TECHNISCHE <& International Center @-?Computahonql

DRDERSTAT W for Computational Logic ‘,I-.D Logic - Group

Sebastian Rudolph
International Center for Computational Logic
TU Dresden

Existential Rules — Lecture 5

Adapted from slides by Andreas Pieris and Michaél Thomazo
Summer Term 2023

BCQ-Answering: Our Main Decision Problem

database (aka ABox)

knowledge base

YN

N

ontology (aka V @
s \i/

VXYY (o(X,Y) = 3Z (X,2Z))

decide whether DA 2 E Q

Existential Rules — Lecture 5 — Sebastian Rudolph Slide 2

Universal Models (a.k.a. Canonical Models)

An instance U is a universal model of D A X if the following holds:
1. Uisamodel of D A 2

2.YJ € models(D A %), there exists a homomorphism h, such that h(U) C J

7'
5 .
[Existential Rules — Lecture 5 — Sebastian Rudolph Slide 3

Query Answering via the Chase

Theorem: D A 2 E Q iff UE Q, where U is a universal model of D A

+

Theorem: chase(D, %) is a universal model of D A 2

Corollary: DA ZE Q iff chase(D,2)F Q

Existential Rules — Lecture 5 — Sebastian Rudolph

Slide 4

Rest of the Lectrure

« Undecidability of BCQ-Answering

» Gaining decidability - terminating chase

 Full Existential Rules

* Acyclic Existential Rules

Existential Rules — Lecture 5 — Sebastian Rudolph Slide 5

Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof : By simulating a deterministic Turing machine with an empty tape

...syntactic restrictions are needed!!!

Existential Rules — Lecture 5 — Sebastian Rudolph

Slide 6

What is the Source of Non-termination?

D—""""+
person(Alice)

VX (Person(X) — 3Y (hasParent(X,Y) A Person(Y)))

chase(D,2) = D U {hasParent(Alice, z,), Person(z,),

hasParent(z4, z,), Person(z,),

hasParent(z,, z3), Person(zs), ...

1. Existential quantification

2. Recursive definitions

7Y
[Existential Rules — Lecture 5 — Sebastian Rudolph

Slide 7

Termination of the Chase

* Drop the existential quantification
o We obtain the class of full existential rules

o Very close to Datalog

» Drop the recursive definitions
o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules

Existential Rules — Lecture 5 — Sebastian Rudolph

Slide 8

Full Existential Rules

* A full existential rule is an existential rule of the form

VXYY (9(X,Y) = (X))
« We denote FULL the class of full existential rules
« Alocal property - we can inspect one rule at a time
= given 2, we can decide in linear time whether 2 € FULL

= closed under union - 24 € FULL, 2, € FULL = (2, U ,) € FULL

* Why does the chase terminate?

Existential Rules — Lecture 5 — Sebastian Rudolph Slide 9

Complexity Measures for Query Answering

« Data complexity: is calculated by considering only the database as part of the

input, while the ontology and the query are fixed

« Combined complexity: is calculated by considering, apart from the database,

also the ontology and the query as part of the input

« Data complexity vs. Combined complexity

o Data complexity tends to be a more meaningful measure - ontologies and

queries tend to be small; databases tend to be large

o Nevertheless, the combined complexity is a relevant measure - identifies

the real source of complexity

7'
[Existential Rules — Lecture 5 — Sebastian Rudolph Slide 10

Some Important Complexity Classes

2EXPTIME

)

NEXPTIME coNEXPTIME

<

EXPTIME

PSPACE

)

NP coNP

PTIME

LOGSPACE

Problems that can be solved by an algorithm
that runs in double-exponential time

We need the power of non-determinism

Problems that can be solved by an algorithm
that runs in exponential time

Problems that can be solved by an algorithm
that uses a polynomial amount of memory

We need the power of non-determinism

Problems that can be solved by an algorithm
that runs in polynomial time

Problems that can be solved by an algorithm
that uses a logarithmic amount of memory

7Y
[Existential Rules — Lecture 5 — Sebastian Rudolph

Slide 11

Data Complexity of FULL

Theorem: BCQ-Answering under FULL is in PTIME w.r.t. the data complexity

(Analysis of “brute force” materialization and querying algorithm.)

We cannot do better than the naive algorithm

Theorem: BCQ-Answering under FULL is PTIME-hard w.r.t. the data complexity

Proof : By a LOGSPACE reduction from Monotone Circuit Value problem

7'
[Existential Rules — Lecture 5 — Sebastian Rudolph Slide 12

Data Complexity of FULL

J6

94

Does the circuit evaluate to true?

Os

encoding of the circuit as a database D

T(g1) T(9s)

AND(94,91,92) OR(95,92,93) OR(96,94,95)

evaluation of the circuit via a fixed set 2

YXYYVZ (T(X) A OR(Z,X,Y) — T(Z))
YXYYVZ (T(Y) A OR(Z,X,Y) — T(Z))
YXYYVZ (T(X) A T(Y) A AND(Z,X,Y) = T(Z))

O3

Circuit evaluates to frue iff D A Z E T(Qe)

Existential Rules — Lecture 5 — Sebastian Rudolph Slide 13

Combined Complexity of FULL

Theorem: BCQ-Answering under FULL is in EXPTIME w.r.t. the combined complexity

Proof: Consider a database D, a set > € FULL, and a BCQ Q

We apply the naive algorithm:
1. Construct chase(D,2)

2. Check for the existence of a homomorphism h such that h(Q) C chase(D,2)

By our previous analysis, in the worst case, the naive algorithm runs in time

(Isch(Z)] - (ladom(D)])mexe)? - [2] - (Jadom(D)[)maxvariavlesz). maxbody(2)

+

(ladom(D)|)#variables(Q) . |Q| - |sch(Z)| - (Jadom(D)|)maxarity

7'
[Existential Rules — Lecture 5 — Sebastian Rudolph Slide 14

Combined Complexity of FULL

We cannot do better than the naive algorithm

Theorem: BCQ-Answering under FULL is EXPTIME-hard w.r.t. the combined
complexity

Proof : By simulating a deterministic exponential time Turing machine

Existential Rules — Lecture 5 — Sebastian Rudolph

Slide 15

EXPTIME-hardness of FULL

Our Goal: Encode the exponential time computation of a DTM M on
input string / using a database D, a set 2 € FULL, and a BCQ Q such that

DA ZEQ iff Maccepts /in at most N = 2" steps, where m =|/|¥

Existential Rules — Lecture 5 — Sebastian Rudolph

Slide 16

The Schema

0 1 2 j N-1
0
1
2
I a
N-1

Symbol[a](i,j) - at time instant J, cell j contains a

7'
5 |
[Existential Rules — Lecture 5 — Sebastian Rudolph Slide 17

The Schema

0 1 2 j N-1
0
1
2
I a
N-1

Cursor(i,j) - at time instant /, cursor points to cell j

7'
5 |
[Existential Rules — Lecture 5 — Sebastian Rudolph Slide 18

The Schema

0 1 2 j N-1
0
1
2
I a S
N-1

State[s](/) - at time instant /, the machine is in state s

7'
5 |
[Existential Rules — Lecture 5 — Sebastian Rudolph Slide 19

The Schema

0 1 2 j N-1
0
1
2
i a Accept
N-1

Accepf(i) - at time instant i/, the machine accepts

7'
5 |
[Existential Rules — Lecture 5 — Sebastian Rudolph Slide 20

The Schema

First(0), Succ(0,1), Succ(1,2), Succ(2,3), ..., Succ(N-2,N-1)
will be defined later
< - transitive closure of Succ

7'
5 |
[Existential Rules — Lecture 5 — Sebastian Rudolph Slide 21

Initialization Rules

Assume that / = 0y...0,,1

VT (First(T) - Symbol[aj](T,i) A Cursor(T,T) N State[sy](T))

VTVC (First(T) A <(n-1,C) — Symbol[L](T,C))

7Y
[Existential Rules — Lecture 5 — Sebastian Rudolph

Slide 22

Transition Rules

5(s1,0) = (Sp,B,+1) Al I
i+1 X B y Sy

VTVTVCVYC, (State[s](T) A Cursor(T,C) A Symbol[a](T,C) A Succ(T,T4) A Suce(C,Cq) —>

Symbol[B](T,,C) A Cursor(T4,C4) A State[s,](T4))

7'
5 |
[Existential Rules — Lecture 5 — Sebastian Rudolph Slide 23

Inertia Rules

Cells that are not changed during the transition keep their old values

A L %

i+1 X B y S2

VTVTVCVC, (Symbol[a](T,C) A Cursor(T,C4) A <(C,C4) A Succ(T,T4) »> Symbol[a](T4,C))

VTVTVCVC, (Symbol[a](T,C) A Cursor(T,C4) A <(C4,C) A Succ(T,T4) »> Symbol[a](T4,C))

7'
5 |
[Existential Rules — Lecture 5 — Sebastian Rudolph Slide 24

Accepting Rule

Once we reach the accepting state we accept

i Sacc

VT (State[saccJ(T) — Accept(T))

7Y
[Existential Rules — Lecture 5 — Sebastian Rudolph

Slide 25

Defining First, Succ and <

» First(0), Succ(0,1), Succ(1,2), Succ(2,3), ..., Succ(N-2,N-1)
 Infact, 0,...,N-1 are in binary form - assume the N = 2™, where m = 3

First(0,0,0), Succ(0,0,0,0,0,1), Succ(0,0,1,0,1,0),..., Succ(1,1,0,1,1,1)

* Inductive definition of First; and Succ;

D = {First,(0), Last,(1), Succ4(0,1)}

Firsty(0,0), Lasty(1,1), Succ,(0,0,0,1), Succ,(0,1,1,0), Suce(1,0,1,1)

VX (Firsty(X) — Firsty(X,X))

VX (Last;(X) - Lasty(X,X))

7'
5 |
[Existential Rules — Lecture 5 — Sebastian Rudolph Slide 26

Defining First, Succ and <

» First(0), Succ(0,1), Succ(1,2), Succ(2,3), ..., Succ(N-2,N-1)
 Infact, 0,...,N-1 are in binary form - assume the N = 2™, where m = 3

First(0,0,0), Succ(0,0,0,0,0,1), Succ(0,0,1,0,1,0),..., Succ(1,1,0,1,1,1)

* Inductive definition of First; and Succ;

D = {First,(0), Last,(1), Succ4(0,1)}

Firsty(0,0), Lasty(1,1), Succ,(0,0,0,1), Succ,(0,1,1,0), Suce(1,0,1,1)

VXYYVZ (First,(X),Succy(Y,Z) — Succy(X,Y,X,Z))

VXVYVZ (Last(X),Succq(Y,Z) - Succy(X,Y,X,Z2))

7'
5 |
[Existential Rules — Lecture 5 — Sebastian Rudolph Slide 27

Defining First, Succ and <

» First(0), Succ(0,1), Succ(1,2), Succ(2,3), ..., Succ(N-2,N-1)
« Infact, 0,...,N-1 are in binary form - assume N = 2™, where m = 3

First(0,0,0), Succ(0,0,0,0,0,1), Succ(0,0,1,0,1,0),..., Succ(1,1,0,1,1,1)

* Inductive definition of First; and Succ;

D = {First,(0), Last,(1), Succ4(0,1)}

Firsty(0,0), Lasty(1,1), Succ,(0,0,0,1), Succ,(0,1,1,0), Suce(1,0,1,1)

VYXVYVZYW (Last4(X), First;(Y),Succ(Z,W) — Succo(Z,X,W,Y))

7'
5 |
[Existential Rules — Lecture 5 — Sebastian Rudolph Slide 28

Defining First, Succ and <

D = {First,(0), Last,(1), Succ4(0,1)}

Inductive definition of Firsti.4 and Succi,1:

VXYY (Succ(X,)Y) —
VXVYYVZYW (Succq(Z,W) A Last(X) A First(Y) —
VXVZ (Firsti(Z) A First(X) —

VXVZ (Last{(Z) A Last(X) —

Definition of <,

VXVY (Succ,,(X)Y) —

YXYYVZ (Succ(X,Z) <m(Z,Y) —s

7Y
[Existential Rules — Lecture 5 — Sebastian Rudolph

SUCCI'+1(Z’X,Z,Y))
SUCCi+1(Z’XaW1Y))

First;.1(Z,X))

Last;1(Z,X))

<m(X,Y))

<m(X,Y))

Slide 29

Concluding EXPTIME-hardness of FULL

« Several rules but polynomially many =- feasible in polynomial time

« DA ZEdJX Accept(X) iff M accepts I in at most N steps

« Can be formally shown by induction on the time steps

Corollary: BCQ-Answering under FULL is EXPTIME-complete w.r.t. the

combined complexity

7Y
[Existential Rules — Lecture 5 — Sebastian Rudolph

Slide 30

Termination of the Chase

* Drop the existential quantification
o We obtain the class of full existential rules

o Very close to Datalog
v

» Drop the recursive definitions
o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules

Existential Rules — Lecture 5 — Sebastian Rudolph

Slide 31

Acyclic Existential Rules

» The definition of a predicate P does not depend on P - formal definition via the

predicate graph

« The predicate graph of a set 2 of existential rules, denoted PG(%), is the graph
(V,E), where

o V={P|P ¢ sch(X)}

o E={(P,R) | VXYY (... APOX,Y) A ... 5 3Z (.. ARX,Z) A ...)) € 3}

VX (Person(X) — 3Y (hasParent(X,Y) A Person(Y)))

C Person

7'
5 |
[Existential Rules — Lecture 5 — Sebastian Rudolph Slide 32

hasParent

Acyclic Existential Rules

» The definition of a predicate P does not depend on P - formal definition via the

predicate graph

« The predicate graph of a set 2 of existential rules, denoted PG(%), is the graph
(V,E), where

o V={P|Pcsch(z)}
o E={(P,R) | VXYY (... APOX,Y) A ... 5 3Z (.. ARX,Z) A ...)) € 3}

« Aset 2 of existential rules is acyclic if the graph PG(Z) is acyclic

We denote ACYCLIC the class of acyclic existential rules

7'
5 |
[Existential Rules — Lecture 5 — Sebastian Rudolph Slide 33

Acyclic Existential Rules

« Given 2, we can decide in polynomial time whether 2 € ACYCLIC

« But, acyclicity is a global property - we have to consider 2 as a whole

= not closed under union

VXYY (R(X,Y) — P(Y)) each rule alone is acyclic, but

VX (P(X) = 3Y R(X,Y)) together form a cyclic set of rules

* Why the chase terminates?

7'
[Existential Rules — Lecture 5 — Sebastian Rudolph Slide 34

Acyclic Existential Rules

« Astratification of 2 is a sequence of sets 24,..., 2, such that, for some function
M:sch(Z) - {1,...,n}:

1. {&4,..., Z,} is a partition of 2

2. For each predicate P < sch(2), all the rules with P in the head are in 2,5

(i.e., in the same set of the partition)

3. VXYY (. APXY)A ... > 3Z (.. ARX,Z) A ...)) € Z, then p(P) < W(R)

« Lemma: (1) Z is stratifiable iff > € ACYCLIC

(2) If there exists a path from P to R in PG(X), then p(P) < u(R)

« Thus, by exploiting the predicate graph, we can compute a stratification of

Existential Rules — Lecture 5 — Sebastian Rudolph Slide 35

Acyclic Existential Rules

« Consider 2 € ACYCLIC, and let 24,..., 2, be a stratification of

» Construct the chase by considering one stratum after the other starting from 2,

/ L \ « Foreach ke {1,....n-1}, L,= chase(L;.1,Z)

 nisfinite = the chase terminates

= the naive algorithm gives a decision procedure

...but, can we do better than the naive algorithm?

7'
[Existential Rules — Lecture 5 — Sebastian Rudolph Slide 36

The Naive Algorithm for ACYCLIC

Lo |L0|=2
[t Ll = (Ll

I
>

D = {Py(0), Po(1)}
2 = {VXVY (Po(X) A Po(Y) = 3Z (S4(X,Y,Z2) A P4(2)))

VXVY (P1(X) A Pi(Y) = 3Z(S2(X,Y,Z) A Px(2)))

VXVY (Pna(X) A Ppa(Y) = 32 (Sn(X,Y,Z) A Py(2)))}

7Y
[Existential Rules — Lecture 5 — Sebastian Rudolph

L
0 0 | zg
0 1 | 2z
1 0 | 24
1 1| z44

Slide 37

The Naive Algorithm for ACYCLIC

Lo=D |ILo| = 2
[t Ll = (Ll
[L\ = Ly

I

D = {Py(0), Po(1)}

2 = {VXYY (Po(X) A Po(Y) = 3Z (S1(X,Y,Z) A P4(2)))
VXYY (P1(X) A P1(Y) = 3Z (S2(X,Y,Z) A Py(2)))

VXVY (Pna(X) A Ppa(Y) = 32 (Sn(X,Y,Z) A Py(2)))}

7Y
[Existential Rules — Lecture 5 — Sebastian Rudolph

L,
Zoo Zoo | Zo000
Zoo Zo1 | Zo001
Zoo Z10 | Zoo10
Zoo Z11 | Zoo11
Zo1 Zoo | Zo100
Zo1 Zo1 | Zo101
Zo1 Z10 | Zo110
Zo1 211 | Zo111
Z10 Zoo | Z1000
Z10 Zo1 | Z1001
Z10 Z10 | 21010
Z10 Z11 | Z1011
Z11 Zoo | Z1100
Z11 Zo1 | Z1101
Z11 Z10 | Z1110
Z11 211 | Z9111

Slide 38

The Naive Algorithm for ACYCLIC

Lo=D |ILo| = 2
[t = L
[L\ = Ly

0\ = L,

Zo.o Zo.o | Zo..00..0

D = {Py(0), Po(1)} .

1 21| 21111

2 = {VXYY (Po(X) A Po(Y) = 3Z (S1(X,Y,Z) A P4(2)))
VXYY (P1(X) A P1(Y) = 3Z (S2(X,Y,Z) A Py(2)))

VXVY (Pna(X) A Ppa(Y) = 32 (Sn(X,Y,Z) A Py(2)))}

7'
5 |
[Existential Rules — Lecture 5 — Sebastian Rudolph Slide 39

The Naive Algorithm for ACYCLIC

Lo=D Lol = 2
[b\ L= (Lol
[\ = (Ll

[\ s

D = {Py(0), Po(1)}
2 = {VXVY (Po(X) A Po(Y) = 3Z (S4(X,Y,Z2) A P4(2)))

VXVY (P1(X) A Pi(Y) = 3Z(S2(X,Y,Z) A Px(2)))

VXVY (Pna(X) A Ppa(Y) = 32 (Sn(X,Y,Z) A Py(2)))}

7Y
[Existential Rules — Lecture 5 — Sebastian Rudolph

|Ln| = 2(2"n)

Slide 40

The Naive Algorithm for ACYCLIC

« The naive algorithm shows that BCQ-Answering under ACYCLIC is
o in PTIME w.r.t. the data complexity

o in 2ZEXPTIME w.r.t. the combined complexity

...can we do better than the naive algorithm?

YES!

Existential Rules — Lecture 5 — Sebastian Rudolph

Slide 41

Data Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is in LOGSPACE w.r.t. the data

complexity

Proof: Not so easy! Different techniques must be applied. This will be the subject

of the second part of our course.

Existential Rules — Lecture 5 — Sebastian Rudolph

Slide 42

Combined Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is in NEXPTIME w.r.t. the combined

complexity

Proof: We first need to establish the so-called small witness property

Existential Rules — Lecture 5 — Sebastian Rudolph

Slide 43

Small Witness Property for ACYCLIC

Lemma: chase(D,2) F Q = there exists a chase sequence
D(01,h1)J1(02,h2)J2(03,h3)J3 ... (Op,hp)
of D w.r.t. 2 with

(|Q| - [(maxbody(Z)lseh)I*1- 1) / (maxbody(Z) - 1), if maxbody(Z) > 1

\ |Q| - |sch(Z)|, if maxbody(Z) =1

such that J, E Q

D
Proof:
» By hypothesis, there exists a homomorphism h chase(D.5)
such that h(Q) C chase(D, %) [o o o]
<

7'
A Q .
[Existential Rules — Lecture 5 — Sebastian Rudolph Slide 44

Small Witness Property for ACYCLIC

Proof (cont.):

« Let us focus on the image of the query h(Q)

In the worst case, the shaded part forms a rooted tree:
1. With depth at most |sch(2)|

2. Each node has at most maxbody(2) children

= its size is at most

L(maxbody(Z)lSCh I*1- 1)/ (maxbody(Z) - 1)|, if maxbody(Z) > 1

N |sch(2)|, if maxbody(Z) =1

7'
5 |
[Existential Rules — Lecture 5 — Sebastian Rudolph Slide 45

Small Witness Property for ACYCLIC

Proof (cont.):

« Let us focus on the image of the query h(Q)

Therefore, to entail the query we need at most

[- [(maxbody(Z)lsch)I*1- 1) / (maxbody(X) - 1), if maxbody(X) > 1

\ |Q| - [sch(Z)|, if maxbody(X) =1

7'
5 |
[Existential Rules — Lecture 5 — Sebastian Rudolph Slide 46

Combined Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is in NEXPTIME w.r.t. the combined

complexity

Proof. Consider a database D, a set 2 € ACYCLIC, and a BCQ Q
Having the small withess property in place, we can exploit the following algorithm:
1. Non-deterministically construct a chase sequence

D<O'1,h1>J1<O'2,h2>J2<0'3,h3>J3 <O'n,hn>Jn
of D w.r.t. 2 with

(|Q| - |(maxbody(Z)lsch@)I*1- 1) / (maxbody(Z) - 1)], if maxbody(Z) > 1

\ |Q| - [sch(Z)|, if maxbody(X) =1

2. Check for the existence of a homomorphism h such that h(Q) C J,

7'
5 |
[Existential Rules — Lecture 5 — Sebastian Rudolph Slide 47

Combined Complexity of ACYCLIC

We cannot do better than the previous algorithm

Theorem: BCQ-Answering under ACYCLIC is NEXPTIME-hard w.r.t. the combined
complexity

Proof : By reduction from a tiling problem, a classical NEXPTIME-hard problem

Existential Rules — Lecture 5 — Sebastian Rudolph

Slide 48

Tiling Problem

Tiling:
Input: T = {t,,...,t,}, a set of square tile types,
H,V C T x T, the horizontal and vertical compatibility relations

n, an integer in unary

Question: decide whether a 2" x 27 tiling exists, that is,

1
2
3
2n
Gl
IS |
GL" Existential Rules — Lecture 5 — Sebastian Rudolph Slide 49

Tiling Problem

Tiling:
Input: T = {t,,...,t,}, a set of square tile types,
H,V C T x T, the horizontal and vertical compatibility relations

n, an integer in unary

Question: decide whether a 2" x 27 tiling exists, that is,

(1,1) =t 1
fo
2
3
2n
Gl
GLEH" Existential Rules — Lecture 5 — Sebastian Rudolph Slide 50

Tiling Problem

Tiling:
Input: T = {t,,...,t,}, a set of square tile types,
H,V C T x T, the horizontal and vertical compatibility relations

n, an integer in unary

Question: decide whether a 2" x 27 tiling exists, that is,

(1,1) =t 1 {
tt)eH
5 t , (t.t)
3
n
é@?’, Existential Rules — Lecture 5 — Sebastian Rudolph Slide 51

Tiling Problem

Tiling:
Input: T = {t,,...,t,}, a set of square tile types,
H,V C T x T, the horizontal and vertical compatibility relations

n, an integer in unary

Question: decide whether a 2" x 27 tiling exists, that is,

(1,1) =t 1 {
tt)eH
5 t ; (t.t)
3 t"
(tt") eV
n
é@?’, Existential Rules — Lecture 5 — Sebastian Rudolph Slide 52

Combined Complexity of ACYCLIC

We cannot do better than the previous algorithm

Theorem: BCQ-Answering under ACYCLIC is NEXPTIME-hard w.r.t. the combined
complexity

Proof : By reduction from a tiling problem, a classical NEXPTIME-hard problem

Existential Rules — Lecture 5 — Sebastian Rudolph

Slide 53

NEXPTIME-hardness of ACYCLIC

 The database stores the horizontal and the vertical relations

D = {H(tt) | (tt) e H} U {V(tt)]| (tt) eV}

« We use Z € ACYCLIC to inductively construct 2k x 2ktilings from 2k1 x 2k1tilings

* The key observation is that

X1 X2 Yy Y, Xs | Xg | X4 | Yz | Y3 Y,
Xs | Xe o Ys Yy o Xs 0 X4 | Xg | Yz | Y3 Y,
Zi | Zy | Wy | W, Zy | 4y Ly Wy Wi W,
Zs | Zs | Wi | W, Z. Z, | Zy W, W, W,

=P are 2k1 x 2k1tilings
&=

Existential Rules — Lecture 5 — Sebastian Rudolph Slide 54

NEXPTIME-hardness of ACYCLIC

X X
The 2k x 2k tiling 1 . is represented by an atom of the form
Xy | Xy
ID of the tiling

\

T (S, O, X4, Xy, X3, X4)

:

origin of the tiling, i.e., the upper-left tile

Existential Rules — Lecture 5 — Sebastian Rudolph Slide 55

NEXPTIME-hardness of ACYCLIC

Base step - construct 2 x 2 tilings of the form

VX VXV X3V Xy (H(X1,X2) A H(X3,X4) A V(X4,X3) A V(X2,X4) —

Y T1(Y,X1,X1,X2,X3,X4))

Existential Rules — Lecture 5 — Sebastian Rudolph

Slide 56

NEXPTIME-hardness of ACYCLIC

Inductive step - construct 2k x 2k tilings from 2k-1 x 2k-1tilings

X3 X4 X4 Y3 Y3 Yy X4 Xo Y \C
Xz 0 Xe | Xa | Yz | Y3 | Y4 0 Xs Xe | Ys o Yy
Zi | Zy | Zy Wy W, W, ' Zi | Z, | Wi W,
Z: | Zy | Zy W, | W, | W, Zz | Zy | W3 | W,

Th1(S1,04,X4,X2,X3,X4) A Ti1(S2,02,X2,Y 1,X4,Y3) A Ty1(S3,03,Y1,Y2,Y3,Y,) A
Th1(S4,04,X3,X4,24,2Z3) N Ty1(S5,05,X4,Y3,Z2,Wy) A Ty1(S6,06,Y3,Y 4, W, W3) A
Tk—1 (87’07’21122’23124) A Tk—1 (88708’ZZ’W1aZ4aW3) A\ Tk—1(89a09aW1’W2aW31W4) —>

U T(U,04,84,85,$7,8
(v-quantifiers are omitted) K(U,01,84,55,57,0)

7'
5 |
[Existential Rules — Lecture 5 — Sebastian Rudolph Slide 57

NEXPTIME-hardness of ACYCLIC

Inductive step - construct 2k x 2k tilings from 2k-1 x 2k-1tilings

X3 X4 X4 Y3 Y3 Yy X4 Xo Y \C
Xz 0 Xe | Xa | Yz | Y3 | Y4 0 Xs Xe | Ys o Yy
Zi | Zy | Zy Wy W, W, ' Zi | Z, | Wi W,
Z: | Zy | Zy W, | W, | W, Zz | Zy | W3 | W,

VSVO\V/X1\V/X2VX3VX4 (Tn(S,O,X1,X2,X3,X4) —> T(S,O))

Existential Rules — Lecture 5 — Sebastian Rudolph

Slide 58

Concluding NEXPTIME-hardness of ACYCLIC

« Several rules but polynomially many =- feasible in polynomial time
« DAZEIXT(X1)iff a 2" x 2" tiling exists

« Can be formally shown by induction on n

Corollary: BCQ-Answering under ACYCLIC is NEXPTIME-complete w.r.t. the

combined complexity

Existential Rules — Lecture 5 — Sebastian Rudolph

Slide 59

Termination of the Chase

* Drop the existential quantification
o We obtain the class of full existential rules

o Very close to Datalog
v

» Drop the recursive definitions
o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules

v

Existential Rules — Lecture 5 — Sebastian Rudolph

Slide 60

Sum Up

Data Complexity
Naive algorithm
FULL PTIME-c
Reduction from Monotone Circuit Value problem
ACYCLIC | in LOGSPACE | Second part of our course
Combined Complexity
Naive algorithm
FULL EXPTIME-c
Simulation of a deterministic exponential time TM
Small witness property
ACYCLIC A NEXPTIME-c
Reduction from Tiling problem
é@?’, Existential Rules — Lecture 5 — Sebastian Rudolph

Slide 61

