 u Let1 v ⊥
(LetConCov) Let0 t Let1 ≡ LvlN

(EncLetZero) Let0 v ∀`N+1(LvlN+1 → 0) u ∀rN+1(LvlN+1 → 1)
(EncLetOne) Let1 v ∀`N+1(LvlN+1 → 1) u ∀rN+1(LvlN+1 → 0)

4. Next, for the concepts HdPosb1, . . . ,HdPosbN we make sure they encode exactly one
proper binary address (meant to encode the head’s current position) in the root of C.
Below we assume 1 ≤ i ≤ N.

(HdPosCov[i]) Lvl0 t LvlN ≡ HdPos0
i tHdPos1

i

(HdPosDisj[i]) HdPos0
i uHdPos1

i v ⊥

5. Another step is to propagate the head address stored in the root to all nodes on the
N-th level of C. Here we exploit the presence of self-loops and Lemma 5.4, and use the
following GCIs (for 1 ≤ i ≤ N and b ∈ {0, 1}):14

(PropHdPos[i,b]) Lvl0 uHdPosbi v ∀`1∀r1 . . . ∀`N∀rN (LvlN → HdPosbi)

6. We distinguish between the node representing the cell visited by the head (assigning
HdHere) and the other cell nodes (assigning NoHdHere) by having every cell node
compare their address (stored in the Adbi concepts) with the head address received
through the broadcast from the root.

(HdHereCov) HdHere tNoHdHere ≡ LvlN
(HdHereEqualAdr) LvlN u ⊔Ni=1

⊔
b∈{0,1}

(
Adbi uHdPosbi

)
v HdHere

(NoHdHereDiffrAdr) LvlN u
⊔N
i=1

⊔
b∈{0,1}

(
Adbi uHdPos1−b

i

)
v NoHdHere

7. We synchronise the letter scanned by the head ofM with its “recording” in the root
(below a ∈ {0,1}).

(HdLetCov) HdLet0 tHdLet1 ≡ Lvl0
(RetrHdLet[a]) Lvl0u∃`1∃r1 . . . ∃`N∃rN(HdHereuLeta) v HdLeta

(HdLetUnique[a]) Lvl0 uHdLeta v ∀`1∀r1 . . . ∀`N∀rN(HdHere→ Leta)

This finishes the axiomatisation of configuration trees.
For the knowledge base Kconf, composed of all presented GCIs, we present its correctness

in the following lemmas. Similarly to the previous section, both of them are routine and the
reader may omit them at first reading.

Lemma 5.7. Any configuration tree C is a model of Kconf.

Proof sketch. Take a configuration tree and show that it satisfies all the axioms of Kconf.
14. We note that the same can be achieved without exploitation of self-loops by iteratively propagating the

HdPosb
i through the tree, but the first author believes that the presented formulation is elegant and makes

the reader get used to the presence of self-loops.
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Lemma 5.8. For any model I of Kconf and any d ∈ LvlI0 there is a configuration tree C
and a homomorphism h from C into I with h(ε) = d.

Proof sketch. By Lemma 5.3 there is an (N+1)-configuration unit U and a homomorphism
h : U → I with h(ε) = d. It suffices to interpret fresh concept symbols from Cconf, according
to h, in order to “upgrade” U to a configuration tree. The rest of the proof is routine.

5.4 Enriching Configuration Trees

Recall that the purpose of configuration trees is to place them inside a model that describes
the run of the Turing machineM. In particular, this will require to describe the progression
of one configuration to another. In order to prepare for that, we next introduce an extended
version of configuration trees that are enriched by additional information pertaining to their
predecessor configuration in a run. To this end, we use new concept names from

Cenr :=
{
PTrnst, Ini,PHdHere,NoPHdHere,PHdAbv,NoPHdAbv,PHdPosbi ,PHdLeta

}
,

with t ∈ T, 1 ≤ i ≤ N, b ∈ {0, 1}, and a ∈ {0,1}. We use Cptr to denote {Ini,PTrnst | t ∈ T}.
The concept PTrnst, assigned to the root, indicates the transition, through which the

configuration has been reached from the previous configuration, while Ini is used as its
replacement for the initial configuration. In addition, concepts PHdPosbi and PHdLeta are
attached to the root in order to — in a way very similar to HdPosbi and HdLeta — indicate
the previous configuration’s head position as well as the letter stored in that position on
the current configuration’s tape. For the sake of our encoding we also employ the concepts
PHdHere,NoPHdHere that play the role analogous to the HdHere and NoHdHere concepts
from configuration-trees.15 For technical reasons, we also introduce the concepts PHdAbv
and NoPHdAbv that will label nodes on the (N+1)-th level iff their parent is labelled with
the corresponding concept from {PHdHere,NoPHdHere}.

We proceed with the formal definition of the structures just described.

Definition 5.9 (enriched configuration tree). An enriched configuration tree E of M is
an interpretation E = (∆E , ·E) such that E is a configuration tree additionally satisfying the
following conditions on concepts from Cenr:

• There is exactly one concept C ∈ Cptr for which CE = {ε} and for all C′ ∈ Cptr \ {C}
we have (C′)E = ∅.

• PTrnsE(s,a,b,s′,d) = {ε} implies (Sts′)E = {ε} for all transitions (s, a, b, s′, d) ∈ T.

• PHdHereE={wphd} and NoPHdHereE=LvlEN \ {wphd} for the N-digit binary word wphd
encoding16

– the number obtained as whead−d (see: Def. 5.6) whenever PTrnsE(s,a,b,s′,d) = {ε}, or
– the number 0 in case IniE = {ε}.

15. For simplicity of axiomatisation, the initial configuration will also carry previous head information, but
it will be irrelevant.

16. Here we use the fact that M never attempts to move left (resp. right) on the left-most (resp. right-most)
tape cell.
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• PHdAbvE = {w0, w1 | w ∈ PHdHereE} and NoPHdAbvE = LvlEN+1 \ PHdAbvE .

• (PHdPosbi)E = LvlE0∪LvlEN and (PHdPos1−b
i )E = ∅ for all 1 ≤ i ≤ N and 0 ≤ b ≤ 1 with

wphd ∈ (Adbi)E .
• PHdLetEa = {ε} and PHdLetE1−a = ∅, where a is the unique letter from {0,1} such

that wphd ∈ LetEa .
• IniE={ε} implies ε ∈ LE , StEsI

={ε}, LetE0 = LvlEN , and HdPos0
i = PHdPos0

i = LvlE0 ∪
LvlEN for all 1 ≤ i ≤ N.

As usual, we supplement the above definition with the corresponding axiomatisation.

1. We ensure, that the root unambiguously indicates the previous transition (or initiality).
Below t 6= t′ ∈ T.

(TrCov) Lvl0 ≡ Ini t⊔t∈T PTrnst,

(TrInitDisj[t]) Ini u PTrnst v ⊥, (TrDisj[t, t′]) PTrnst u PTrnst′ v ⊥.

2. We provide the encoding of the previous head position and the previous letter scanned
by the head. This is achieved by means of the concepts PHdPosbi , PHdLeta,PHdHere,
and NoPHdHere in analogy to how it was done for the current head position (see the
last four points of the axiomatisation from the previous section). Below we assume
1 ≤ i ≤ N, b ∈ {0, 1}, and a ∈ {0,1}.

(PHdPosCov[i]) Lvl0tLvlN ≡ PHdPos0
itPHdPos1

i ,
(PHdPosDisj[i]) PHdPos0

i u PHdPos1
i v ⊥,

(PropPHdPos[i,b]) Lvl0 u PHdPosbi v ∀`1∀r1 . . . ∀`N∀rN (LvlN → PHdPosbi),
(PHdHereCov) PHdHere tNoPHdHere ≡ LvlN
(PHdHereEqualAdr) LvlN u ⊔Ni=1

⊔
b∈{0,1}

(
Adbi u PHdPosbi

)
v PHdHere,

(NoPHdHereDiffAdr) LvlN u
⊔N
i=1

⊔
b∈{0,1}

(
Adbi u PHdPos1−b

i

)
v NoPHdHere,

(PHdLetCov) PHdLet0 t PHdLet1 ≡ Lvl0,
(RetrPHdLet[a]) Lvl0 u ∃`1∃r1 . . . ∃`N∃rN(PHdHere u Leta) v PHdLeta,
(PHdLetUnique[a]) Lvl0 u PHdLeta v ∀`1∀r1 . . . ∀`N∀rN(PHdHere→ Leta).

3. Next, the concepts PHdAbv and NoPHdAbv are assigned via

(PHdAbvCov) PHdAbv tNoPHdAbv ≡ LvlN+1,
(PHdAbvDisj) PHdAbv uNoPHdAbv v ⊥,
(PropPHdAbv) PHdHere v ∀`N+1∀rN+1LvlN+1 → PHdAbv,
(PropNoPHdAbv) NoPHdHere v ∀`N+1∀rN+1LvlN+1 → NoPHdAbv.

4. We ensure consistency of the current configuration with the previous transition. Below
we assume that (s, a, b, s′, d) ∈ T.

(TransiCons) PTrns(s,a,b,s′,d) v PHdLetb u Sts′ u “PHdPos + d = HdPos”,
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where the last right-hand-side expression, specifying decrements or increments of binary
encodings of numbers, is implemented in a usual way (Baader et al., 2017, p. 127) via:

N⊔
i=1

(
A0
i u B1

i u
i−1⊔

j=1
(A1

j u B0
j ) u

N ⊔

j=i+1

(
(A1

j u B1
j ) t (A0

j u B0
j )
))

with A := PHdPos and B := HdPos if d = +1, and with A and B swapped if d = −1.
5. We encode the initial configuration as follows.

(IC) Ini v Lvl0uLuStsI u ⊔Ni=1(HdPos0
i uPHdPos0

i )u∀`1∀r1. . .∀`N∀rN(LvlN→Let0),

For the KB Kenr, composed of all the GCIs presented so far, we show correctness in the
following lemmas. The proofs are routine and similar to the proofs from the previous section.

Lemma 5.10. Any enriched configuration tree of E is a model of Kenr.

Proof sketch. Similarly to the previous proofs, take any enriched configuration tree E and
exhaustively prove that it satisfies all axioms of Kenr. There is no hidden difficulty here.

Lemma 5.11. For any model I of Kenr and any d ∈ LvlI0 , there is an enriched configuration
tree E and a homomorphism h from E into I with h(ε) = d.

Proof sketch. We follow the proof scheme of Lemma 5.8. We take a homomorphism h from a
configuration tree C to I with h(ε) = d, guaranteed by Lemma 5.8, and then by interpreting
fresh concept names from Cenr we “upgrade” C to an enriched configuration tree.

5.5 Describing Accepting Quasi-Runs

Recall that a quasi-run R ofM is simply a tree labelled with configurations ofM where
the root is labelled with the initial configuration sI02N . Each node representing an exis-
tential configuration has one child labelled with a quasi-successor configuration, while each
node representing a universal configuration has two children labelled by quasi-successor
configurations obtained via different transitions.

In order to represent an accepting quasi-run by a model, we employ the notion of a quasi-
computation tree Q, a structure intuitively defined from some R as follows: replace every
node of R by its corresponding configuration tree, adequately enriched with information
about its generating transition and the predecessor configuration. The roots of these enriched
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configuration trees are linked via the next role to express the quasi-succession relation of R.
The roots of enriched configuration trees representing universal configurations are chosen
to be labelled with L, their left next-child with L and their right next-child with R (both
corresponding to existential configurations). As expected, the Ini concept decorates the root
of the distinguished enriched configuration tree that represents R’s initial configuration. As
our attention is restricted to accepting quasi-runsR, we require that no enriched configuration
tree occurring in Q carries a rejecting state. We now give a formal definition of such a Q.

Definition 5.12 (quasi-computation tree). A quasi-computation tree Q ofM is an inter-
pretation Q = (∆Q, ·Q) satisfying the following properties:

• ∆Q := T × {0, 1}≤N+1, where T is17 a prefix-closed subset of {10, 00}∗ · {ε, 0, 1} with
w1 ∈ T implying w0 ∈ T.

• For every w ∈ T, the substructure of Q induced by {w} × {0, 1}≤N+1 is isomorphic to
an enriched configuration tree ofM via the isomorphism (w, w) 7→ w.

• (ε,w) ∈ RQ if w ends with 1, otherwise (ε,w) ∈ LQ.
• For any w 6= w′ and arbitrary w,w′ ∈ {0, 1}≤N+1 we have that ((w, w), (w′, w′)) /∈ sQ

holds for any s ∈ Runit \ {next}.
• nextQ\{(d, d) | ∆Q×∆Q} = {((w, ε), (wb, ε)) | wb,w ∈ T, b ∈ {0, 1}}.
• IniQ = {(ε, ε)}.
• For any w0 ∈ T with (w, ε) ∈ StQs and (w, ε) ∈ LetQa

– if w1 ∈ T then (w0, ε) ∈ PTrnsQT1(s,a) and (w1, ε) ∈ PTrnsQT2(s,a),

– if w1 /∈ T then (w0, ε) ∈ PTrnsQT1(s,a) or (w0, ε) ∈ PTrnsQT2(s,a).

• If (w, w) ∈ HdHereQ and wb ∈ T then (wb, w) ∈ PHdHereQ.
• StQsR

= ∅ as well as (w, ε) ∈ StQsA
if and only if w ∈ T and w0 6∈ T.

We move on to provide an appropriate axiomatisation.

1. We incorporate all axioms from Kenr to ensure the indicated substructures correspond
to enriched computation trees.

2. Every non-final existential configuration has one successor configuration while every
non-final universal configuration has two. Final configurations do not have any succes-
sors. Below se ∈ Q∀ \ {sA, sR}, se ∈ Q∃ \ {sA, sR}, and sf ∈ {sA, sR}.

(EConfSucc[se]) Stse v ∃next.L u ∃next.R
(AConfSucc[sa]) Stsa v ∃next.> u ∀next.L
(FinConfSucc[sf ]) Stsf

v ∀next.⊥

3. To transfer the previous head position to the successor configurations we employ (for
1 ≤ i ≤ N, b ∈ {0, 1}):

17. This is just a scary-looking definition of a binary tree in which nodes at the i-th level have exactly 2
children if i is even and exactly one child otherwise. We use fraktur letters for quasi-computations.
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(TransHeadPos[i, b]) Lvl0 uHdPosbi v ∀next.PHdPosbi

4. For any s∃ ∈ Q∃ we specify that the corresponding configuration tree linked via next-
role is a successor configuration of the current one.

(TransiExistState) Sts∃ uHdLeta v
⊔

t∈T(s∃,a) ∀next.PTrnst

5. For every universal state s∀ ∈ Q∀ and a letter a currently scanned by the head there
are only two possible choices of transitions.

(TransiUnivStateL) Sts∀ uHdLeta v ∀next.(L→ PTrnsT1(s∀,a))
(TransiUnivStateR) Sts∀ uHdLeta v ∀next.(R → PTrnsT2(s∀,a))

6. Since we want to have accepting quasi-runs ofM only, we state that we never encounter
the rejecting state.

(NoRejectState) StsR v ⊥

Let TM be the set of all GCIs presented so far and let AM be an ABox composed of a
single axiom Ini(a) for a fresh individual name a. Put KM := (AM, TM). We claim that:

Lemma 5.13. The knowledge base KM is of size polynomial in |M|. Any accepting quasi-
computation tree Q ofM is a model of KM.

Proof sketch. The former part follows immediately from the construction, hence we focus on
the latter part. To prove Q |= Kenr notice that (1) by the 2nd item of Definition 5.12 all the
substructures of Q induced by {w}×{0, 1}≤N+1 are isomorphic to some computation tree and
hence, by Lemma 5.10 they satisfy Kenr, (2) the use of roles from Runit \ {next} is restricted
to enriched configuration trees and hence Q satisfies all the GCIs not involving next and (3)
the only GCI involving next from Kenr is (leaves-next-loop) and it is satisfied in Q due to
the mentioned isomorphism property. Proving the satisfaction of other GCIs is routine.

Lemma 5.14. For any model I of KM there exists an accepting quasi-computation tree Q
and a homomorphism h : Q → I with h(ε, ε) = aI .

Proof. We construct a tree T and its origin function f : T → I as follows. First, let ε ∈ T
and f(ε) = aI . We next proceed as follows: take any word w ∈ T and consider three cases:

• f(w) is labelled with a non-final universal state. Hence, by the first axiom provided, we
know that f(w) has at least two next-successors, one of which is in LI and the other
in RI . Call them, respectively, el, er. Hence, we extend T with the words w0,w1 and
extend the function f with f(w0) := el and f(w1) := er. Repeat the process from w0
and w1.

• f(w) is labelled with a non-final existential state. Then we take its next-successor e
and extend T with w0 and f with f(w0) := e. Repeat the process from w0.

• f(w) is labelled with a final state. No action required.
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We associate a word w ∈ T with an enriched configuration tree Ew such that there is a
homomorphism gw from Ew to I with f(w) = gw(ε). The existence of Ew and gw is provided
by Lemma 5.11. Finally, we decorate each node of Ew with “Pr” concepts as suggested
by the homomorphism gw. A T-quasi-computation tree Q is then defined by stipulating
that, for every w ∈ T, the substructure of Q induced by {w} × {0, 1}≤N+1 be isomorphic
to the decorated Ew. The homomorphism h : ∆Q → I is then defined componentwise by
(w, w) 7→ gw(w), essentially taking the disjoint unions of the homomorphisms for all enriched
configuration trees. Since all the roles except next are restricted to the components and
we made sure that the roots of Q were created from the elements linked via next-roles, we
conclude that h is the claimed homomorphism.

5.6 Detecting Faulty Runs with a Single CQ

We finally have reached the point where querying comes into play. Our last goal is to
design one single conjunctive query that detects “faulty configuration progressions” in
quasi-computation trees, meaning that it matches a pair of two positions in consecutive
configuration trees representing the same cell and being untouched by the head ofM yet
storing different letters. Note that the lack of such cells in a quasi-computation tree means
that any two consecutive configuration trees represent not only quasi-successor configuration
but actually proper successors and hence the structure as such even represents a “proper”
run. We start by formalising our requirements for such a query:

Lemma 5.15. There exists a conjunctive query qM of size polynomial in N with two dis-
tinguished variables x, y such that for all quasi-computation trees Q we have Q |=π qM iff
there exists a word w, a letter b and a word w of length N+1 such that:

• π(x) = (w, w), π(y) = (wb, w),
• π(y) ∈ NoPHdAbvQ,
• π(x) ∈ 0Q and π(y) ∈ 1Q.

Note the asymmetry in the 3rd bullet point above – we ignore the reverse constellation.
Yet, due to our encoding if the reverse situation occurs then so does the original one. Hence,
every mismatch in a sense causes two inconsistencies from the point of N+1-level nodes. This
solves the mystery of introducing level N+1 in our configuration trees and the particular
encoding of tape symbols: it is crucial for catching faulty progressions by using one single CQ.
Before proving Lemma 5.15 we show how it implies the main theorem here, namely:

Theorem 5.16. Conjunctive query entailment over ALCSelf-KBs is 2ExpTime-hard.

Proof. Since co2ExpTime=2ExpTime, it is sufficient to show that CQ non-entailment
over ALCSelf KBs is 2ExpTime-hard. Take KM as defined in Section 5.5 and qM as given
by Lemma 5.15. Since both KM and qM are of size polynomial in |M|, it remains to show
that KM 6|= qM iffM is accepting. The “if” direction is easy: we take an accepting run ofM
and turn it into a quasi-computation tree Q. By Lemma 5.13 we conclude that Q |= KM. We
also have that Q 6|= q due to the fact that any two consecutive configuration trees represent
proper successor configurations. For the second direction it suffices to show that ifM is not
accepting then KM |= qM. Indeed, assume thatM is not accepting and consider an arbitrary
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model I of KM (in case KM is unsatisfiable then trivially KM |= qM). By Lemma 5.14
there is a quasi-computation tree Q and a homomorphism h : Q → I with h(ε, ε) = aI . But
this quasi-computation tree must represent a “faulty” run – in the opposite case it would
correspond to an accepting run ofM, which does not exist by assumption. Hence there must
be a match of qM to Q. As query matches are preserved under homomorphisms, we conclude
I |= qM. Thus all models I of KM have matches of qM, which implies KM |= qM.

In the forthcoming query definitions, we employ a convenient naming scheme. By writing
q[x, y] we indicate that the variables x, y ∈ Var(q) are global (i.e. the same across (sub)queries
that we might join together) while its other variables are local (i.e. pairwise different from
any variables occurring in other queries — this can always be enforced by renaming). Going
back to the query, we proceed as follows. We first prepare a query qmain[x, y] with two global
distinguished variables x, y that relates any two domain elements whenever they are leaf
nodes of consecutive computation trees. Then qmain[x, y] is combined with queries qiadr[x, y]
for all 1 ≤ i ≤ N+1 with the intended meaning that x and y have the same i-th bit of their
addresses. Additionally, our final query will require that x be mapped to a node satisfying
0 and y to a node satisfying 1 and NoPHdHere.

To construct qmain[x, y] we essentially employ Lemma 5.4.
Lemma 5.17. There exists a conjunctive query qmain[x, y] of size polynomial in |M| such
that for any quasi-computation tree Q the set Mqmain := {(π(x), π(y)) | Q |=π qmain} is
composed precisely of any pair of leaves of two consecutive configuration trees of Q. Formally:

Mqmain =
{
((w, w),(wb, v)) ∈ ∆Q | |w|= |v|= N+1, b∈{0, 1}

}
.

Proof sketch. Take qmain := qrl[xr, x] ∧ next(xr, yr) ∧ qrl[yr, y] and employ Corollary 5.5.

The next part of our query construction focuses on sub-queries qiadr[x, y] that are meant
to relate leaves having equal i-th bits of addresses. In order to construct it we combine
together several smaller queries, written in path syntax below.

• We let q↓[x, y] := (`1; r1; . . . ; `N+1; rN+1)(x, y) define the top-down query. It intuitively
traverses an enriched configuration tree in a top-down manner. Note that q↓[x, y] is
actually the major sub-query of qrl[x, y].

• The `i-top-down query q`i↓[x, y] is similar to q↓[x, y], but with the `i; ri part replaced
by just `i. The intended behaviour is that again a tree is traversed from root to leaves,
but this time, an `i edge must be crossed when going from the (i− 1)-th to the i-th
level. The ri-top-down query qri↓[x, y] is defined alike, by replacing `i; ri in q↓[x, y]
with ri.
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An important ingredient in the construction is the query qi-th bit
=0 [x, y] defined as follows:

LvlN+1(x) ∧ q`i↓[x ′,x] ∧ next(x ′,y′) ∧ q`i↓[y′,y] ∧ LvlN+1(y).

In total analogy, we define qi-th bit
=1 [x, y] by using qri↓ instead of q`i↓. Any match π of the query

qi-th bit
=b [x, y] instantiates the variables x and y in a quasi-computation tree Q according to
one of the following two scenarios: either π(x) = π(y) or π(x) and π(y) are leaves in two
consecutive enriched configuration trees inside the quasi-computation tree and both of these
leaves have their i-th address bit set to b. The above intuition meets its formalisation in:

Lemma 5.18. Let Q be a quasi-computation tree and let Mqi-th bit
=b

:= {(π(x),π(y)) | Q |=π

qi-th bit
=b } for b∈{0,1}. Then Mqi-th bit

=b
is equal to the union of M b

1 and M b
2 given below:

M b
1 := {((w, w), (w, w))}, M b

2 := {((w, ubv), (wb, u′bv′)) | |u| = |u′| = i−1}.

Proof. We prove the statement for b = 0, the case for b = 1 is symmetric. First we showM0
1 ⊆

Mqi-th bit
=0

. This is easy: for any leaf d = (w, w) we map all variables of qi-th bit
=0 [x, y] into d;

this is a match due to the presence of all the self-loops at the leaves. To showM0
2 ⊆Mqi-th bit

=0
we take any d := (w, w) and e := (wb, v). Let π be a variable assignment that maps x to d, y
to e, x ′ to (w, ε), y′ to (wb, ε). The variables of q`i↓[x ′, x] are mapped to (w, wj), where wj is
the prefix of w of length j following the path from (w, ε) to (w, w) level-by-level. We stress
that ((w, wi−1), (w, wi)) ∈ `Qi holds, which is crucial for the construction to work and that
every (w, wj) node has all `- and r-loops. The variables of q`i↓[y′, y] are mapped analogously.
After noticing that d, e ∈ LvlQN+1 and that (π(x ′), π(y′)) ∈ nextQ holds, we conclude that π
is clearly a match of qi-th bit

=0 [x, y] to Q.
Now we focus on showing that Mqi-th bit

=0 [x,y] ⊆ M0
1 ∪M0

2 . Take any match π and note
that x, y must be mapped to leaves. For π(x ′) and π(y′) we consider the two cases:

1. π(x ′) = π(y′). As the roots do not have next-loops, π(x ′) must be a leaf. This implies
that all variables of q`i↓[x ′, x] map into a single domain element (otherwise we would
not reach a leaf after traversing such a path). Arguing similarly we infer that all
variables of q`i↓[y′, y] are mapped to the same element. Thus π(x) = π(y) holds.

2. π(x ′) 6= π(y′). Since all incoming next roles from leaves are self-loops, we conclude that
π(x ′) is the root of some enriched quasi-computation tree and π(y′) is the root of some
corresponding quasi-successor in Q (by the definition of nextQ). By the satisfaction
of q`i↓[x ′, x] we know that there exists a sequence of domain elements contributing to
a path from π(x ′) to π(x) witnessing its satisfaction. Moreover, note that since the
subquery q`i↓[x ′, x] leads from the root to a leaf it implies that we necessarily cross
the `i role at the (i−1)-th level, meaning that the i-th bit of the address of π(x) is
equal to 0. Thus we infer that π(x) ∈ (Ad0

i )Q. Reasoning analogously we conclude
that π(y) ∈ (Ad0

i )Q, which finishes the proof.

We are now ready to present the query qiadr[x, y] pairing leaves in consecutive enriched
configuration trees with coinciding i-th address bit:

qiadr[x, y] := qmain[x, y] ∧ qi-th bit
=0 [x, z] ∧ qi-th bit

=1 [z, y].
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Lemma 5.19. For any quasi-computation tree Q we have thatMqi
adr

:= {(π(x), π(y)) | Q |=π

qiadr[x, y]} is composed precisely of the leaf pairs in two consecutive enriched configuration
trees of Q having equal i-th bit of address. Formally:

Mqi
adr

= Mqmain ∩
((

Ad0
i
Q×Ad0

i
Q) ∪ (Ad1

i
Q×Ad1

i
Q))

.

Proof. By employing the definition of the query, Lemma 5.18 and relational calculus we
conclude thatMqi

adr
= Mqmain ∩

(
Mqi-th bit

=0
◦Mqi-th bit

=1

)
= Mqmain ∩

(
(M0

1 ∪M0
2 )◦ (M1

1 ∪M1
2 )
)

=
Mqmain ∩

(
M0

1 ∪M1
2 ∪M0

2
)

= M1
2 ∪M0

2 , which concludes the proof.

We are finally ready to present our query

qM :=
N+1∧
i=1

qiadr[x, y] ∧NoPHdAbv(y) ∧ 0(x) ∧ 1(y)

by means of which we can conclude with the proof of Lemma 5.15.

Proof of Lemma 5.15. Let qM as defined above and observe that its size is clearly polynomial
in N. Note that qM satisfies our requirements: The 1st item follows from two lemmas: the
fact that x and y are mapped to leaves of two consecutive enriched configuration trees follows
from Lemma 5.17 and the fact that x and y are mapped to nodes having equal addresses
follows from Lemma 5.19 applied for every 1 ≤ i ≤ N+1. The 2nd and the 3rd points hold
since we supplemented our query with NoPHdAbv(y) ∧ 0(x) ∧ 1(y).

Hardness, shown in this section, came as a quite surprise to us. In fact, we spent quite some
time trying to include self-loops in the notion of locally-forward interpretations from Sec-
tion 3, but it turned out that the analogous of Lemma 3.17 is incorrect. The key insight
of our proof (and maybe the take-home message from this section and the whole paper)
is that the presence of Self allows us to mimic case distinction over paths (and hence the
handling of disjunctive information) through concatenation, by providing the opportunity
for one of the two disjuncts to idle by “circling in place”. On a last note, our result also
holds for plain ALCSelf TBoxes, since the only ABox assertion Ini(a) can be replaced by the
GCI > v ∃aux.Ini for an auxiliary role name aux.

Corollary 5.20. Conjunctive query entailment over ALCSelf-TBoxes is 2ExpTime-hard.

6. Conclusions

In this paper, we investigated a model-theoretic criterion, called (finitely) locally forward-
ness, for description logics. We proved that for logics enjoying such a property the query
entailment problem can be solved by means of exponentially many calls to the satisfiability
problem of appropriately constructed knowledge bases, having sizes polynomially bounded in
terms of the input. This yields, among other results, ExpTime-completeness of the UCQ en-
tailment problem over µALCSCC knowledge bases, as well as for ALCSCC w.r.t. ERCBoxes,
filling multiple gaps in the literature with a single proof. To make our technique easier to
apply in future research, we also provided sufficient conditions, based on suitable model
transformations, that can be used to decide whether a given logic is (finitely) locally forward.
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Finally, we demonstrated an important limitation of our technique: the notion of forward
trees underpinning our model-theoretic criteria cannot be extended even with self-loops.
This is due to a very surprising (at least to us) result shown in the paper, namely that the
conjunctive query entailment for ALCSelf happens to be 2ExpTime-hard.

Our paper closes existing open problems rather than producing new ones. A possible
direction for future work is to see whether our notion of lff-like structures is relatively maximal
guaranteeing a “tamed complexity” of the query entailment problem. More formally:

Open Problem 6.1. Is there a natural extension DL of ALC with an ExpTime-complete
knowledge base satisfiability problem and ExpTime-complete conjunctive query entailment
problem, for which there exists an DL-KB K with arbitrarily large models, so that for all but
finitely many n, none of the models of K with more than n elements is (n, ind(K))-llf-like”?

We leave to the reader to decide what the word “natural” means in this context. Moreover,
we also stress that possible extensions of lff-like structures, e.g. with self-loops at arbitrary
nodes or by allowing that some of the parent-to-child roles can be “inverted”, are not sufficient
to guarantee ExpTime-completeness for the query entailment problem, as witnessed by the
negative results for querying ALCSelf and ALCI TBoxes.
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Appendix A. Missing definitions of µ and SCC.

In the two following sections we introduce the DL features (SCC) and (µ).

A.1 Less-known DL Features: SCC

Herein we introduce the very expressive counting feature (SCC), following Baader et al. (2020).
We employ the quantifier-free fragment of Boolean Algebra with Presburger Arithmetic
(QFBAPA) to express cardinality constraints.

We start with an introduction of QFBAPA. In the logic QFBAPA, one can build set
terms by applying boolean operations (intersection ∩, union ∪, and complement ·c) to set
variables as well as the constants ∅ and U . Set terms s, t can then be used to state set
constraints, which are equality and inclusion constraints of the form s = t, s ⊆ t, where s, t
are set terms. Presburger Arithmetic (PA) expressions are built from integer constants and
set cardinalities |s| using addition as well as multiplication with an integer constant. They
can be used to form cardinality constraints of the form k = `, k < `,N dvd `, where k, `
are PA expressions, N is an integer constant, and dvd stands for divisibility. A QFBAPA
formula is a boolean combination of set and cardinality constraints using connectives ∧,∨,¬.

A substitution σ assigns a finite set σ(U) to U , the empty set to ∅, and subsets of σ(U)
to set variables. It is extended to set terms by interpreting the boolean operations ∩, ∪,
and ·c as set intersection, set union, and set complement w.r.t. σ(U), respectively. The
substitution σ satisfies the set constraint s = t (s ⊆ t) if σ(s) = σ(t) (σ(s) ⊆ σ(t)). It is
further extended to a mapping from PA expressions to integers by interpreting |s| as the
cardinality of the finite set σ(s), and addition and multiplication with an integer constant
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in the usual way. The substitution σ satisfies the cardinality constraint k = ` if σ(k) = σ(`),
k < ` if σ(k) < σ(`), and N dvd ` if the integer constant N is a divisor of σ(`). The notion
of satisfaction of a boolean combination of set and cardinality constraints is now defined
in the obvious way by interpreting ∧,∨,¬ as in propositional logic. The substitution σ is
a solution of the QFBAPA formula φ if it satisfies φ in this sense. A QFBAPA formula φ
is satisfiable if it has a solution. Kuncak and Rinard (2007) proved that the satisfiability
problem for QFBAPA formulae is NP-complete.

The DL feature (SCC) introduces concepts of the form succ(α), where α is either a set
constraint or a cardinality constraint that uses role names and already defined concepts
in place of set variables. The formal semantics is presented next. For a given d ∈ ∆I the
substitution τId assigns the finite set ⋃r∈NR

{e | (d, e) ∈ rI} to U , the empty set to ∅, and
the sets {e | (d, e) ∈ rI} to r and AI ∩ ⋃r∈NR

{e | (d, e) ∈ rI} to A, where r ∈ NR and
A ∈ NC are viewed as set variables. The interpretation function ·I and the substitutions
τId for d ∈ ∆I are inductively extended to concepts by interpreting the boolean operators
u,t,¬ in the usual way and the successor expressions succ as follows:

• succ(α)I = {d ∈ ∆I | the substitution τId satisfies α},
• τId (succ(α)) = succ(α)I ∩⋃r∈NR

{e | (d, e) ∈ rI}.

This concludes the definition of (SCC). We would also like to point out that a somehow
cumbersome definition of (SCC) based on QFBAPA, can be presented equivalently in terms
of Presburger Arithmetics as presented by Demri and Lugiez (2010).

A.2 Less-known DL Features: µ

The next feature (µ) is quite technical. It extends the underlying description logic DL with
fixed-points. For its definition we closely follow the description of µALCQ by De Giacomo
and Lenzerini (1997, Sec. 4).

Let NF be a countably infinite set of fixed-point variables, that is pairwise disjoint from
NC, NR, and NV . The logic µDL extends the set of concepts constructors of a logic DL
with the use of variables X from NF (treated as atomic concepts), and two new “quantified
expressions” (called fixed-point operators) µX.C and νX.C, where C is a concept, with the
restriction that only a variable X occurring positively in C can be bound by a fixpoint µ/ν
in µX.C and νX.C. By positive we mean that every free occurrence of a variable X is under
an even number of negations. A valuation η on an interpretation I is a mapping that assigns
variables from NF to subsets of ∆I . For a given valuation η, we use η[X/E] to denote the
valuation identical to η with the exception of η[X/E](X) := E.

Take an interpretation I and a valuation η. We define the semantics of concepts by
associating to I and η an extension function ·Iη mapping concept to subsets of ∆I as follows:

XIη := η(X) for all variables X,
(µX.C)Iη := ⋂{E ⊆ ∆I | CIη[X/E] ⊆ E

}
,

(νX.C)Iη := ⋃{E ⊆ ∆I | E ⊆ CIη[X/E]

}
,

and with all concepts without variables and fixed-point operators interpreted as usual. The
notion of GCIs C v D (where both C and D do not contain free variables) is lifted to the
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case with valuation function in a natural way, by requiring that I |= C v D if and only if
for all valuation functions η we have (I, η) |= CIη ⊆ DIη . The notion of knowledge bases and
their satisfaction is defined analogously.

Appendix B. Appendix to Section 3

B.1 Proof of Property 3.5

Proof. Let I be a countermodel for K and q. By the fact that K is lff-coverable we infer the
existence of a (|q|, ind(K))-lff-like model for K and q that covers I. We claim that J is the
desired lff-like countermodel J for K and q. Indeed, if we would have J |= q then J |=π qi
(for some 1 ≤ i ≤ m and a match π). Then the connected components of J �{π(x)|x∈Var(qi)}
are of size ≤ |q| and hence, can be homomorphically mapped to I by assumption. This
implies I |= qi, and therefore I |= q, contradicting the countermodelhood of I.

B.2 Proof of Lemma 3.8

Proof. We first consider the case when x is ≺-maximal. Note that the domain of I [x�]
q then

consists of a single element x.

• From d ∈ (Subtx
q)I to the existence of a homomorphism h : I [x�]

q → I defined as
h(x) := d. It suffices to show that h preserves concepts. Let A ∈ NC be such that
x ∈ AI

[x�]
q . From the definition of Ix

q , we know that A(x) ∈ q. By the first case of
Definition 3.7, the concept A appears as one of the conjuncts of Subtx

q . Thus, from
d ∈ (Subtx

q)I , we infer h(x)=d ∈ AI . Thus h is indeed a homomorphism.

• From the existence of h : Ix
q → I, defined as h(x) := d, to d ∈ (Subtx

q)I .
We simply need to take any conjunct from Subtx

q and prove the membership of d in it.
Here the only option is that the conjunct is of the form A ∈ NC, so by the first case of
Definition 3.7, we know that A(x) ∈ q. By the definition of Ix

q , we get x ∈ AI
[x�]
q . By

applying the fact that h is a homomorphism, we infer h(x) = d ∈ AI . Thus d belongs
to each conjunct of Subtx

q , resulting in d ∈ (Subtx
q)I .

Assume that x is not ≺-maximal and that for all y with x ≺ y the lemma is known to
be true. There are two cases:

• From d ∈ (Subtx
q)I to the existence of a homomorphism h : Ix

q → I with h(x) = d.
From the fact that d ∈ (Subtx

q)I and from the last conjunct from Definition 3.7, we
obtain that for each variable y ∈ Chlds(x) there is a domain element dy ∈ ∆I satisfying:

(d, dy) ∈

 ⋂
r(x,y)∈q

rI
 and dy ∈ (Subty

q)I . (♣)

Moreover, by the induction hypothesis, for every y ∈ Chlds(x) there is a homomorphism
hy : (Subty

q)I → I with hy(y) = dy . Let us define a function h : I [x�]
q → I as: h(x) := d

and for all z ∈ Var(q) we set h(z) := hy(z), where y ∈ Chlds(x) such that y � z. We first
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explain why the definition of h is correct and then why h is indeed a homomorphism,
finishing the proof. The correctness of the definition comes directly from the fact that
I [x�]

q is a forward tree: any variable is then either the root of I [x�]
q or has the unique

ancestor being a child of the root. Now, to argue that h is a homomorphism, we prove
the preservation of (atomic) concepts and roles by h. To see that h preserves concepts,
we either (a) use the same reasoning as in the base case for the root variable or (b)
invoke an inductive hypothesis that hy are homomorphisms for other variables. For the
preservation of roles, note that due to forward-tree-shapedness of I [x�]

q there are only
three cases to consider: for any role name r either rI

[x�]
q is empty (thus we do not need

to do anything) or contains pairs of the form (i) (x, y) for y ∈ Chlds(x), or (ii) (z, v)
with some z 6= x. We handle each of these cases separately. For (i) we observe that if
(x, y) ∈ rIx

q holds for some variable y ∈ Chlds(x) then r(x, y) ∈ q and by Equation (♣)
we conclude (h(x), h(y)) = (d,dy) ∈ rI . Finally, for the case (ii), we know that there
is a unique variable y from Chlds(x) satisfying y � z. Hence, from the fact that hy
is a homomorphism, we get (h(z), h(v)) ∈ rI , completing the proof that h is also a
homomorphism.

• From the existence of a homomorphism h : I [x�]
q → I with h(x) = d, to d ∈ (Subtx

q)I .
It suffices to show that d satisfies each conjunct from Subtx

q . Showing that d belongs
to the first conjunct (i.e. these representing atoms of the form A(x)) is the same as
in the base case. Thus, we focus only on the last conjunct. Let ∃

(
∩r(x,y)∈qr

)
Subty

q
be any of them and set dy = h(y). Let hy be the restriction of h to {z | y � z} and
note that hy : I [y�]

q → I is a homomorphism with hy(y) = dy . Hence, by the inductive
assumption, we deduce dy ∈ (Subty

q)I . It remains to show (d,dy) ∈ ∩r(x,y)∈qrI . Take
any r(x, y) ∈ q. By the definition of Ix

q , we conclude that (x, y) ∈ rI
[x�]
q . Since h is a

homomorphism, we get (h(x), h(y)) = (d,dy) ∈ rI , as required. Thus, d ∈ (Subtx
q)I .

We have shown the correctness of the implications in both ways, concluding the proof.

B.3 Proof of Lemma 3.13

Proof. Assume I |= q ′. Since q ′ is a fork rewriting of q, there exists a derivation q=qn  fe
qn−1  fe . . . fe q0=q ′. Reasoning inductively, it suffices to show that for all indices 0 ≤ i < n
we have that I |= qi implies I |= qi+1. Then we conclude the lemma by taking i := n − 1.
Assume I |= qi, i.e. that there is a homomorphism hi : Iqi → I. Since qi+1  fe qi holds, we
can find the variables x, y, z such that (i) Var(qi) \ {x, y, z} = Var(qi+1) \ {x, y, z} and (ii) qi
was obtained from qi+1 by replacing each occurrence of x or y in any atoms with z. Hence,
let f : Iqi+1 → Iqi be a function satisfying f(x) = f(y) = z and f(v) = v for all other variables.
From (i) and (ii) we immediately infer that f is a homomorphism. Thus (f ◦ hi) : Iqi+1 → I
is a homomorphism, establishing I |= qi+1.

B.4 Proof of Lemma 3.17 (if)

Proof. By Lemma 3.13, it suffices to show I |= q ′. We construct a function h : Var(q ′)→ I
as follows:
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• For every root variable x ∈ Roots we put h(x) := (name(x))I .
• Fix an index 1 ≤ i ≤ n. By Item (b) of Definition 3.14 we know that q ′�SubTreei

is
forward-tree-shaped and let xi be its root. Moreover, by Item (D) of Definition 3.16
there exists an element di ∈ ∆I satisfying:

(
name(root-of(i))I ,di

)
∈

 ⋂
r(root-of(i),xi)∈q′

rI
 and di ∈

(
Matchq′�SubTreei

)I
.

(♠)
From the forward-tree-shapedness of q ′�SubTreei

and Lemma 3.8 we conclude the exis-
tence of a homomorphism hi from Iq′�SubTreei

to I with hi(xi) = di. Thus we can simply
put h(x) := hi(x) for all x ∈ SubTreei.

• Take any connected component q̂ of q ′�Trees, which by Item (a) of Definition 3.14 is
forward-tree-shaped. From the compatibility of ΠN

q′ with I and Item (A) of Defini-
tion 3.16 we know that there is an element d ∈ ∆I satisfying d ∈ (Matchq̂)I . Invoking
Corollary 3.9, we deduce that there exists a homomorphism hq̂ : Iq̂ → I. Finally, we
put h(x) := hq̂(x) for all x ∈ Var(q̂).

Note that the definition of h is correct, i.e. that every argument has a value assigned and that
each argument has only one value assigned, since (i) the sets Roots, SubTree1, . . . , SubTreen,
Trees induce a partition of Var(q), (ii) all forward-tree-shaped queries from Trees are
variable-disjoint and (iii) the employed homomorphism are functions themselves. Hence, it
remains to show that h is also a homomorphism from Iq′ to I. Proving the preservation of
atomic concepts by h is immediate: for root variables we employ Item (B) of Definition 3.16,
while for the other variables we rely on the fact that the result of h is then defined via another
homomorphism. For the proof of the preservation of roles by h, we take any pair (x, y) ∈
rIq′ , or equivalently r(x, y) ∈ q ′, and we will show that (h(x), h(y)) ∈ rI . By Item (c) of
Definition 3.14 we know that there are only four cases to consider, depending on the location
of x and y:

• Both x and y belong to Roots.
Then (h(x), h(y)) =

(
name(x)I , name(y)I

)
∈ rI follows from Item (C) of Defini-

tion 3.16.
• There exists an index 1 ≤ i ≤ n such that x, y ∈ SubTreei.

Then (x, y) ∈ rIq′�SubTreei holds and we get (h(x), h(y)) = (hi(x), hi(y)) ∈ rI since hi is
a homomorphism.

• Both x and y belong to Trees.
From (x, y) ∈ rIq′ we know that x, y are in the same subtree q̂ of Trees. Thus,
(x, y) ∈ rIq̂ holds and it suffices to apply the fact that hq̂ is a homomorphism to get
(h(x), h(y)) = (hq̂(x), hq̂(y)) ∈ rI .

• The variables x and y are in two different sets.
First, from Item (c) of Definition 3.14, we know that there is an i such that x ∈ Roots
satisfies root-of(i) = x and y = xi ∈ SubTreei is the root of q�SubTreei

. Second, by
Equation (♠) we know that (h(x), h(y)) is actually equal to

(
name(root-of(i))I ,di

)
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for some already-fixed di ∈ ∆I . Finally, by applying the first part of Equation (♠), we
get (h(x), h(y)) =

(
name(root-of(i))I , di

)
belongs to rI , as required.

We have shown that the function h is indeed a homomorphism. Thus I |= q ′ holds, implying
I |= q.

B.5 Proof of Lemma 3.17 (only if)

Proof. Let π be a match witnessing I |=π q. As a preliminary step, we modify π and q
slightly, to make them more “forest-like”. Then we will define an appropriate splitting.

We construct the query q ′ by exhaustively applying fork elimination on all “forks”
r(x, z), s(y, z) with π(x) = π(y) (where r , s are not necessarily different). Obviously I |= q ′
holds (a match π′ is for q ′ is essentially the same as π modulo changing the set of variables).
Now we will modify π′. Let I ′ be any connected substructure of I induced by π′ and let
N′ ⊆ N consists of all names given to elements from I ′. Moreover, let V ⊆ Var(q ′) be the
⊆-maximal set of variables from q ′ so that the image of V by π′ is precisely I ′. Note that
|I ′| ≤ |q| and consider two cases:

• If N′ is empty, then by (|q|,N)-lff-likeness of I we know that there is a homomorphism
f from I ′ to some forward-tree-shaped interpretation I ′′ and a homomorphism g from
I ′′ to I. We next redefine π′ so that it maps any variable v ∈ V to g(f(π′(v))). This
yields the property that the image of V by π′ constitutes a forward-tree.

• The case when N′ 6= ∅ is treated similarly, but we use homomorphisms to N′-rooted
forward-forests instead.

Next, we define an N-splitting

ΠN
q′ := (Roots, name, SubTree1, SubTree2, . . . , SubTreen, root-of, Trees) ,

where the definitions of its components are provided below.

• The set Roots is composed of all variables x ∈ Var(q ′) for which π′(x) is an N-named
element of I. For all such variables x we set name(x) := a for any corresponding a ∈ N.

• The sets SubTreei, as their name suggests, are defined by taking subtrees connected
to the roots. To simplify the definition, we say that a variable x is dangling from
a root if there exists a variable xr ∈ Roots and an atom r(xr, x) in q ′. Let D be
the subset-maximal set of variables from (Var(q ′) \ Roots) dangling from roots. Take
n := |D| and fix an ordering x1, x2, . . . , xn on the elements from D. For any index
1 ≤ i ≤ n we define SubTreei as the set composed of xi and all variables reachable
from xi via a directed path of positive length in the query structure Iq′�Var(q′)\Roots

.
Observe that I�{π′(v)|v∈SubTreei} is a forward-tree. This follows from the fact that the
|q|-neighbourhood of π′(xi) in I is either a forward-tree (and hence we are done) or it
is an N′-rooted forward-forest (then since π′(xi) is not N-named it is an inner node of
the forest and hence the nodes reachable from it constitute a forward-tree).
Thus, due to the fact that we eliminated all forks, the underlying query q ′�SubTreei

is
forward-tree-shaped.
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• We put root-of(i) := x ir, where x ir is the root from which xi ∈ D is dangling.
Note that x ir is uniquely determined due to the construction of q ′. Indeed, ad absurdum
assume that there is yir 6= x ir such that r(x ir, xi) and s(yir, xi) holds. There are two cases:
either π′(x ir) = π′(yir) or π′(x ir) 6= π′(yir). The former case is clearly not possible due to
the fact that such “forks” were eliminated in q ′. In the latter case it implies that there
are two N-named elements of I pointing at π′(xi). Recall that I is a (|q|,N)-locally-
forward-forest-like and hence, the local neighbourhood of π′(xi) is a forward-forest
with at least two roots, π′(x ir) and π′(yir). Thus the latter case is only possible when
π′(xi) is also N-named, but it is not because xi 6∈ Roots. A contradiction.

• The set Trees contains all other variables from Var(q ′).
Now we show that ΠN

q′ is indeed a splitting. We have already argued that name and
root-of are functions and that Item (b) and Item (d) of Definition 3.14 hold. It remains
to prove that the selected sets induce a partition of Var(q ′) as well as the satisfaction of
Items (a) and (c) of Definition 3.14.

We start with the former issue. First, note that by the above definitions the set Trees
guarantees that all the set components of ΠN

q′ sums to Var(q ′) and that Trees are disjoint
from the other sets. Moreover, since the variables from Roots were excluded while defin-
ing SubTreei we conclude that Roots ∩ SubTreei = ∅ for any index i. Hence, it suffices to
take any two indices i < j and show the disjointness of SubTreei and SubTreej . Assume
towards a contradiction that SubTreei ∩ SubTreej 6= ∅. Thus there is a variable v reachable
from both xi and xj (the roots of q�SubTreei

and q�SubTreej
, different by definition) via directed

paths in Iq′�SubTreei
and Iq′�SubTreej

. We consider the following cases:

1. SubTreei = {xi} and SubTreej = {xj}.
This implies that v = xj or v = xi and contradicts the fact that each of the above sets
is a singleton.

2. v = xi (the case of v = xj is analogous).
Hence, we infer the existence of a directed path from xj to xi in Iq′�SubTreej

. More-
over, all the elements on this path are anonymous, since they belong to SubTreej .
Note that xi is also anonymous. Thus there is also a directed path (of positive
length!) from π′(xj) to π′(xi) of length ≤ |q ′| in I. But it contradicts the fact
that the |q|-neighbourhood of π′(xi) is an N′-forward-forest, with some N′ contain-
ing name(root-of(i)) and name(root-of(j)).

3. xi 6= v 6= xj .
Thus there are variables u ∈ SubTreei, w ∈ SubTreej and z ∈ SubTreei ∩ SubTreej
(with z possibly equal to v) such that r(u, z) ∈ q ′ and s(w, z) ∈ q ′ and z is reachable
from both xi and xj . Since we eliminated all the forks, we know that π′(w) 6= π′(u).
Thus, by applying the fact that |q|-neighbourhood of π′(xi) is an N′-forward-forest, we
get a contradiction because π′(u), π′(w), π′(z) do not form a forward-forest.

Hence components of ΠN
q′ indeed induce a partition of Var(q ′).

Next, we proceed with Item (a). Take any connected component q̂ of q ′�Trees. Note that
|q̂| ≤ |q| and for any variable v ∈ Var(q̂) we have that π′(v) is not N-named. Hence, from
the (|q|,N)–lff-likeness of I we infer the substructure induced by π′ and q̂ is a forward-tree,
so is q̂ (we eliminated all the forks!).
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Finally, we need to argue that Item (c) of Definition 3.14 holds. If x ∈ Roots and
r(x, y) ∈ q ′ then either if π′(y) is N-named then y ∈ Roots (thus x, y are in the same set) or
y is dangling from the root so, by the construction, is in some SubTreei. By construction, y
is the root of q ′�SubTreei

. Otherwise x 6∈ Roots and we consider the following cases:

1. If x ∈ SubTreei and y ∈ SubTreej∪Trees then y ∈ SubTreei violating the disjointness
of these sets.

2. y ∈ Roots or (x ∈ Trees and y ∈ SubTreei). We get a contradiction with lff-likeness
of I.

This finishes the proof that ΠN
q′ is an N-splitting of q ′. Next, we will argue that ΠN

q′ is
compatible with I. Item (A) follows from Corollary 3.9. Items (B) and (C) are immediate by
the fact that I |=π′ q ′. Finally, for Item (D) we take xi (the i-th variable dangling from the
roots) and apply the fact that π is a homomorphism, thus all the roles mentioned in q ′ between
π′(root-of(i)) and π′(xi) are preserved, with Lemma 3.8 to infer that π′(xi) ∈ MatchIq�SubTreei

.
This concludes the proof.

B.6 Proof of Lemma 3.23

Proof. Note that since super-spoilers are ALC∩-KBs, they belong to DL by definition. For
the right-to-left direction, assume towards a contradiction that K |=(fin) q holds and take any
(finite) (|q|, ind(K))-lff-like model I of K ∪ ⋃iKU

(

qi
(existence guaranteed by Property 3.5).

By assumption we conclude I |= q and hence I |= qi for some 1 ≤ i ≤ m. But I |= KU
(

qi
,

which contradicts Lemma 3.22.
For the other direction, take any (finite) (|q|, ind(K))-lff-like countermodel I for K

and q (guaranteed by Property 3.5). Hence, for each 1 ≤ i ≤ n we have that I 6|= qi
and by Lemma 3.21 we get an ind(K)-super-spoiler KU

(

qi
for qi such that I |= KU

(

qi
. Thus

I |= K ∪⋃iKU
(

qi
, which concludes the proof.

B.7 Proof of Lemma 3.27

Proof. For the first statement of the lemma we consider the following cases. If K is not
(finitely) satisfiable then it entails every query. Our procedure returns True in this case.
If K is (finitely) satisfiable but does not (finitely) entail q, then by Lemma 3.23 there are
ind(K)-super-spoilers KU

(

qi
for qi such that K ∪⋃iKU

(

qi
is (finitely) satisfiable and hence, the

fourth line of the algorithm returns False. Otherwise, K is (finitely) satisfiable and (finitely)
entails q. Thus again, by Lemma 3.23, there are no such ind(K)-super-spoilers and so the
(finite) satisfiability test in the 4th line of Procedure 1 will never succeed. Hence, the 5th
line will be executed, returning True.
The second part of the lemma follows immediately from Lemma 3.25 and Lemma 3.26 and
from the fact that SATDL(poly(K))+exp(|ind(K)|+|q|) ·SATDL(poly(|K|+|q|)) is bounded by
exp(|K|+|q|) · SATDL(poly(|K|+|q|)).
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Appendix C. Appendix to Section 4

C.1 Proof of Lemma 4.2

Proof. I #‰ω
N is an N-rooted ∆I-forward-forest. To see that I #‰ω

N is a forward-forest we observe
that its domain is prefix-closed (follows from Item 1 of Definition 4.1) and that it satisfies
all forests’ criteria on roles (by Item 4 of Definition 4.1). The N-rootedness follows from
Item 2 of Definition 4.1.

For the second claim, it suffices to show that last satisfies every item from the definition of
a homomorphism. The preservation of individual names from N by last follows immediately
from Item 2 of Definition 4.1. Similarly, the preservation of concepts follows from Item 3 of
Definition 4.1. Lastly, to show that last preserves roles, take any two elements u, v ∈ ∆I

#‰ω
N

satisfying (u, v) ∈ rI
#‰ω

N . We aim to prove that (last(u), last(v)) ∈ rI holds. There are two
cases to consider: either both u, v are N-named or at least one of u 6= v is not named.
For the first case, note that u, v are single elements. Thus, we infer that u = last(u) and
v = last(v) hold and by the first part of the equation in Item 4 of Definition 4.1 we conclude
(last(u), last(v)) ∈ rI . Finally, if one of u, v is not named, we have that v = u · d holds for
some d ∈ ∆I . By applying the second part of the equation in Item 4 of Definition 4.1, we
infer (last(u), last(v)) ∈ rI . This finishes the proof.

C.2 Proof of Property 4.4

Proof. We will proceed with each of the items separately.

(A) The last function restricted to NI , is actually the identity function, so it suffices to
show that it is also a homomorphism. This already follows from Lemma 4.2.

(B) For the first part, take any element d ∈ CI . Then d ∈ CI
#‰ω

N . Similarly, if w ∈ CI
#‰ω

N then
last(w) ∈ CI . Hence CI is non-empty iff CI

#‰ω
N is. For the second part, take (d, e) ∈ rI .

Then if both d, e are N-named, then by construction (d, e) ∈ rI
#‰ω

N . Otherwise we have
that (d,de) ∈ rI

#‰ω
N . For the other direction assume that (w, v) ∈ rI

#‰ω
N holds. Then we

again distinguish two cases: if both w, v are N-named then w, v ∈ ∆I and we infer
(w, v) ∈ rI by the manual assignment of roles between named elements. Otherwise by
definition we have (last(w), last(v)) ∈ rI , yielding the desired equivalence.

(C) Depending on whether both w and v are N-named or not, the result follows either
from the first or from the second part of the equation in Item 4 of Definition 4.1. The
equality between ConcI(last(w)) and ConcI #‰ω

N
(w) follows from Item 3 of Definition 4.1.

(D) Fix C, R, w and d := last(w) as in the statement of Property 4.4. We first show that
last is a bijection between the sets last[A] := {last(v) | v ∈ A} and A defined below:

{
v ∈ ∆I

#‰ω
N | C = ConcI #‰ω

N
(v) and R = RolI #‰ω

N
(w, v)

}
,

Surjectivity is obvious, so we focus on injectivity only. Take any u, v ∈ A that are
mapped to the same element by last. This implies that u = u0e and v = v0e for some
(possibly empty) words u0, v0 ∈ (∆I)∗ and e ∈ ∆I . There are three cases to consider:
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• Both u0, v0 are non-empty. Then u0, v0 are equal to w by the fact that (w, v) ∈ rI
#‰ω

N

for some r ∈ R and the second part of the equation in Item 4 of Definition 4.1.
Thus u = v.

• Both u0, v0 are empty. Then obviously v = u holds.
• One of u0, v0 is empty and the other one is not. W.l.o.g assume u0 = ε and v 6= ε.

Then by construction of I #‰ω
N (more precisely the first part of the equation in Item 4

of Definition 4.1) we infer that w is N-named and that u is N-named, and that
both w and u are single-element sequences. Since v has length at least two, it is
not named. Thus by the second part of the equation in Item 4 of Definition 4.1,
we infer w = v0. But this means that v is a two-element sequence composed of
N-named elements, which were excluded from the domain of I #‰ω

N , cf. Item 1 of
Definition 4.1. A contradiction. So such a case is not possible.

Thus last is indeed a bijection between A and last[A].
Our next claim is that the identity function is the bijection between last[A] and B given
below. From that we conclude |A| = |B| (and thus the whole proof) by transitivity.

B :=
{

e ∈ ∆I | C = ConcI(e) and R = RolI(last(w), e)
}
.

We show that last[A] ⊆ B and B ⊆ last[A]. The first inclusion follows from the way
we defined roles in the unravelling, cf. Item 4 of Definition 4.1. We the other inclusion
we distinguish the cases depending on whether on not w is N-named.

• w is not N-named.
Take any e ∈ B. Then we have (d, e) ∈ rI for some r ∈ R, and hence we have
that (w,we) ∈ rI

#‰ω
N (by the second item of Item 4 of Definition 4.1). Applying

Item (C) of Property 4.4 we infer that e ∈ A, and thus e ∈ last[A].
• If w is N-named, then w = d.

Again, take any e ∈ B. Then we have (d, e) ∈ rI for some r ∈ R. If e is N-named
then e is also N-named in I #‰ω

N (by Item 2 of Definition 4.1). Thus, by the first part
of the equation in Item 4 of Definition 4.1, we know that (d, e) = (last(w), last(e))
belongs to rI

#‰ω
N . By Item (C) of Property 4.4 we infer that e ∈ A, and hence e ∈

last[A]. Otherwise, if e is not N-named, we apply the same reasoning as in the
case of unnamed w. This concludes the proof.

(E) Immediate from Item 1 of Definition 4.1 and Item (C) of Property 4.4.

C.3 Proof of Lemma 4.8

Proof. Suppose that there exists an undirected path ρ := ρ1 . . . ρm in I #‰n
N of length less

than 2n for which ρ1 and ρm are, respectively, a leaf and the root of the same pawn component.
Note that ρ contains elements from at least two components, as the root-to-leaf paths in
every pawn component are of length 2n by design. Thus by the construction of I #‰n

N (especially
by our way of “linking” components in Definition 4.7) we know that one of the following
cases holds for any two consecutive elements ρi−1 and ρi of the path ρ:
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• ρi−1 and ρi are in the same component,

• ρi−1 is a leaf of some pawn component, say I(∗,∗)
¬,∗,h , and ρi is is the root of I(∗,∗)

¬,∗,1−h, or

• ρi is a leaf of some pawn component, say I(∗,∗)
¬,∗,h , and ρi−1 is is the root of I(∗,∗)

¬,∗,1−h.

In particular, the above observation implies that any two consecutive elements of ρ taken
from different components are of different “hue”. Thus ρ has the shape ρ := ρ′0d1 . . . ρ2kd2k+1,
where the even-numbered paths ρ′2i are (possibly single-element) leaf-to-leaf paths traversing
a single component, and the odd-numbered elements d2i+1 are roots of components. But this
implies that ρ1 and ρm = d2k+1 belong to components with different “hue”, contradicting
the fact that they belong to the same component. Hence such a path ρ does not exist.

C.4 Proof of Lemma 4.10

Proof. Let c1 and c2 be leaves from N -upper components, and let I(∗,∗)
¬,e,∗ be the component

to which c1 belongs (the proof for the case when c1 is included in the king component is
completely analogous). We closely follow the proof of Lemma 4.8. Among other things, we
proved there that there is a path ρ between c1 and c2 of length at most n, having the form
ρ := ρ′0d1 . . . ρ2kd2k+1ρ2k+2, where the even-numbered paths ρ′2i are (possibly single-element)
leaf-to-leaf paths contained a single component, and the odd-numbered elements d2i+1 are
roots of components. By assumption, all the elements from ρ′0 are in I(∗,∗)

¬,e,∗ . Suppose that have
already shown that the elements of ρ′i belong to I(∗,∗)

¬,e,∗ (for parameters ∗ possibly different
from the initial ones), and let us establish the same for the elements from ρ′i+2. Since the
elements from ρ′i belong to I(∗,∗)

¬,e,∗ , the last element of ρ′i belongs to I(∗,∗)
¬,e,∗ . By the linking

process (i.e. Item (ii) of Definition 4.7), we conclude that di+1 is the root of some I(∗,e)
¬,∗,∗ .

Analogously, this implies that the first element of ρ′i+2 belongs to I(∗,∗)
¬,e,∗ , yielding that all

the elements of ρ′i+2 are in I(∗,∗)
¬,e,∗ . Hence, by induction, c1 and c2 belong to copies of the

same component.

C.5 Proof of Lemma 4.11

Proof. As we already discussed shortly before the proof, the fact that glue(N ) is a forward-
tree follows from the linking process of components (Definition 4.7), and it is immediate
to see that the identity function is a homomorphism from glue(N ) to N . To craft a ho-
momorphism from N to glue(N ), let h be a mapping that serves as the identity function
of N -lower components and a function that maps elements from N -upper components to
their corresponding ones in the glue(N )-upper component. Note that h is well-defined as
all N -upper components are isomorphic (as provided by Lemma 4.10). Moreover, h maps
`-th leaves of upper components to the `-th leaf of their isomorphic copy. We would like to
point out that when the only N -component is the king component, then h is the identity
function, and hence a homomorphism. Thus for the rest of the proof we assume that all
N -lower components are pawn components. To see that h is a homomorphism, we take any
pair (d, e) ∈ rN and show that (h(d), h(e)) ∈ rglue(N ) holds. Note that by construction of
I #‰n

N only the following cases can occur:
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• Both d, e are in the same component.
Then we either conclude by the fact that h is the identity function (the case of N -lower
components) or by the fact that any two N -upper components are isomorphic.

• The element d is a leaf of some component and e is the root of some component. Hence,
by invoking Item (i) of Definition 4.7, we know that there exists parameters ` and
h for which the element d is the `-th leaf of I(∗,∗)

¬,c,h , and c is the root of I(`,c)
¬,origI(e),1−h.

We actually know more: every `-th leaf d′ of every I(∗,∗)
¬,c,h component satisfies (d′, e) ∈

rN . In particular, this implies that between the `-th leaf d′ of the unique N -upper
component of glue(N ) and e there is an rglue(N )-role connection. Thus (h(d), h(e)) ∈
rglue(N ) holds.

This concludes the proof.

C.6 Proof of Theorem 4.13

Proof. Take any finitely satisfiable DL-KB K, any of its finite models I, and any positive
integer n ∈ N. It suffices to show that there exists an (n, ind(K))-lff-like model J |= K.

Take J := I #‰n
ind(K). By preservation under scattered forward unravellings, we infer J |= K.

Together with Corollary 4.12 we derive that J is a finite (n, ind(K))-lff interpretation that
covers I, which concludes the proof.

C.7 Proof of Property 4.14

Proof. We proceed with all items one by one, showing their satisfaction.

• Proof of Item (A) and Item (B) of Property 4.14
By the construction of the king component in Definition 4.5, we see that I #‰n

N contains
an isomorphic copy of I #‰ω

N restricted to all words of length at most two. Thus by
applying Item (A) and Item (B) of Property 4.4, we are done.

• Proof of Item (C) of Property 4.14
Take any w, v and suppose that (w, v) ∈ rI

#‰n
N holds for some r ∈ NR. By Item (C) of

Property 4.4 it suffices to show that:

ConcI #‰ω
N

(origI #‰ω
N

(w)) = ConcI #‰n
N

(w) and RolI #‰ω
N

(origI #‰ω
N

(w), origI #‰ω
N

(v)) = RolI #‰n
N

(w, v).

For the equality between sets of concepts, this follows from the fact that w is just an
isomorphic copy of origI #‰ω

N
(w), according to Definition 4.6. For the equality between

sets of roles, we consider two cases:

(a) w and v are in the same component. Then we are again done by isomorphism
between copies and selected fragments of I #‰ω

N .
(b) w and v are in different components, implying that w is a leaf of some component,

while v is the root of some components. We then conclude by our linking process
described in Definition 4.7.

• Proof of Item (D) of Property 4.14
Take any w ∈ ∆I

#‰n
N , non-empty set of role names R ⊆ NR, and any set of concept
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names C ⊆ NC. We consider two cases. In the first one, we assume that w is a leaf
of a component. Then by Item (D) of Property 4.4 it suffices to establish a bijection
between the sets{

v ∈ ∆I
#‰n

N | ConcI #‰n
N

(v) = C and RolI #‰n
N

(w, v) = R
}
, and{

v ∈ ∆I
#‰ω

N | ConcI #‰ω
N

(v) = C and RolI #‰ω
N

(origI #‰ω
N

(w), v) = R
}
,

which exists by the fact that components are isomorphic to neighbourhoods of I #‰ω
N .

From now on assume that w is not a leaf of a component. It suffices to prove that

A :=
{
v ∈ ∆I

#‰n
N | ConcI #‰n

N
(v) = C and RolI #‰n

N
(w, v) = R

}
, and

B :=
{

d ∈ ∆I | ConcI(d) = C and RolI(origI #‰ω
N

(w),d) = R
}
.

are equicardinal. Without loss of generality let us assume that w is a member of a
pawn component (the proof for the king component is analogous), which implies that
w is the `-th leaf of I(∗,∗)

¬,e,h for some e ∈ ∆I and h ∈ {0, 1}. To show equicardinality of
A and B, we employ the theorem by Cantor-Bernstein and establish that:

– origI #‰ω
N

is an injection from A to B.
The fact that origI #‰ω

N
is a function follows by the linking process of Definition 4.7.

For injectivity, it suffices to see that each v ∈ A is a root of some pawn component
I(`,e)
¬,∗,1−h and that per each d ∈ ∆I such a component I(`,e)

¬,d,1−h is unique.
– There is an injection from B to A. The mapping f that assigns to each d ∈
B the root of I(`,e)

¬,d,1−h is the desired injection. The fact that f is a function
follows again from the linking process, while the injectivity of f is due to the
uniqueness of I(`,e)

¬,d,1−h.

• Proof of Item (E) of Property 4.14
For any w ∈ ∆I

#‰n
N we have that w and origI(w) are directed-path-equivalent, that is:

– If ρ with ρ1 := w is a (possibly infinite) directed path in I #‰n
N then ρ′, de-

fined as ρ′i := origI(ρi) for all i, is a directed path in I such that for all i
we have ConcI #‰n

N
(ρi) = ConcI(ρ′i), and for all i > 1 we have RolI #‰n

N
(ρi−1, ρi) =

RolI(ρ′i−1, ρ
′
i).

– If ρ with ρ1 := origI(w) is a (possibly infinite) directed path in I then ρ′ defined as:
(i) ρ′1 := w, and
(ii) ρ′i := ρi if both ρ′i−1 and ρi are N-named,
(iii) ρ′i := ρ′i−1ρi if ρ′i−1 is not a leaf of the component,
(iv) ρ′i is the root of I(`,e)

¬,ρi,1−h if ρ′i−1 is the `-th leaf of I(∗,∗)
¬,e,h for some e ∈ ∆I and

h ∈ {0, 1},
(v) ρ′i is the root of I(`,ª)

¬,ρi,0 if ρ′i−1 is the `-th leaf of Iª,
is a directed path in I #‰n

N such that for all i we have ConcI #‰n
N

(ρ′i) = ConcI(ρi), and
for all i > 1 we have RolI #‰n

N
(ρ′i−1, ρ

′
i) = RolI(ρi−1, ρi).
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Once the construction of ρ′ from ρ (and vice versa) is given, its correctness follows
from Item (C) of Property 4.14.

C.8 Proof of Lemma 4.16

Proof. Let δ be a semi-restricted cardinality constraint of the form:

δ := N1 · xC1 + . . .+ Nk · xCk
+M ≤ Nk+1 · xCk+1 + . . .+ Nk+` · xCk+`

,

and let s be a solution for δ, i.e. we have that the inequality

(♥): N1 · s(xC1) + . . .+ Nk · s(xCk
) +M ≤ Nk+1 · s(xCk+1) + . . .+ Nk+` · s(xCk+`

)

as well as the inequality (obtained by weakening (♥))

(♣): N1 · s(xC1) + . . .+ Nk · s(xCk
) ≤ Nk+1 · s(xCk+1) + . . .+ Nk+` · s(xCk+`

)

evaluate to true.
Take a positive natural number n > 1, and let sn be a mapping that maps every variable

x to n · s(x). We claim that sn is also a solution for δ. By multiplying both sides of (♣) by
(n−1), adding the inequality (♥) and simplifying the terms we get:

N1 · n · s(xC1) + . . .+ Nk · n · s(xCk
) +M ≤ Nk+1 · n · s(xCk+1) + . . .+ Nk+` · n · s(xCk+`

),

which, by definition of sn, is clearly equal to

N1 · sn(xC1) + . . .+ Nk · sn(xCk
) +M ≤ Nk+1 · sn(xCk+1) + . . .+ Nk+` · sn(xCk+`

).

This justifies our claim.
Next, let s be a solution for an ERCBox E . Then sn (defined as above) is a solution for

at least the same semi-restricted cardinality constraints from E as s. As E is negation-free,
we conclude that sn is also a solution for E , finishing the proof.

C.9 Proof of Lemma 4.20

Proof. Let I be a finite model of an ERCBox E , and let CI := {Cd | d ∈ ∆I} be a set of fresh
concept names per each domain element d ∈ I. W.l.o.g. I interprets concept names from
(NC \CI) as empty sets. Take J to be the unique interpretation whose (NC \CI)-reduct
is I, and that interprets Cd as singletons {d}. This implies that the interpretations of fresh
symbols from CI in J are pairwise-disjoint, which we will exploit later. Moreover, observe
that I #‰n

N is the (NC \CI)-reduct of J
#‰n

N .
We rewrite E to make it aware of fresh concept symbols. We proceed with each δ ∈ E :

δ := N1 · xC1 + . . .+ Nk · xCk
+M ≤ Nk+1 · xCk+1 + . . .+ Nk+` · xCk+`

and replace them by δ′ given below:

N1·

 ∑
d∈CI1

xCd

+. . .+Nk ·

 ∑
d∈CI

k

xCd

+M ≤ Nk+1·

 ∑
d∈CI

k+1

xCd

+. . .+Nk+`·

 ∑
d∈CI

k+`

xCd


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Moreover, per each concept A mentioned in E we append the inequalities:∑
d∈AI

xCd ≤ xA xA ≤
∑

d∈AI
xCd

Call the resulting ERCBox E ′. Since concept names from CI are interpreted in J as
pairwise-disjoint singleton sets whose union is ∆J , and because E ′ is just a finer-grained
description of E , it should be clear that J |= E ′ if and only if I |= E . Note that by construction,
the variables xCd and xCe for different d 6= e are linearly independent, in the sense that the
duplication an element from concept Cd does not influence the total number of elements in
Ce and vice versa (but can, of course, influence sizes of other concepts).

Consider a solution s : xC 7→ |CJ | for E ′. By Lemma 4.16, we infer that the mapping
s′ : xC 7→

(
|∆J

#‰n
N |+ 1

)
· s(xC) is also a solution for E ′. By the fact that unravellings preserve

concepts (cf. Item (B) of Property 4.14) we know that for each variable xCd mapped by s to
a positive value (resp. 0), the concepts Cd are non-empty (resp. empty) in the unravelling.
Thus our proof plan is simple: we are going to duplicate elements d to make the total number
in concept Cd in J #‰n

N equal to s′(xCd). Formally, we take S defined as:

S :=
{(

d, s′(xCd)− |CJ
#‰n

N
d |

) ∣∣ d ∈ ∆I ,
(
s′(xCd)− |CJ

#‰n
N

d |
)
> 0

}
.

Note that value
(
s′(xCd)− |CJ

#‰n
N

d |
)
is non-negative, as s′ was taken to be “sufficiently large”.

Fact 4.19 together with routine calculations yields (J #‰n
N )+S |= E ′. By the presence of ad-

ditional inequalities relating concepts from CI with concepts appearing in E , we conclude
that (I #‰n

N )+S |= E holds.

C.10 Proof of Property 4.22

Proof sketch.. For brevity, let J := (I #‰n
N )+S . Note that, by construction of S-duplication, the

interpretation J restricted to the elements from I #‰n
N and the interpretation I #‰n

N are isomorphic.
Moreover, the process of S-duplication does not affect named elements of I #‰n

N . Hence, by
transitivity and Property 4.14, we establish Item (A) of Property 4.22. For the remaining
properties we proceed as follows. Take any element w and its copy w′. By construction
(see: Definition 4.17) we know that ConcJ (w) = ConcJ (w′) as well as for any v ∈ ∆J we
have RolJ (w, v) = RolJ (w′, v). This also implies that for any directed path ρ in J we have
that wρ is a directed path in J if and only if w′ρ is. The above properties, by transitivity
and Property 4.14 imply the satisfaction of Items (B)–(E) of Property 4.22.

C.11 Proof of Theorem 4.23

Proof. Take any finitely satisfiable DL-KB K, any of its finite models I and any positive
integer n ∈ N. It suffices to show that there exists an (n, ind(K))-lff-like model J |= K.
Take J := I #‰n

N . By the assumption about preservation under scattered unravelling by
rebalancing, we infer the existence of a set S, so that J+S |= K. Thus, what remains to be
done is to show that J+S that finite (n,N)-lff interpretation that covers I, but this follows
from Lemma 4.21.
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Appendix D. Appendix to Section 5

D.1 Proof of Lemma 5.2

Proof. Let U be an n-configuration unit. We will proceed with all axioms α of Knunit and
show that U |= α.

1. Note that ∆U is a set of all binary words of length ≤ n and by definition we have
that w ∈ LvlUi iff |w| = i. Since every word w has a unique length, it follows that
U |= (LvlCov) and that U |= (LvlDisj[i,j]) for any indices 0 ≤ j < i ≤ n.

2. By definitions of LvlUn and nextU , we immediately conclude U |= (leaves-next-loop).
Moreover, for any role name s from Runit \ {next}, we conclude U |= ∃s.Self from the
fact that the set {(w,w) |∈ ∆U} is explicitly stated as a part of sU in its definition.
Thus, we infer U |= (all-loops-but-next).

3. The satisfaction of (LRCov) and (LRDisj) by U is due to the equality RU = ∆U \ LU .
4. Suppose i < n. We will show that U |= (LsuccLvl[i]) (the satisfaction of (RsuccLvl[i])

is analogous). Hence, take any w ∈ LvlUi . Then w (by definition of `i+1) has exactly
two `i+1-successors: w and w0. Moreover, by definition of LvlUi+1 and LU we conclude
that w0 ∈ LvlUi+1 ∩ LU and w 6∈ Lvli+1. Hence, U |= (LsuccLvl[i]) holds, since w0 is
the required (only) witness for the ∃- (∀-) restriction.

5. To see U |= (LBitZero[i]), it suffices to take any element w ∈ LvlUi ∩ LU . By the first
inclusion we infer that |w| = i and by the second that the last letter of w is 0. Hence, we
are done by the definition of (Adbi)U . Similarly, we get U |= (RBitOne[i]). The property
U |= (AdDisj[i]) is due to the fact that words from U carry only one letter per position.
Next, to show U |= (AdLvlDisj[i,j]) for any 1 ≤ j < i ≤ n it suffices to see that, by
definition, LvlUj contains words of length = j and (Adbi)U contains words of length ≥ i.
Thus their intersection is empty, implying the satisfaction of (AdLvlDisj[i,j]). Finally,
we need to prove U |= (PropBit[i]) for 1 ≤ i ≤ n. To this end, note that w ∈ (Adbi)U is
equivalent to saying that |w| ≥ i and that the i-th letter of w is b. Now observe that,
by definition, that for every s ∈ Runit \ {next} we have that any s-successor of w can
only be w, w0, or w1 (if i 6= 0). In any case, such a successor has length ≥ i and has its
i-th letter equal to b. Thus its membership in (Adbi)U follows, finishing the proof.

D.2 Proof of Lemma 5.3

Proof. Let U be an n-configuration unit with ε ∈ LU iff d ∈ LI , and that interprets of all
role and concept names outside Runit ∪Cunit as empty sets. It is obvious that exactly one
such unit exists. In what follows, we are going to define a function h : ∆U → ∆I inductively.
Denoting the restriction of h to {0, 1}≤k by h≤k, our inductive assumption states, for a given
k ≤ n, that h≤i is defined for all i < k and h≤i is a homomorphism from U�{0,1}≤k to I, i.e.
the restriction of U to the set {0, 1}≤k.

We first set h(ε) = d. It is immediate to check that h≤0 is indeed a homomorphism (by
I |= (all-loops-but-next) and our assumptions on ε ∈ LU , and on empty interpretations of
symbols outside Runit ∪Cunit).

For the inductive step, suppose that the assumption holds for some 1 ≤ k ≤ n and
take a word w ∈ {0, 1}k−1. We are going to define h(w0) as follows (the case of h(w1) is

449



Bednarczyk & Rudolph

symmetric). Note that since h(w) ∈ LvlIk−1 (by the fact that h≤k−1 is a homomorphism)
and since I |= (LsuccLvl[i]) (for i equal to k−1) we conclude the existence of d′ ∈ LvlIk
satisfying (h(w),d′) ∈ `Ik . Note that also d′ ∈ LI ∩ (Ad0

k)I holds (by I |= (LsuccLvl[i]) and
I |= (LBitZero[i]) with i = k). Thus, we simply let h(w0) := d′.

What remains to be shown is the fact that h≤k is a homomorphism from U�{0,1}≤k to I.
We already know that h≤k−1 preserves concepts and roles, thus we can focus on concepts and
roles involving words of length k. Hence, take any w of length k and proceed with concepts
first. Let A be any concept name and assume that w ∈ AU . Our goal is to show that
h(w) ∈ AI . The cases of A ∈ {Lvlk,L,R,Adbk} follow immediately from the construction
(see the discussion while defining them). The cases of A = Lvlj with j 6= k and A = Adbi
with i ≤ k cannot happen by the definition of n-configuration unit. Thus the only cases left
are these with A = Adbi with i < k. But this is easy: let w = uv with |v| = 1. By definition
of U we have that u ∈ (Adbi)U . Since h≤k−1 is a homomorphism, we infer h(u) ∈ (Adbi)I
and, by I |= (PropBit[i]), we conclude h(w) ∈ (Adbi)I . Now we proceed with the case of
role preservation by h. Reasoning analogously, we may focus on roles s from Runit and
involving w only. Thus, by definition of U , the only cases are self-loops (that follows by U |=
(all-loops-but-next), (leaves-next-loop)) and the roles `Uk and rUk between the parent of w
and w, that follow from the construction.

This finishes the induction, implying that h is indeed a homomorphism from U to I
satisfying h(ε) = d. We conclude by showing that h is injective. Ad absurdum, suppose that
there are u 6= v ∈ ∆U such that h(u) = h(v). If |u| 6= |v| we have that h(u) ∈ LvlI|u|∩LvlI|v| (by
the definition of U and by preservation of concepts by h). This contradicts I |= (LvlDisj[i,j]).
Otherwise, |u| = |v| but their i-th letters differ. Again, since h is a homomorphism, we
conclude h(v) ∈ (Ad0

i )I ∩ (Ad1
i )I , which violates I |= (AdDisj[i]). Hence, h is injective.

D.3 Proof of Lemma 5.4

Proof. For simplicity we use sUi as an abbreviation of `1U ◦ r1
U ◦ . . . ◦ `iU ◦ riU . The proof

is by induction, where the assumption is that for all 1 ≤ i ≤ n we have that all words w of
length at most i satisfy (ε, w) ∈ sUi . The base case (for w ∈ {ε, 0, 1}) is immediate to verify.
Now take any word w of length at most i+1 and consider the following two cases:

1. |w| ≤ i. Hence, by the inductive assumption we have (ε, w) ∈ sUi . Since (w,w) ∈ `Ui+1
and (w,w) ∈ rUi+1, by the definition of composition we conclude (ε, w) ∈ sUi+1.

2. |w| = i+1. Hence, w = u0 or u1 for some |u| = i. We focus on the first case, the
second one is symmetric. By the inductive assumption we infer that (ε, u) ∈ sUi . Since
(u, u0) ∈ `Ui+1 and (w,w) ∈ rUi+1 we conclude (ε, w) ∈ sUi+1, which finishes the proof.

D.4 Proof of Lemma 5.7

Proof. Let C be a configuration tree. We proceed with all axioms α of Kconf showing C |= α.

1. Since C is an (N+1)-configuration unit by definition, by Lemma 5.2 we infer C |= KN+1
unit.

2. The satisfactions C |= (StCov) and C |= (StDisj[s,s′]) follow immediately from the first
item of Definition 5.6.
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3. We have C |= (LetDisj) and C |= (LetCov) by the second item of Definition 5.6. Next,
we have C |= (LetConDisj) by the fact that words in LetC0 and LetC1 have different
last letters. The satisfaction of (LetConCov) by C is due to the 3rd property in the
3rd item of Definition 5.6. What remains to show is the satisfaction of (EncLetZero)
(the proof of (EncLetOne) is symmetric), but this is due to the fact that the only
`N+1- (resp. rN+1-) successor of any w ∈ LetC0 (thus also from LvlCN by the previous
statement) is w0 (resp. w1) that belong to 0C (resp. 1C) by definition.

4. Before we proceed with the next part of the axiomatisation, we establish a few proper-
ties about concept memberships of whead. First, we have whead ∈ LvlCN by definition (4th
item). Moreover, for every i we have that whead belongs to exactly one of (Ad0

i )C , (Ad1
i )C

by the definition of a unit. Hence, the choice of whead fixes interpretations of Ad0
i ,Ad1

i

and, as we will see, also HdPos0
i and HdPos1

i . Indeed, by the 5th item of Definition 5.6,
whenever whead ∈ (Adbi)C then (HdPosbi)C = LvlC0 ∪ LvlCN and (HdPos1−b

i )C = ∅, thus
also (HdPosbi)C ∩ (HdPos1−b

i )C = ∅ and (HdPosbi)C ∪ (HdPos1−b
i )C = LvlC0 ∪ LvlCN hold.

This establishes C |= (HdPosDisj[i]) and C |= (HdPosCov[i]) for all 1 ≤ i ≤ N.
5. If ε ∈ (Lvl0 uHdPosbi)C , then by definition whead ∈ (Adbi)C . This implies (HdPosbi)C =

LvlC0 ∪ LvlCN and thus LvlCN ⊆ (HdPosbi)C , which is even stronger than the meaning of
the GCI (PropHdPos[i,b]). Hence, we have C |= (PropHdPos[i,b]) for all 1 ≤ i ≤ N and
0 ≤ b ≤ 1.

6. We next focus on proving C |= (HdHereEqualAdr) (the proof of (NoHdHereDiffrAdr) is
symmetric) and C |= (HdHereCov). The second GCI follows by definition, hence we fo-
cus on the first one. Ad absurdum, assume that there is w ∈ (LvlNu ⊔Ni=1

⊔
b∈{0,1}

(
Adbiu

HdPosbi
)
)C but w 6∈ (HdHere)C . Since w ∈ (LvlN)C we infer |w| = N and, by w 6∈

(HdHere)C and the 4th item of Definition 5.6, we infer w 6= whead. Thus there is a
position 1 ≤ k ≤ N such the k-th letter of w differs from the k-th letter of whead (called
it b). So we have w 6∈ (Adbk)C and w ∈ (Ad1−b

k )C (by definition of Adbi in units). At
the same time the 5th item of Definition 5.6 informs us that (HdPosbk)C = LvlC0 ∪LvlCN
and (HdPos1−b

k )C = ∅, which implies w ∈ (HdPosbk)C and w 6∈ (HdPos1−b
k )C . This

contradicts the fact that w ∈ (⊔b∈{0,1} (Adbi uHdPosbi
)
)C .

7. We proceed with the last three GCIs. Satisfaction of (HdLetCov) by C follows by
definition. For (RetrHdLet[a]), assume that its antecedent is non-empty (which means
that it is equal to {ε}). This implies, by the 4th and the last item of Definition 5.6, that
whead ∈ LetCa . Thus, by definition, HdLetCa is equal to {ε}, which obviously contains ε.
Hence, C |= (RetrHdLet[a]). Finally, C |= (HdLetUnique[a]) is shown as follows. If the
antecedent of (HdLetUnique[a]) is non-empty then it is equal to {ε}. Thus by the list
item of Definition 5.6, we have LetCa = {whead}. Since HdHereC = {whead} (by the 4th
item of Definition 5.6), we conclude HdHereC ⊆ LetCa . Therefore C |= (HdLetUnique[a])
holds, finishing the proof.

D.5 Proof of Lemma 5.8

Proof. By Lemma 5.3 there is an (N+1)-configuration unit U and a homomorphism h : U → I
with h(ε) = d. Moreover, as the symbols outside Runit∪Cunit do not appear in Definition 5.1
we can assume that U interprets them as empty sets. Let C = (∆U , ·C) be an interpretation
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that is obtained from changing the meaning of concepts from Cconf as follows: for any
C ∈ Cconf we let CC := {w | h(w) ∈ CU}. All other symbols are interpreted as in U .
Clearly h is a homomorphism from C into I with h(ε) = d. It suffices to prove that C is a
configuration tree. This is done by routine investigation of items from Definition 5.6 and
the presented GCIs.

• Let s be the unique state satisfying h(ε) ∈ StIs : it exists by I |= (StCov) and is unique
by I |= (StDisj[s,s′]). Hence, (Sts)C = {ε} holds. Moreover, (Sts′)C = ∅ for all s′ 6= Q.
Note that ε 6∈ (Sts′)C by (StDisj[s,s′]) and for other elements (so from LvlCi for some
i > 0) their membership in (Sts′)C would violate I |= ⊔

s∈Q Sts.
• Similarly, the equalities (LvlN+1)C = 0C ∪ 1C and 0C ∩ 1C = ∅ follow by I |= (LetDisj)

and I |= (LetCov).
• We have (Let0)C ∪ (Let1)C = LvlCN by I |= (LetConDisj) and I |= (LetConCov).

Note that this implies (Let0)C ⊆ LvlCN . We next show the equality (♥) : (Let0)C =
{w ∈ ∆U | w0 ∈ 0C , w1 ∈ 1C} (the related equality for Let1 is symmetric). Take
any w ∈ (Let0)C (thus also ∈ LvlCN). By the fact that C is a unit, we infer that
w0 ∈ LvlCN+1 and w1 ∈ LvlCN+1 exist, and moreover w is linked to them, respectively,
by the roles `CN+1 and rCN+1. Hence, by the homomorphic assignment of concepts from
Cconf and the satisfaction I |= (EncLetZero) we have that w0 ∈ 0C and w1 ∈ 1C .
Hence, the ⊆-relationship of (♥) follows. For the ⊇-relationship take any w ∈ ∆U s.t.
w0 ∈ 0C , w1 ∈ 1C and note that w ∈ LvlCN and wb ∈ LvlCN+1 hold. Otherwise, by the
fact that C is an (N+1)-configuration unit, the element w0 does not exist or it belongs
to LvlCi for i 6= N+1, which violates I |= (LetCov). By I |= (LetConCov) we know that
w ∈ (Let0)C ∪ (Let1)C . If w ∈ (Let0)C holds then we are done. Thus, assume towards
a contradiction that w ∈ (Let1)C . But then the first conjunct of the consequent of
(EncLetOne) is violated, contradicting its satisfaction by I. Hence (♥) holds.

• Let whead be the unique N-digit binary word whose i-th letter is equal to b iff ε ∈
(HdPosbi)C holds. This is well defined due to I |= (HdPosDisj[i]) and I |= (HdPosCov[i])
for all 1 ≤ i ≤ N. It remains to show that this whead indeed plays the role of whead
in the sense of Definition 5.6. Take any 1 ≤ i ≤ N and let b be the i-th letter of
whead. We will show that (HdPos1−b

i )C = ∅ holds. Ad absurdum, assume that it is
non-empty and contains w. By I |= (HdPosCov[i]) we have that either w ∈ LvlC0 or
w ∈ LvlCN . The first case is not possible due to I |= (HdPosDisj[i]) (we already have
that ε ∈ (HdPosbi)C). Thus w ∈ LvlCN . But then it violates I |= (PropHdPos[i,b]), which
by Lemma 5.4 enforces that w ∈ (HdPosbi)C . Hence, (♣:) (HdPos1−b

i )C = ∅, which by
(HdPosCov[i]) implies (♣′:) LvlC0 ∪ LvlCN = (HdPosbi)C . Thus it follows, by definition of
whead, that whead ∈ (Adbi)C iff whead ∈ (HdPosbi)C , concluding that C satisfies the 5th
item of Definition 5.6. Next, by exploiting (♣) and (♣′) and applying the satisfaction
of (HdHereEqualAdr), (NoHdHereDiffrAdr) and (HdHereCov) by C, we conclude the
satisfaction of the 4th item of Definition 5.6. This, among the other properties, results
in HdHereC = {whead}. Finally, let a be the unique letter satisfying whead ∈ LetCa (it ex-
ists and is unique by I |= (LetConDisj), (LetConCov)). We claim that HdLetCa = {ε}
and HdLetC1−a = ∅. Note that both HdLetCa and HdLetC1−a are subsets of {ε} by
I |= (HdLetCov), thus it suffices to show that ε ∈ HdLetCa and ε 6∈ HdLetC1−a. The
first property holds due to I |= (RetrHdLet[a]). For the second property, towards a
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contradiction assume that ε ∈ HdLetC1−a. Hence, by I |= (HdLetUnique[a]) we con-
clude that HdHereC = {whead} ⊆ LetC1−a. But LetC1−a is empty by I |= (LetConDisj)
and the definition of a. A contradiction.

Hence the interpretation C is indeed a configuration tree, concluding the proof.

D.6 Proof of Lemma 5.10

Proof. Since E is a configuration tree by definition, by Lemma 5.7 we infer E |= Kconf.
Hence, we may focus on the GCIs presented in this section only. For the GCIs from the 2nd
group, we essentially use the same proof that we used for their “non-previous” counterparts
the proof of Lemma 5.7 and thus we do not repeat it here. Satisfaction of (PHdAbvCov)
and (PHdAbvDisj) follows by the 4th item of Definition 5.9. Next, to prove that also
(PropPHdAbv) is satisfied by E (the proof for (PropNoPHdAbv) is analogous) we take
any w ∈ PHdHereE , which by definition is equal to wphd and see that the antecedent of
the implication on the right hand of (PropPHdAbv) is satisfied only by wphd0 and wphd1,
which are in PHdAbvE by definition. Next, to show satisfaction of (TransiCons) we assume
ε ∈ PTrnsE(s,a,b,s′,d). Then we have ε ∈ PHdLetEb (by the second to last items of Definition 5.9),
ε ∈ StEs′ (by the 2nd item of Definition 5.9) and that ε ∈ “PHdPos + d = HdPos”E (by
correctness of incrementation/decrementation of binary encodings and by the 1st subitem
of the 3rd item of Definition 5.9). Thus E |= (TransiCons). Finally, E |= (IC) follows directly
from the last item of Definition 5.9.

D.7 Proof of Lemma 5.11

Proof. We follow the proof scheme of Lemma 5.8. By Lemma 5.8, there is a homomorphism h
from a configuration tree C to I with h(ε) = d. Moreover, as the symbols outside Runit ∪
Cunit∪Cconf do not appear in Definition 5.6 we can assume that C interprets them as empty
sets. Let E = (∆C , ·U ) be an interpretation that is obtained from changing the meaning of
concepts from Cenr as follows: for any C ∈ Cenr we let CE := {w | h(w) ∈ CC}. All other
symbols are interpreted as in C. Clearly h is a homomorphism from E into I with h(ε) = d
and it suffices to show that E is an enriched configuration tree (we already know that it
is a configuration tree), which is done by routine investigation of Definition 5.9 and the
presented GCIs.

The existence of the unique concept C ∈ Cptr claimed in the 1st item of Definition 5.9
is provided by the first three GCIs, namely the existence is due to (TrCov) and unique-
ness due to (TrInitDisj[t]) and (TrDisj[t, t′]). The 2nd item of Definition 5.9 is due to
I |= (TransiCons) (more precisely, the first conjunct of the rhs). Similarly to the proof
of Lemma 5.8, we establish the existence of a unique wphd and desired properties of con-
cepts PHdHereE , NoPHdHereE , (PHdPosbi)E and PHdLetEa . Since such a proof is nearly
identical (modulo adding the “P” letter in front of some concept names) to the one from
the previous section, we do not repeat the details here. Then, the fact that wphd satisfies
wphd = whead + d or is equal to 0 in case IniE = {ε} is by, respectively, membership of
ε in “PHdPos + d = HdPos”E and (∀`1∀r1 . . . ∀`N∀rN (LvlN → PHdPosbi))E , guaranteed by
I |= (TransiCons) and I |= (IC). Finally, the satisfaction of the last item of Definition 5.9
is immediate by I |= (IC).
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D.8 Proof of Lemma 5.13

Proof. To see Q |= Kenr it suffices to observe that (1) by the 2nd item of Definition 5.12 all
the substructures of Q induced by {w} × {0, 1}≤N+1 are isomorphic to some computation
tree and hence, by Lemma 5.10 they satisfy Kenr, (2) the use of roles from Runit \ {next} is
restricted to enriched configuration trees and hence Q satisfies all the GCIs not involving
next and (3) the only GCI involving next from Kenr is (leaves-next-loop) and it is satisfied
in Q due to the mentioned isomorphism property. Next, the satisfaction of (AConfSucc[sa]),
(TransiUnivStateL), and (TransiUnivStateR) by Q is due to the 7th item (1st subitem)
of Definition 5.12. Similarly, we infer that Q |= (EConfSucc[se]) and Q |= (TransiExistState)
by the 7th item (2nd subitem) of Definition 5.12. By the last item of Definition 5.12 we
immediately conclude Q |= (FinConfSucc[sf ]) and Q |= (NoRejectState). Hence, it remains
to prove satisfaction of (TransHeadPos[i, b]), which is immediate by the second to last item
of Definition 5.12.

D.9 Proof of Lemma 5.17

Proof. It suffices to take qmain := qrl[xr, x] ∧ next(xr, yr) ∧ qrl[yr, y]. Let Q |=π qmain. That
Mqmain is a superset of the set above follows from the fact that quasi-computation trees
are computation units and hence, containment follows by Corollary 5.5. We now focus
on the other direction. Note that by the 5th item of Definition 5.12 we know that π(xr)
and π(yr) must be two distinct roots of enriched configuration trees Exr , Eyr . By the 4th item
of Definition 5.12 we know that the interpretation of the rs and `s is restricted to pairs of
domain elements located inside the same enriched configuration tree (and by their definition
to configuration trees and by their definition to configuration units). Since qrl only employs
the roles `i, ri and the concepts Lvl0,LvlN+1 we conclude that qrl has exactly the same set
of matches in Exr as in its underlying unit. Hence, by Corollary 5.5 we know that x (resp. y)
is indeed mapped to a leaf of Exr (resp. to a leaf of Eyr), which finishes the proof.
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