Prof. Dr. Sebastian Rudolph

Introduction to Formal Concept Analysis Exercise Sheet 6, Winter Semester 2017/18

Definition (closure system and closure operator).

- (a) A set $\mathfrak{A} \subseteq \mathfrak{P}(M)$ is a closure system on the set M, iff $M \in \mathfrak{A}$ and $\mathfrak{X} \subseteq \mathfrak{A} \Longrightarrow \bigcap \mathfrak{X} \in \mathfrak{A}$.
- (b) A closure operator φ on M is a map φ which maps each subset $X \subseteq M$ onto the corresponding closure $\varphi(X) \subseteq M$ such that

1)
$$X \subseteq \varphi(X)$$
 (extensive)

2)
$$X \subseteq Y \implies \varphi(X) \subseteq \varphi(Y)$$
 (monotone)

3)
$$\varphi(\varphi(X)) = \varphi(X)$$
 (idempotent)

holds.

Exercise 1

Prove the following statements:

- a) For any closure system \mathfrak{A} on some set M, the mapping $\varphi_{\mathfrak{A}}: X \mapsto \bigcap_{X \subseteq Y \in \mathfrak{A}} Y$ is a closure operator on M.
- **b)** For any closure operator φ on some set M, the family $\mathfrak{A}_{\varphi} := \{ \varphi(X) \mid X \subseteq M \}$ is a closure system on M.

Exercise 2 (closure system)

Regard the "family context" $\mathbb{K} := (\{\text{father, mother, daughter, son}\}, \{\text{old, young, male, female}\}, \{(\text{father, old}), (\text{father, male}), (\text{mother, old}), (\text{mother, female}), (\text{daughter, young}), (\text{daughter, female}), (\text{son, young}), (\text{son, male})\}).$

- a) Explicitly list the elements of the map $\varphi \colon \mathfrak{P}(M) \to \mathfrak{P}(M)$ with $\varphi \colon B \mapsto B''$ and verify that φ is a closure operator.
- b) Verify that the set of all concept intents of the family context is a closure system.
- c) Draw a line diagram of the powerset of {father, mother, daughter, son} and highlight the sets that have the same closure. Compare the diagram with the diagram of the concept lattice of the family context.

Exercise 3 (Next-Closure)

	old (1)	young (2)	male (3)	female (4)
father	×		×	
mother	×			×
son		×	×	
daughter		×		×

Compute all concept intents of the above "family context" using the Next-Closure algorithm. Compare your result with the concept intents from Exercise 2.

A	i	$ \begin{vmatrix} (A \cap \{1,2,\dots,i-1\}) \cup \{i\} \\ A+i \end{vmatrix}$	$A \oplus i$	$A <_i A \oplus i$?	new intent