
Computational
Logic ∴ Group

Existential Rules – Lecture 5

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 2

BCQ-Answering: Our Main Decision Problem

D

Σ

hD,Σi

D

database (aka ABox)

ontology (aka TBox)

Q = 9Y (' (Y))

knowledge base

8X8Y (' (X,Y) ® 9Z Ã(X,Z))

decide whether D ^ Σ ² Q

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 3

Universal Models (a.k.a. Canonical Models)

U

J1 J2

. . .
Jn

. . .

h1
h2

hn

An instance U is a universal model of D ^ Σ if the following holds:

1. U is a model of D ^ Σ

2. 8J 2 models(D ^ Σ), there exists a homomorphism hJ such that hJ(U) µ J

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 4

Query Answering via the Chase

Theorem: D ^ Σ ² Q iff U ² Q, where U is a universal model of D ^ Σ

+

Theorem: chase(D, Σ) is a universal model of D ^ Σ

=

Corollary: D ^ Σ ² Q iff chase(D,Σ) ² Q

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 5

Rest of the Lectrure

• Undecidability of BCQ-Answering

• Gaining decidability - terminating chase

• Full Existential Rules

• Acyclic Existential Rules

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 6

Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof : By simulating a deterministic Turing machine with an empty tape

…syntactic restrictions are needed!!!

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 7

What is the Source of Non-termination?

person(Alice)

8X (Person(X) ® 9Y (hasParent(X,Y) ^ Person(Y)))

D

Σ

chase(D,Σ) = D [{hasParent(Alice, z1), Person(z1),

hasParent(z1, z2), Person(z2),

hasParent(z2, z3), Person(z3), …

1. Existential quantification

2. Recursive definitions

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 8

Termination of the Chase

• Drop the existential quantification

o We obtain the class of full existential rules

o Very close to Datalog

• Drop the recursive definitions

o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 9

Full Existential Rules

• A full existential rule is an existential rule of the form

• We denote FULL the class of full existential rules

• A local property - we can inspect one rule at a time

) given Σ, we can decide in linear time whether Σ2 FULL

) closed under union - Σ1 2 FULL, Σ2 2 FULL) (Σ1 [Σ2) 2 FULL

• Why does the chase terminate?

8X8Y (' (X,Y) ® Ã(X))

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 10

Complexity Measures for Query Answering

• Data complexity: is calculated by considering only the database as part of the

input, while the ontology and the query are fixed

• Combined complexity: is calculated by considering, apart from the database,

also the ontology and the query as part of the input

• Data complexity vs. Combined complexity

o Data complexity tends to be a more meaningful measure - ontologies and

queries tend to be small; databases tend to be large

o Nevertheless, the combined complexity is a relevant measure - identifies

the real source of complexity

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 11

Some Important Complexity Classes

Problems that can be solved by an algorithm
that uses a polynomial amount of memory

PSPACE

Problems that can be solved by an algorithm
that runs in exponential time

EXPTIME

Problems that can be solved by an algorithm
that runs in double-exponential time

2EXPTIME

We need the power of non-determinismNP coNP

NEXPTIME coNEXPTIME We need the power of non-determinism

LOGSPACE

Problems that can be solved by an algorithm
that runs in polynomial time

PTIME

Problems that can be solved by an algorithm
that uses a logarithmic amount of memory

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 12

Data Complexity of FULL

Theorem: BCQ-Answering under FULL is PTIME-hard w.r.t. the data complexity

Proof : By a LOGSPACE reduction from Monotone Circuit Value problem

We cannot do better than the naïve algorithm

Theorem: BCQ-Answering under FULL is in PTIME w.r.t. the data complexity

(Analysis of “brute force” materialization and querying algorithm.)

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 13

Data Complexity of FULL

Circuit evaluates to true iff D ^ Σ ² T(g6)

encoding of the circuit as a database D

T(g1) T(g3)

AND(g4,g1,g2) OR(g5,g2,g3) OR(g6,g4,g5)

evaluation of the circuit via a fixed set Σ

8Χ8Υ8Ζ (T(X) ^ OR(Z,X,Y) ® T(Ζ))

8Χ8Υ8Ζ (T(Y) ^ OR(Z,X,Y) ® T(Ζ))

8Χ8Υ8Ζ (T(X) ^ T(Y) ^ AND(Z,X,Y) ® T(Ζ))
Does the circuit evaluate to true?

^ _

_

g4 g5

g6

g1 g2 g3

1 0 1

0 1

1

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 14

Combined Complexity of FULL

Theorem: BCQ-Answering under FULL is in EXPTIME w.r.t. the combined complexity

Proof: Consider a database D, a set Σ2 FULL, and a BCQ Q

We apply the naïve algorithm:

1. Construct chase(D,Σ)

2. Check for the existence of a homomorphism h such that h(Q) µ chase(D,Σ)

By our previous analysis, in the worst case, the naïve algorithm runs in time

(|sch(Σ)| · (|adom(D)|)maxarity)2 · |Σ| · (|adom(D)|)maxvariables(Σ) · maxbody(Σ)

+

(|adom(D)|)#variables(Q) · |Q| · |sch(Σ)| · (|adom(D)|)maxarity

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 15

Combined Complexity of FULL

Theorem: BCQ-Answering under FULL is EXPTIME-hard w.r.t. the combined
complexity

Proof : By simulating a deterministic exponential time Turing machine

We cannot do better than the naïve algorithm

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 16

EXPTIME-hardness of FULL

Our Goal: Encode the exponential time computation of a DTM M on

input string I using a database D, a set Σ 2 FULL, and a BCQ Q such that

D ^ Σ ² Q iff M accepts I in at most N = 2m steps, where m =|I|k

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 17

The Schema

0 1 2 j N-1

0

1

2

i α

N-1

Symbol[α](i,j) - at time instant i, cell j contains α

…

…

…

…

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 18

The Schema

0 1 2 j N-1

0

1

2

i α

N-1

…

…

Cursor(i,j) - at time instant i, cursor points to cell j

…

…

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 19

The Schema

0 1 2 j N-1

0

1

2

i α

N-1

…

…

State[s](i) - at time instant i, the machine is in state s

…

…

s

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 20

The Schema

0 1 2 j N-1

0

1

2

i α

N-1

…

…

Accept(i) - at time instant i, the machine accepts

…

…

Accept

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 21

The Schema

0 1 2 j N-1

0

1

2

i

N-1

…

…

…

…

First(0), Succ(0,1), Succ(1,2), Succ(2,3), …, Succ(N-2,N-1)

Á - transitive closure of Succ
will be defined later

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 22

Initialization Rules

0 1 2 n-1 n N-1

0 α0 α1 α2 … αn-1 t … t

… …

Assume that I = α0…αn-1

s0

8T8C (First(T) ^ Á(n-1,C) ® Symbol[t](T,C))

8T (First(T) ® Symbol[αi](T,i) ^ Cursor(T,T) ^ State[s0](T))

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 23

Transition Rules

j j+1 j+2

i x α y

i+1 x β y

s1

s2

δ(s1,α) = (s2,β,+1)

8T8T18C8C1 (State[s1](T) ^ Cursor(T,C) ^ Symbol[α](T,C) ^ Succ(T,T1) ^ Succ(C,C1) ®

Symbol[β](T1,C) ^ Cursor(T1,C1) ^ State[s2](T1))

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 24

8T8T18C8C1 (Symbol[α](T,C) ^ Cursor(T,C1) ^ Á(C1,C) ^ Succ(T,T1) ® Symbol[α](T1,C))

Inertia Rules

8T8T18C8C1 (Symbol[α](T,C) ^ Cursor(T,C1) ^ Á(C,C1) ^ Succ(T,T1) ® Symbol[α](T1,C))

Cells that are not changed during the transition keep their old values

j j+1 j+2

i x α y

i+1 x β y

s1

s2

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 25

Accepting Rule

Once we reach the accepting state we accept

8Τ (State[sacc](T) ® Accept(Τ))

0 1 2 n-1 n N-1

i sacc

… …

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 26

Defining First, Succ and Á

• First(0), Succ(0,1), Succ(1,2), Succ(2,3), …, Succ(N-2,N-1)

• In fact, 0,…,N-1 are in binary form - assume the N = 2m, where m = 3

First(0,0,0), Succ(0,0,0,0,0,1), Succ(0,0,1,0,1,0),…, Succ(1,1,0,1,1,1)

• Inductive definition of Firsti and Succi

D = {First1(0), Last1(1), Succ1(0,1)}

First2(0,0), Last2(1,1), Succ2(0,0,0,1), Succ2(0,1,1,0), Succ(1,0,1,1)

8Χ (First1(X) ® First2(X,X))

8Χ (Last1(X) ® Last2(X,X))

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 27

8Χ8Υ8Ζ (Last1(X),Succ1(Y,Z) ® Succ2(X,Y,X,Z))

Defining First, Succ and Á

• First(0), Succ(0,1), Succ(1,2), Succ(2,3), …, Succ(N-2,N-1)

• In fact, 0,…,N-1 are in binary form - assume the N = 2m, where m = 3

First(0,0,0), Succ(0,0,0,0,0,1), Succ(0,0,1,0,1,0),…, Succ(1,1,0,1,1,1)

• Inductive definition of Firsti and Succi

D = {First1(0), Last1(1), Succ1(0,1)}

First2(0,0), Last2(1,1), Succ2(0,0,0,1), Succ2(0,1,1,0), Succ(1,0,1,1)

8Χ8Υ8Ζ (First1(X),Succ1(Y,Z) ® Succ2(X,Y,X,Z))

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 28

Defining First, Succ and Á

• First(0), Succ(0,1), Succ(1,2), Succ(2,3), …, Succ(N-2,N-1)

• In fact, 0,…,N-1 are in binary form - assume N = 2m, where m = 3

First(0,0,0), Succ(0,0,0,0,0,1), Succ(0,0,1,0,1,0),…, Succ(1,1,0,1,1,1)

• Inductive definition of Firsti and Succi

D = {First1(0), Last1(1), Succ1(0,1)}

First2(0,0), Last2(1,1), Succ2(0,0,0,1), Succ2(0,1,1,0), Succ(1,0,1,1)

8Χ8Υ8Ζ8W (Last1(X), First1(Y),Succ1(Z,W) ® Succ2(Z,X,W,Y))

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 29

Defining First, Succ and Á

D = {First1(0), Last1(1), Succ1(0,1)}

8Χ8Υ (Succi(X,Y) ® Succi+1(Z,X,Z,Y))

8Χ8Υ8Z8W (Succ1(Z,W) ^ Lasti(X) ^ Firsti(Y) ® Succi+1(Z,X,W,Y))

8X8Z (First1(Z) ^ Firsti(X) ® Firsti+1(Z,X))

8X8Z (Last1(Z) ^ Lasti(X) ® Lasti+1(Z,X))

Inductive definition of Firsti+1 and Succi+1:

Definition of Ám:

8Χ8Υ (Succm(X,Y) ® Ám(X,Y))

8Χ8Υ8Z (Succm(X,Z) Ám(Z,Y) ® Ám(X,Y))

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 30

Concluding EXPTIME-hardness of FULL

• Several rules but polynomially many) feasible in polynomial time

• D ^ Σ ² 9X Accept(X) iff M accepts I in at most N steps

• Can be formally shown by induction on the time steps

Corollary: BCQ-Answering under FULL is EXPTIME-complete w.r.t. the

combined complexity

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 31

Termination of the Chase

• Drop the existential quantification

o We obtain the class of full existential rules

o Very close to Datalog

• Drop the recursive definitions

o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules

P

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 32

Acyclic Existential Rules

• The definition of a predicate P does not depend on P - formal definition via the

predicate graph

• The predicate graph of a set Σ of existential rules, denoted PG(Σ), is the graph

(V,E), where

o V = {P | P 2 sch(Σ)}

o Ε = {(P,R) | 8X8Y (… ^ P(X,Y) ^ … ® 9Z (… ^ R(X,Z) ^ …)) 2 Σ}

8X (Person(X) ® 9Y (hasParent(X,Y) ^ Person(Y)))

Person hasParent

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 33

Acyclic Existential Rules

• The definition of a predicate P does not depend on P - formal definition via the

predicate graph

• The predicate graph of a set Σ of existential rules, denoted PG(Σ), is the graph

(V,E), where

o V = {P | P 2 sch(Σ)}

o Ε = {(P,R) | 8X8Y (… ^ P(X,Y) ^ … ® 9Z (… ^ R(X,Z) ^ …)) 2 Σ}

• A set Σ of existential rules is acyclic if the graph PG(Σ) is acyclic

• We denote ACYCLIC the class of acyclic existential rules

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 34

Acyclic Existential Rules

• Given Σ, we can decide in polynomial time whether Σ2 ACYCLIC

• But, acyclicity is a global property - we have to consider Σ as a whole

) not closed under union

• Why the chase terminates?

8X8Y (R(X,Y) ® P(Y))

8X (P(X) ® 9Y R(X,Y))

each rule alone is acyclic, but

together form a cyclic set of rules

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 35

Acyclic Existential Rules

• A stratification of Σ is a sequence of sets Σ1 ,…, Σn such that, for some function

μ: sch(Σ) ® {1,...,n}:

1. {Σ1 ,…, Σn} is a partition of Σ

2. For each predicate P 2 sch(Σ), all the rules with P in the head are in Σμ(P)

(i.e., in the same set of the partition)

3. If 8X8Y (… ^ P(X,Y) ^ … ® 9Z (… ^ R(X,Z) ^ …)) 2 Σ, then μ(P) < μ(R)

• Lemma: (1) Σ is stratifiable iff Σ2 ACYCLIC

(2) If there exists a path from P to R in PG(Σ), then μ(P) < μ(R)

• Thus, by exploiting the predicate graph, we can compute a stratification of Σ

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 36

Acyclic Existential Rules

• Consider Σ2 ACYCLIC, and let Σ1 ,…, Σn be a stratification of Σ

• Construct the chase by considering one stratum after the other starting from Σ1

L1

L0 = D

L2

Ln

…

• For each k 2 {1,…,n-1}, Lk = chase(Lk-1,Σk)

• n is finite) the chase terminates

) the naïve algorithm gives a decision procedure

…but, can we do better than the naïve algorithm?

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 37

The Naïve Algorithm for ACYCLIC

L1

L0 = D

L2

Ln

… L1

0 0 z00
0 1 z01
1 0 z10
1 1 z11

|L1| = (|L0|)2

|L0| = 2

D = {P0(0), P0(1)}

Σ = {8X8Y (P0(X) ^ P0(Y) ® 9Z (S1(X,Y,Z) ^ P1(Z)))

8X8Y (P1(X) ^ P1(Y) ® 9Z (S2(X,Y,Z) ^ P2(Z)))

…

8X8Y (Pn-1(X) ^ Pn-1(Y) ® 9Z (Sn(X,Y,Z) ^ Pn(Z)))}

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 38

The Naïve Algorithm for ACYCLIC
L2

z00 z00 z0000
z00 z01 z0001
z00 z10 z0010
z00 z11 z0011
z01 z00 z0100
z01 z01 z0101
z01 z10 z0110
z01 z11 z0111
z10 z00 z1000
z10 z01 z1001
z10 z10 z1010
z10 z11 z1011
z11 z00 z1100
z11 z01 z1101
z11 z10 z1110
z11 z11 z1111

|L1| = (|L0|)2

|L0| = 2

|L2| = (|L1|)2

L1

L0 = D

L2

Ln

…

D = {P0(0), P0(1)}

Σ = {8X8Y (P0(X) ^ P0(Y) ® 9Z (S1(X,Y,Z) ^ P1(Z)))

8X8Y (P1(X) ^ P1(Y) ® 9Z (S2(X,Y,Z) ^ P2(Z)))

…

8X8Y (Pn-1(X) ^ Pn-1(Y) ® 9Z (Sn(X,Y,Z) ^ Pn(Z)))}

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 39

The Naïve Algorithm for ACYCLIC

Ln
z0...0 z0...0 z0...00...0

… … …
z1…1 z1…1 z1…11…1

|L1| = (|L0|)2

|L0| = 2

|L2| = (|L1|)2

L1

L0 = D

L2

Ln

…

|Ln| = (|Ln-1|)2

D = {P0(0), P0(1)}

Σ = {8X8Y (P0(X) ^ P0(Y) ® 9Z (S1(X,Y,Z) ^ P1(Z)))

8X8Y (P1(X) ^ P1(Y) ® 9Z (S2(X,Y,Z) ^ P2(Z)))

…

8X8Y (Pn-1(X) ^ Pn-1(Y) ® 9Z (Sn(X,Y,Z) ^ Pn(Z)))}

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 40

The Naïve Algorithm for ACYCLIC

|L1| = (|L0|)2

|L0| = 2

|L2| = (|L1|)2

|Ln| = (|Ln-1|)2

|Ln| = 2(2^n)

L1

L0 = D

L2

Ln

…

D = {P0(0), P0(1)}

Σ = {8X8Y (P0(X) ^ P0(Y) ® 9Z (S1(X,Y,Z) ^ P1(Z)))

8X8Y (P1(X) ^ P1(Y) ® 9Z (S2(X,Y,Z) ^ P2(Z)))

…

8X8Y (Pn-1(X) ^ Pn-1(Y) ® 9Z (Sn(X,Y,Z) ^ Pn(Z)))}

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 41

The Naïve Algorithm for ACYCLIC

• The naïve algorithm shows that BCQ-Answering under ACYCLIC is

o in PTIME w.r.t. the data complexity

o in 2EXPTIME w.r.t. the combined complexity

…can we do better than the naïve algorithm?

YES!!!

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 42

Data Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is in LOGSPACE w.r.t. the data

complexity

Proof: Not so easy! Different techniques must be applied. This will be the subject

of the second part of our course.

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 43

Combined Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is in NEXPTIME w.r.t. the combined

complexity

Proof: We first need to establish the so-called small witness property

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 44

Small Witness Property for ACYCLIC

Lemma: chase(D,Σ) ² Q) there exists a chase sequence

Dhσ1,h1iJ1hσ2,h2iJ2hσ3,h3iJ3 ... hσn,hniJn

of D w.r.t. Σ with

such that Jn ² Q

Proof:

• By hypothesis, there exists a homomorphism h

such that h(Q) µ chase(D, Σ)

|Q| · b(maxbody(Σ)|sch(Σ)|+1 - 1) / (maxbody(Σ) - 1)c, if maxbody(Σ) > 1

n =

|Q| · |sch(Σ)|, if maxbody(Σ) = 1

D

Q
h

chase(D,Σ)

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 45

Small Witness Property for ACYCLIC
Proof (cont.):

• Let us focus on the image of the query

In the worst case, the shaded part forms a rooted tree:

1. With depth at most |sch(Σ)|

2. Each node has at most maxbody(Σ) children

) its size is at most

b(maxbody(Σ)|sch(Σ)|+1 - 1) / (maxbody(Σ) - 1)c, if maxbody(Σ) > 1

|sch(Σ)|, if maxbody(Σ) = 1

h(Q)

D

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 46

Small Witness Property for ACYCLIC
Proof (cont.):

• Let us focus on the image of the query

Therefore, to entail the query we need at most

h(Q)

D

|Q| · b(maxbody(Σ)|sch(Σ)|+1 - 1) / (maxbody(Σ) - 1)c, if maxbody(Σ) > 1

|Q| · |sch(Σ)|, if maxbody(Σ) = 1

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 47

Combined Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is in NEXPTIME w.r.t. the combined

complexity

Proof: Consider a database D, a set Σ2 ACYCLIC, and a BCQ Q

Having the small witness property in place, we can exploit the following algorithm:

1. Non-deterministically construct a chase sequence

Dhσ1,h1iJ1hσ2,h2iJ2hσ3,h3iJ3 ... hσn,hniJn

of D w.r.t. Σ with

2. Check for the existence of a homomorphism h such that h(Q) µ Jn

|Q| · b(maxbody(Σ)|sch(Σ)|+1 - 1) / (maxbody(Σ) - 1)c, if maxbody(Σ) > 1

n =

|Q| · |sch(Σ)|, if maxbody(Σ) = 1

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 48

Combined Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is NEXPTIME-hard w.r.t. the combined
complexity

Proof : By reduction from a tiling problem, a classical NEXPTIME-hard problem

We cannot do better than the previous algorithm

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 49

Tiling Problem

1 2 3 2n

1

2

3

2n

…

…

Tiling:

Input: T = {t0,…,tk}, a set of square tile types,

 H,V µ T £ T, the horizontal and vertical compatibility relations
 n, an integer in unary

Question: decide whether a 2n £ 2n tiling exists, that is,

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 50

Tiling Problem

1 2 3 2n

1 t0
2

3

2n

…

…

(1,1) = t0

Tiling:

Input: T = {t0,…,tk}, a set of square tile types,

 H,V µ T £ T, the horizontal and vertical compatibility relations
 n, an integer in unary

Question: decide whether a 2n £ 2n tiling exists, that is,

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 51

Tiling Problem

1 2 3 2n

1 t0
2 t t'

3

2n

…

…

(1,1) = t0
(t,t') 2 H

Tiling:

Input: T = {t0,…,tk}, a set of square tile types,

 H,V µ T £ T, the horizontal and vertical compatibility relations
 n, an integer in unary

Question: decide whether a 2n £ 2n tiling exists, that is,

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 52

Tiling Problem

Tiling:

Input: T = {t0,…,tk}, a set of square tile types,

 H,V µ T £ T, the horizontal and vertical compatibility relations
 n, an integer in unary

Question: decide whether a 2n £ 2n tiling exists, that is,

1 2 3 2n

1 t0
2 t t'

3 t''

2n

…

…

(t,t') 2 H

(t,t'') 2 V

(1,1) = t0

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 53

Combined Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is NEXPTIME-hard w.r.t. the combined
complexity

Proof : By reduction from a tiling problem, a classical NEXPTIME-hard problem

We cannot do better than the previous algorithm

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 54

NEXPTIME-hardness of ACYCLIC

• The database stores the horizontal and the vertical relations

D = {H(t,t') | (t,t') 2 H} [{V(t,t') | (t,t') 2 V}

• We use Σ 2 ACYCLIC to inductively construct 2k £ 2k tilings from 2k-1 £ 2k-1 tilings

• The key observation is that

X1 X2 Y1 Y2

X3 X4 Y3 Y4

Z1 Z2 W1 W2

Z3 Z4 W3 W4

is a 2k £ 2k tiling

X1 X2

X3 X4

X2 Y1

X4 Y3

Y1 Y2

Y3 Y4

X3 X4

Z1 Z2

Z1 Z2

Z3 Z4

X4 Y3

Z2 W1

Z2 W1

Z4 W3

Y3 Y4

W1 W2

W1 W2

W3 W4

are 2k-1 £ 2k-1 tilings

iff

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 55

NEXPTIME-hardness of ACYCLIC

X1 X2

X3 X4

The 2k £ 2k tiling is represented by an atom of the form

ID of the tiling

origin of the tiling, i.e., the upper-left tile

Tk(S, O, X1, X2, X3, X4)

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 56

NEXPTIME-hardness of ACYCLIC

Base step - construct 2 £ 2 tilings of the form
X1 X2

X3 X4

8X18X28X38X4 (H(X1,X2) ^ H(X3,X4) ^ V(X1,X3) ^ V(X2,X4) ®

9Y T1(Y,X1,X1,X2,X3,X4))

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 57

NEXPTIME-hardness of ACYCLIC

Inductive step - construct 2k £ 2k tilings from 2k-1 £ 2k-1 tilings

Tk-1(S1,O1,X1,X2,X3,X4) ^ Tk-1(S2,O2,X2,Y1,X4,Y3) ^ Tk-1(S3,O3,Y1,Y2,Y3,Y4) ^

Tk-1(S4,O4,X3,X4,Z1,Z2) ^ Tk-1(S5,O5,X4,Y3,Z2,W1) ^ Tk-1(S6,O6,Y3,Y4,W1,W2) ^

 Tk-1(S7,O7,Z1,Z2,Z3,Z4) ^ Tk-1(S8,O8,Z2,W1,Z4,W3) ^ Tk-1(S9,O9,W1,W2,W3,W4) ®

9U Tk(U,O1,S1,S3,S7,S9)

X1 X2

X3 X4

X2 Y1

X4 Y3

Y1 Y2

Y3 Y4

X3 X4

Z1 Z2

Z1 Z2

Z3 Z4

X4 Y3

Z2 W1

Z2 W1

Z4 W3

Y3 Y4

W1 W2

W1 W2

W3 W4

X1 X2 Y1 Y2

X3 X4 Y3 Y4

Z1 Z2 W1 W2

Z3 Z4 W3 W4

(8-quantifiers are omitted)

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 58

NEXPTIME-hardness of ACYCLIC

8S8O8X18X28X38X4 (Tn(S,O,X1,X2,X3,X4) ® T(S,O))

Inductive step - construct 2k £ 2k tilings from 2k-1 £ 2k-1 tilings

X1 X2

X3 X4

X2 Y1

X4 Y3

Y1 Y2

Y3 Y4

X3 X4

Z1 Z2

Z1 Z2

Z3 Z4

X4 Y3

Z2 W1

Z2 W1

Z4 W3

Y3 Y4

W1 W2

W1 W2

W3 W4

X1 X2 Y1 Y2

X3 X4 Y3 Y4

Z1 Z2 W1 W2

Z3 Z4 W3 W4

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 59

Concluding NEXPTIME-hardness of ACYCLIC

• Several rules but polynomially many) feasible in polynomial time

• D ^ Σ ² 9X T(X,t0) iff a 2n £ 2n tiling exists

• Can be formally shown by induction on n

Corollary: BCQ-Answering under ACYCLIC is NEXPTIME-complete w.r.t. the

combined complexity

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 60

Termination of the Chase

• Drop the existential quantification

o We obtain the class of full existential rules

o Very close to Datalog

• Drop the recursive definitions

o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules

P

P

Existential Rules – Lecture 5 – Sebastian Rudolph Slide 61

Sum Up

Data Complexity

FULL PTIME-c
Naïve algorithm

Reduction from Monotone Circuit Value problem

ACYCLIC in LOGSPACE Second part of our course

Combined Complexity

FULL EXPTIME-c
Naïve algorithm

Simulation of a deterministic exponential time TM

ACYCLIC NEXPTIME-c
Small witness property

Reduction from Tiling problem

