Technische Universität Dresden

Prof. Dr. Sebastian Rudolph

Introduction to Formal Concept Analysis Exercise Sheet 8, Winter Semester 2017/18

Exercise 1 (repetition)

Discuss with your neighbor the following concepts

- closure system and closure operator
- *frequent* concept intent
- minimal generator
- *implication* in a formal context $\mathbb{K} = (G, M, I)$
- closed, complete and non-redundant set of implications
- stem base

Further, describe the TITANIC algorithmus in three short sentences.

Exercise 2 (pseudo-closed sets)

In the lecture the concept of *pseudo intents* was introduced. The following definition generalizes this concept in the context of closure systems:

Definition (pseudo-closed set). Let C be a closure system on (the finite set) M. A subset $P \subseteq M$ is pseudo-closed, iff

- (i) P is not closed (i.e., $P \notin C$), and
- (ii) for every proper pseudo-closed subset $Q \subset P$, its closure $\varphi(Q)$ is contained in P (i.e., $Q \subset P \land Q$ is pseudo-closed $\implies \varphi(Q) \subseteq P$).

We are now regarding for the set of nodes $M := \{1, 2, \dots, 5\}$ and the following tree T

$$\begin{array}{c}1\\0\\3\\2\end{array}$$

the system $\mathcal{T} \subseteq \mathfrak{P}(M)$ of sets of nodes, which span a subtree of T, respectively (e.g., $\{1, 3, 4\} \in \mathcal{T}$ but $\{1, 2, 5\} \notin \mathcal{T}$).

- a) Specify the set \mathcal{T} .
- **b)** Verify that \mathcal{T} is a closure system on M.
- c) List six different pseudo-closed sets for \mathcal{T} .

Solution:

a)

$$\mathcal{T} = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1,3\}, \{3,4\}, \{2,3\}, \{4,5\}, \{1,2,3\}, \{1,3,4\}, \{2,3,4\}, \{3,4,5\}, \{1,2,3,4\}, \{1,3,4,5\}, \{2,3,4,5\}, \{1,2,3,4,5\} \}$$

b) Using exhaustive enumeration: In the following table a cross indicates the intersection belongs to the set \mathcal{T} . The table is symmetric across the main diagonal.

Ω	{1}	{2}	{3}	{4}	{5}	$\{1,3\}$	$\{2,3\}$	$\{3,4\}$	$\{4,5\}$	$\{1, 2, 3\}$	$\{1, 3, 4\}$	$\{2, 3, 4\}$	$\{3, 4, 5\}$	$\{1,2,3,4\}$	$\{1, 3, 4, 5\}$	$\{2,3,4,5\}$	$\{1, 2, 3, 4, 5\}$
{1}	×																
$\{2\}$	×	×															
$\{3\}$	×	×	×														
$\{4\}$	×	\times	×	×													
$\{5\}$	×	×	×	×	×												
$\{1,3\}$	×	×	×	×	×	×											
$\{2,3\}$	$ \times$	$ \times$	$ \times$	×	×	×	$ \times$										
$\{3,\!4\}$	×	×	×	×	×	×	×	×									
$\{4,5\}$	$ \times$	$ \times$	$ \times$	×	×	×	$ \times$	$ \times$	×								
$\{1,2,3\}$	×	×	×	×	×	×	×	×	×	×							
$\{1,3,4\}$	$ \times$	$ \times$	$ \times$	×	×	×	$ \times$	$ \times$	×	\times	×						
$\{2,3,4\}$	×	×	×	×	×	×	×	×	×	×	×	×					
$\{3,4,5\}$	×	$ \times$	×	×	×	×	$ \times$	$ \times$	×	×	×	×	$ \times$				
$\{1,2,3,4\}$	×	×	×	×	×	×	×	×	×	×	×	×	×	×			
$\{1,3,4,5\}$	×	×	×	×	×	×	×	×	×	×	×	×	$ \times$	×	×		
$\{2,3,4,5\}$	×	×	×	×	×	×	×	×	×	×	×	×	$ \times$	×	×	×	
$\{1,2,3,4,5\}$	\times	\times	\times	\times	\times	×	\times	\times	×	\times	\times	×	\times	\times	\times	×	\times

c) pseudo-closed sets for \mathcal{T} .

- Step 1: P is not closed. i.e $P \neq P''$. i.e $\mathfrak{P}(M) \mathcal{T}$ Hence potentially any of the following: {1,2}, {1,4}, {1,5}, {2,4}, {2,5}, {3,5}, {1,2,4}, {1,2,5}, {1,3,5}, {2,3,5}, {1,4,5}, {2,4,5}, {1,2,4,5}, {1,2,3,5}.
- Step 2: If Q ⊂ P is a pseudo-closed proper subset of P, then Q" ⊆ P. Note, in this case the closure operator : is a sub-tree of {1,2}, {1,4}, {1,5}, {2,4}, {2,5}, {3,5}

Exercise 3 (computing the stem base with NEXT CLOSURE)

Determine the stem base for this context using the NEXT CLOSURE algorithm. Use the following table as help:

	Mobil (1)	Telefon (2)	Fax (3)	Fax m. NAdapter (4)
Sinus 44 (a)		×		
Nokia 6110 (b)	×	×		
T-Fax 301 (c)			×	×
T-Fax 360 PC (d)			×	

A	i	A+i	$\mathcal{L}(A+i)$	$A <_i \mathcal{L}(A+i)?$	$(\mathcal{L}(A+i))''$	\mathcal{L}	intents

Solution:

A	i	$A \bullet i$	$\mathcal{L}(A \bullet i)$	$A <_i \mathcal{L}(A \bullet i)?$	$(\mathcal{L}(A \bullet i))''$	\mathcal{L}	Intents
						Ø	Ø
Ø	4	{4}	$\{4\}$	×	$\{3,4\}$	$\{4\} \to \{3\}$	
$\{4\}$	3	{3}	{3}	×	$\{3\}$		{3}
$\{3\}$	4	$\{3,4\}$	$\{3, 4\}$	×	$\{3,4\}$		$\{3,4\}$
$\{3, 4\}$	2	$\{2\}$	$\{2\}$	×	$\{2\}$		$\{2\}$
$\{2\}$	4	$\{2,4\}$	$\{2, 3, 4\}$				
	3	$\{2,3\}$	$\{2,3\}$	×	$\{1, 2, 3, 4\}$	$\{2,3\} \to \{1,4\}$	
$\{2,3\}$	4	$\{2, 3, 4\}$	$\{1, 2, 3, 4\}$				
	1	{1}	{1}	×	$\{1, 2\}$	$\{1\} \to \{2\}$	
$\{1\}$	4	$\{1,4\}$	$\{1, 2, 3, 4\}$				
	3	$\{1,3\}$	$\{1, 2, 3, 4\}$				
	2	$\{1,2\}$	$\{1, 2\}$	×			$\{1, 2\}$
$\{1, 2\}$	4	$\{1, 2, 4\}$	$\{1, 2, 3, 4\}$				
	3	$\{1, 2, 3\}$	$\{1, 2, 3, 4\}$				$\{1, 2, 3, 4\}$