
I Parallel Approaches

I Abstract Description

I High-Level

I Problems

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 1

SAT Solving – Parallel Search

Steffen Hölldobler and Norbert Manthey
International Center for Computational Logic
Technische Universität Dresden
Germany



Parallelization – Warm Up

I If an algorithm has three parts that consume 80 %, 10 % and 10 %

I Which task should be parallelized?

I What is the ideal speedup for two cores?

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 2



Parallelization – Warm Up

I If an algorithm has three parts that consume 80 %, 10 % and 10 %

I Which task should be parallelized?

I What is the ideal speedup for two cores?

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 3



Parallelization – Warm Up

I If an algorithm has three parts that consume 80 %, 10 % and 10 %

I Which task should be parallelized?

I What is the ideal speedup for two cores?

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 4



Parallelization – Warm Up

I Assume two solvers S1 and S2 solve the formula F independently

I S1 learns C, S2 learns D

I If S1 receives D, is satisfiability preserved?

I If S1 receives D, is equivalence preserved?

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 5



Parallelization – Warm Up

I Assume two solvers S1 and S2 solve the formula F independently

I S1 learns C, S2 learns D

I If S1 receives D, is satisfiability preserved?

I If S1 receives D, is equivalence preserved?

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 6



Parallelization – Warm Up

I Assume two solvers S1 and S2 solve the formula F independently

I S1 learns C, S2 learns D

I If S1 receives D, is satisfiability preserved?

I If S1 receives D, is equivalence preserved?

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 7



Parallelization – Warm Up

I Run unit propagation on
F = (¬e ∨ f ) ∧ (¬a ∨ e) ∧ (¬c ∨ d) ∧ (¬b ∨ c) ∧ (¬a ∨ b) ∧ a

I How would you parallelize?

I Can the steps be run in parallel?

I Run unit propagation on
F = (¬e ∨ f ) ∧ (¬d ∨ e) ∧ (¬c ∨ d) ∧ (¬b ∨ c) ∧ (¬a ∨ b) ∧ a

I From a complexity point of view, this is an open question!

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 8



Parallelization – Warm Up

I Run unit propagation on
F = (¬e ∨ f ) ∧ (¬a ∨ e) ∧ (¬c ∨ d) ∧ (¬b ∨ c) ∧ (¬a ∨ b) ∧ a

I How would you parallelize?

I Can the steps be run in parallel?

I Run unit propagation on
F = (¬e ∨ f ) ∧ (¬d ∨ e) ∧ (¬c ∨ d) ∧ (¬b ∨ c) ∧ (¬a ∨ b) ∧ a

I From a complexity point of view, this is an open question!

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 9



Parallelization – Warm Up

I Run unit propagation on
F = (¬e ∨ f ) ∧ (¬a ∨ e) ∧ (¬c ∨ d) ∧ (¬b ∨ c) ∧ (¬a ∨ b) ∧ a

I How would you parallelize?

I Can the steps be run in parallel?

I Run unit propagation on
F = (¬e ∨ f ) ∧ (¬d ∨ e) ∧ (¬c ∨ d) ∧ (¬b ∨ c) ∧ (¬a ∨ b) ∧ a

I From a complexity point of view, this is an open question!

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 10



Parallelization – Warm Up

I Run unit propagation on
F = (¬e ∨ f ) ∧ (¬a ∨ e) ∧ (¬c ∨ d) ∧ (¬b ∨ c) ∧ (¬a ∨ b) ∧ a

I How would you parallelize?

I Can the steps be run in parallel?

I Run unit propagation on
F = (¬e ∨ f ) ∧ (¬d ∨ e) ∧ (¬c ∨ d) ∧ (¬b ∨ c) ∧ (¬a ∨ b) ∧ a

I From a complexity point of view, this is an open question!

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 11



Parallelization – Warm Up

I Run unit propagation on
F = (¬e ∨ f ) ∧ (¬a ∨ e) ∧ (¬c ∨ d) ∧ (¬b ∨ c) ∧ (¬a ∨ b) ∧ a

I How would you parallelize?

I Can the steps be run in parallel?

I Run unit propagation on
F = (¬e ∨ f ) ∧ (¬d ∨ e) ∧ (¬c ∨ d) ∧ (¬b ∨ c) ∧ (¬a ∨ b) ∧ a

I From a complexity point of view, this is an open question!

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 12



Parallelization – Revision

I A sequential algorithm

. requires time t1 seconds

I A parallel algorithm

. utilizes p computation units (cores)

. requires time tp seconds

I The speedup Sp = t1
tp

. A speedup Sp is superlinear, if Sp > p

I The efficiency Ep =
Sp
p

I An algorithm is called scalable,

if it can solve a given problem faster when additional resources are added

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 13



Abstract Visualization

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 14



Finding an Exit in a Maze

I Some rules

. starting point is located in the left column

. exit is on the right side (if there exists one)

. search decisions can be done only when moving right

. when moving left, use backtracking

I Parallel approaches: multiple searches, search space splitting

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 15



Finding an Exit in a Maze

I Some rules

. starting point is located in the left column

. exit is on the right side (if there exists one)

. search decisions can be done only when moving right

. when moving left, use backtracking

I Parallel approaches: multiple searches, search space splitting

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 16



Solve With Multiple Solvers

I Use a solver per computing resource

. Use different heuristics

. Solvers work independently

a b c d e f g h

1

2

3

4

5

6

7

8

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 17



Solve With Multiple Solvers

I Learned clauses can be shared

. All solvers work on the same formula

. No simplification involved

a b c d e f g h

1

2

3

4

5

6

7

8

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 18



Solve With Multiple Solvers

I Arising questions:

. How scalable is the presented approach?

. What influences scalability?

. How long is clause sharing valid wrt simplification?

. Is there a good alternative?

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 19



Solve With Multiple Solvers

I Arising questions:

. How scalable is the presented approach?

. What influences scalability?

. How long is clause sharing valid wrt simplification?

. Is there a good alternative?

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 20



Solve With Multiple Solvers

I Arising questions:

. How scalable is the presented approach?

. What influences scalability?

. How long is clause sharing valid wrt simplification?

. Is there a good alternative?

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 21



Solve With Multiple Solvers

I Arising questions:

. How scalable is the presented approach?

. What influences scalability?

. How long is clause sharing valid wrt simplification?

. Is there a good alternative?

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 22



Partition Search Space

I Create a partition per computing resource

. Assign a solver to each partition

. Solvers work independently

a b c d e f g h

1

2

3

4

5

6

7

8

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 23



Partition Search Space

I Learned clauses can be shared

. with respect to the partition

. carefully

a b c d e f g h

1

2

3

4

5

6

7

8

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 24



Partition Search Space

I Learned clauses can be shared

. with respect to the partition

. carefully

a b c d e f g h

1

2

3

4

5

6

7

8

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 25



Partition Search Space

I Partitions can be re-partitioned

. Ensure load balancing and applies many resources to hard partitions

. Possible to use learned clauses of parent partition

a b c d e f g h

1

2

3

4

5

6

7

8

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 26



High Level Parallelization Approaches

Parallel Portfolio Solvers

Search Space Partitioning Solvers

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 27



Parallel Portfolio Solvers

I Solve a formula F with n resources

I Idea: solve F with multiple solvers

. With different configurations

. With knowledge sharing (learned clauses)

I Drawbacks:

. Known to not scale well

. A small set of configurations is already robust

. Scalability is independent of formula size

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 28



Parallel Portfolio Solvers

I Solve a formula F with n resources

I Idea: solve F with multiple solvers

. With different configurations

. With knowledge sharing (learned clauses)

I Drawbacks:

. Known to not scale well

. A small set of configurations is already robust

. Scalability is independent of formula size

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 29



Parallel Portfolio Solvers

I Solve a formula F with n resources

I Idea: solve F with multiple solvers

. With different configurations

. With knowledge sharing (learned clauses)

I Drawbacks:

. Known to not scale well

. A small set of configurations is already robust

. Scalability is independent of formula size

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 30



Parallel Portfolio Solvers

I Solve a formula F with n resources

I Idea: solve F with multiple solvers

. With different configurations

. With knowledge sharing (learned clauses)

I Drawbacks:

. Known to not scale well

. A small set of configurations is already robust

. Scalability is independent of formula size

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 31



Parallel Portfolio Solvers – Sharing

I Given two solvers S1 and S2, and let S1 learn a clause C

I Let F 1 and F 2 be the working formulas of S1 and S2, respectively

I When is S2 allowed to receive C

. If F 2 ≡ F 2 ∧ C

. If F 2 ≡SAT F 2 ∧ C

. The check is done implicitely, as it is too expensive

II No simplification, then all clauses are entailed
II Only clause elimination / model increasing techniques, then sharing

preserves equisatisfiability

. Addition of redundant, but not entailed, clauses

II Extra care, otherwise:
II F 1 = x , and S2 applies simplification:

F 2 = x ;modelInc F 2 = ∅ ;modelDec F 2 = x
II Solver S2 reveices (x) from S1: F 2 = x ∧ x
II Satisfiable formula is found to be unsatisfiable

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 32



Parallel Portfolio Solvers – Sharing

I Given two solvers S1 and S2, and let S1 learn a clause C

I Let F 1 and F 2 be the working formulas of S1 and S2, respectively

I When is S2 allowed to receive C

. If F 2 ≡ F 2 ∧ C

. If F 2 ≡SAT F 2 ∧ C

. The check is done implicitely, as it is too expensive

II No simplification, then all clauses are entailed
II Only clause elimination / model increasing techniques, then sharing

preserves equisatisfiability

. Addition of redundant, but not entailed, clauses

II Extra care, otherwise:
II F 1 = x , and S2 applies simplification:

F 2 = x ;modelInc F 2 = ∅ ;modelDec F 2 = x
II Solver S2 reveices (x) from S1: F 2 = x ∧ x
II Satisfiable formula is found to be unsatisfiable

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 33



Parallel Portfolio Solvers – Sharing

I Given two solvers S1 and S2, and let S1 learn a clause C

I Let F 1 and F 2 be the working formulas of S1 and S2, respectively

I When is S2 allowed to receive C

. If F 2 ≡ F 2 ∧ C

. If F 2 ≡SAT F 2 ∧ C

. The check is done implicitely, as it is too expensive

II No simplification, then all clauses are entailed
II Only clause elimination / model increasing techniques, then sharing

preserves equisatisfiability

. Addition of redundant, but not entailed, clauses

II Extra care, otherwise:
II F 1 = x , and S2 applies simplification:

F 2 = x ;modelInc F 2 = ∅ ;modelDec F 2 = x
II Solver S2 reveices (x) from S1: F 2 = x ∧ x
II Satisfiable formula is found to be unsatisfiable

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 34



Parallel Portfolio Solvers – Sharing

I Given two solvers S1 and S2, and let S1 learn a clause C

I Let F 1 and F 2 be the working formulas of S1 and S2, respectively

I When is S2 allowed to receive C

. If F 2 ≡ F 2 ∧ C

. If F 2 ≡SAT F 2 ∧ C

. The check is done implicitely, as it is too expensive

II No simplification, then all clauses are entailed
II Only clause elimination / model increasing techniques, then sharing

preserves equisatisfiability

. Addition of redundant, but not entailed, clauses

II Extra care, otherwise:
II F 1 = x , and S2 applies simplification:

F 2 = x ;modelInc F 2 = ∅ ;modelDec F 2 = x
II Solver S2 reveices (x) from S1: F 2 = x ∧ x
II Satisfiable formula is found to be unsatisfiable

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 35



Parallel Portfolio Solvers – Sharing

I Given two solvers S1 and S2, and let S1 learn a clause C

I Let F 1 and F 2 be the working formulas of S1 and S2, respectively

I When is S2 allowed to receive C

. If F 2 ≡ F 2 ∧ C

. If F 2 ≡SAT F 2 ∧ C

. The check is done implicitely, as it is too expensive

II No simplification, then all clauses are entailed
II Only clause elimination / model increasing techniques, then sharing

preserves equisatisfiability

. Addition of redundant, but not entailed, clauses

II Do not receive clauses, if a model decreasing has been used

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 36



Solving SAT in parallel with the Portfolio approach

runtime

Solver1(F ) Solver2(F ) Solver3(F ) Solver4(F ) Portfolio1234(F )

I Different SAT solvers compete

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 37



Solving SAT in parallel with the Portfolio approach

runtime

Solver1(F ) Solver2(F ) Solver3(F ) Solver4(F ) Portfolio1234(F )

SAT or UNSAT

I The portfolio of these solvers requires the smallest run time

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 38



Solving SAT in parallel with the Portfolio approach

runtime

Solver1(F ) Solver2(F ) Solver3(F ) Solver4(F ) Portfolio1234(F )

SAT or UNSAT

I By adding communication among the solvers, the performance can be
improved

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 39



High Level Parallelization Approaches

Parallel Portfolio Solvers

Search Space Partitioning Solvers

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 40



Search Space Partitioning

I Partition search space of formula F into sub spaces:

. For some r > 0 create r “child”-formulas F i , 0 < i ≤ r , such that

II their disjunction is equal to the initial formula F ≡
∨

F i

II a partition constraint K i in CNF is added, F i := F ∧ K i

. To obtain a partition, additionally ensure

II that the child-formulas represent disjoint search spaces

F i ∧ F j ≡ ⊥, for all 0 ≤ i < j ≤ r .

. Solve each child-formula with a sequential solver

. If a solver proofed unsatisfiability of a sub formula

II assign a new child formula

. Load-balancing is usually handled by providing sufficiently many child
formulas

. Can scale with the number of created child formulas, if partitioning works

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 41



Search Space Partitioning

I Partition search space of formula F into sub spaces:

. For some r > 0 create r “child”-formulas F i , 0 < i ≤ r , such that

II their disjunction is equal to the initial formula F ≡
∨

F i

II a partition constraint K i in CNF is added, F i := F ∧ K i

. To obtain a partition, additionally ensure

II that the child-formulas represent disjoint search spaces

F i ∧ F j ≡ ⊥, for all 0 ≤ i < j ≤ r .

. Solve each child-formula with a sequential solver

. If a solver proofed unsatisfiability of a sub formula

II assign a new child formula

. Load-balancing is usually handled by providing sufficiently many child
formulas

. Can scale with the number of created child formulas, if partitioning works

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 42



Search Space Partitioning

I Partition search space of formula F into sub spaces:

. For some r > 0 create r “child”-formulas F i , 0 < i ≤ r , such that

II their disjunction is equal to the initial formula F ≡
∨

F i

II a partition constraint K i in CNF is added, F i := F ∧ K i

. To obtain a partition, additionally ensure

II that the child-formulas represent disjoint search spaces

F i ∧ F j ≡ ⊥, for all 0 ≤ i < j ≤ r .

. Solve each child-formula with a sequential solver

. If a solver proofed unsatisfiability of a sub formula

II assign a new child formula

. Load-balancing is usually handled by providing sufficiently many child
formulas

. Can scale with the number of created child formulas, if partitioning works

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 43



Search Space Partitioning

I Partition search space of formula F into sub spaces:

. For some r > 0 create r “child”-formulas F i , 0 < i ≤ r , such that

II their disjunction is equal to the initial formula F ≡
∨

F i

II a partition constraint K i in CNF is added, F i := F ∧ K i

. To obtain a partition, additionally ensure

II that the child-formulas represent disjoint search spaces

F i ∧ F j ≡ ⊥, for all 0 ≤ i < j ≤ r .

. Solve each child-formula with a sequential solver

. If a solver proofed unsatisfiability of a sub formula

II assign a new child formula

. Load-balancing is usually handled by providing sufficiently many child
formulas

. Can scale with the number of created child formulas, if partitioning works

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 44



(Plain) Search Space Partitioning

F

F 2F 1 F 3 F 4

runtime

Solver(F 1) Solver(F 2) Solver(F 3) Solver(F 4)

⊥

>

SAT

I finds models as fast as the fastest solver

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 45



(Plain) Search Space Partitioning

F

F 2F 1 F 3 F 4

runtime

Solver(F 1) Solver(F 2) Solver(F 3) Solver(F 4)

⊥

⊥

⊥

⊥

UNSAT

I proofs unsatisfiability as slow as the slowest solver

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 46



(Plain) Search Space Partitioning

F

F 2F 1 F 3 F 4

runtime

Solver(F 1) Solver(F 2) Solver(F 3) Solver(F 4)

I not ensured:
max(tSolver(F 1), tSolver(F 2), tSolver(F 3), tSolver(F 4)) ≤ (tSolver(F ))

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 47



Iterative Search Space Partitioning

I Partition search space of formula F into sub spaces:

. For some r > 0 create r “child”-formulas F i , 0 ≤ i ≤ r , such that

II F ≡
∨

F i

II F i ∧ F j ≡ ⊥, for all 0 ≤ i < j ≤ r .

. Solve all formulas with a sequential solver (not only child formulas)

. If a solver proofed unsatisfiability of a sub formula, assign a new child
formula

II assign a new child formula

II or by recursively applying the partitioning procedure to child formulas

. Creates a breadth first search in the search space

. Can assign new child-formulas to new resources by iterative partitioning

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 48



Iterative Search Space Partitioning

I Partition search space of formula F into sub spaces:

. For some r > 0 create r “child”-formulas F i , 0 ≤ i ≤ r , such that

II F ≡
∨

F i

II F i ∧ F j ≡ ⊥, for all 0 ≤ i < j ≤ r .

. Solve all formulas with a sequential solver (not only child formulas)

. If a solver proofed unsatisfiability of a sub formula, assign a new child
formula

II assign a new child formula

II or by recursively applying the partitioning procedure to child formulas

. Creates a breadth first search in the search space

. Can assign new child-formulas to new resources by iterative partitioning

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 49



Iterative Search Space Partitioning

I Partition search space of formula F into sub spaces:

. For some r > 0 create r “child”-formulas F i , 0 ≤ i ≤ r , such that

II F ≡
∨

F i

II F i ∧ F j ≡ ⊥, for all 0 ≤ i < j ≤ r .

. Solve all formulas with a sequential solver (not only child formulas)

. If a solver proofed unsatisfiability of a sub formula, assign a new child
formula

II assign a new child formula

II or by recursively applying the partitioning procedure to child formulas

. Creates a breadth first search in the search space

. Can assign new child-formulas to new resources by iterative partitioning

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 50



Iterative Search Space Partitioning

F

F 2F 1 F 3 F 4

runtime

Solver(F 1) Solver(F 2) Solver(F 3) Solver(F 4)

Solver(F )

>

⊥

⊥

⊥>

SAT

I finds models as fast as the fastest solver

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 51



Iterative Search Space Partitioning

F

F 2F 1 F 3 F 4

runtime

Solver(F 1) Solver(F 2) Solver(F 3) Solver(F 4)

Solver(F )

⊥

⊥

⊥

⊥⊥UNSAT

I proofs unsatisfiability as fast as the slowest “necessary” solver

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 52



Iterative Search Space Partitioning

F

F 2F 1 F 3 F 4

runtime

Solver(F 1) Solver(F 2) Solver(F 3) Solver(F 4)

Solver(F )

>/⊥

⊥

⊥

⊥>/⊥

SAT

UNSAT

I by iteratively partitioning the search space, new child formulas
become more constrained

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 53



Iterative Partitioning – Dependencies

I Solve formula F

I Create a tree
. Create partitioning constraints K i with 1 ≤ i ≤ r , for some r
. F ≡

∨
1≤i≤k (F ∧ K i)

. K i ∧ K j ≡ ⊥ for all 1 ≤ i < j ≤ k

I Definition
. A clause C depends on a path p, if p is the longest path of all clauses that

participated in the derivation of C.

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 54



Iterative Partitioning – Dependencies

F p := ((x1 ∨ x2 ∨ x5) ∧ (x3 ∨ x4) ∧ (x2, x6, x1) ∧ (x2 ∨ x6))

F p1 := ((x2 ∨ x5) ∧ (x3 ∨ x4) ∧ (x2 ∨ x6) ∧ . . .)

(x1)

F p2 := ((x3 ∨ x4) ∧ . . .)

(x1)

I The clauses (x2 ∨ x5) and (x2 ∨ x6) depend on the partitioning constraint

I Their label has to be adapted accordingly!

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 55



Iterative Partitioning – Dependencies

F p := ((x1 ∨ x2 ∨ x5) ∧ (x3 ∨ x4) ∧ (x2, x6, x1) ∧ (x2 ∨ x6))

F p1 := ((x2 ∨ x5) ∧ (x3 ∨ x4) ∧ (x2 ∨ x6) ∧ . . .)

(x1)

F p2 := ((x3 ∨ x4) ∧ . . .)

(x1)

I The clauses (x2 ∨ x5) and (x2 ∨ x6) depend on the partitioning constraint

I Their label has to be adapted accordingly!

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 56



Iterative Partitioning – Dependencies

F p := ((x1 ∨ x2 ∨ x5) ∧ (x3 ∨ x4) ∧ (x2, x6, x1) ∧ (x2 ∨ x6))

F p1 := ((x2 ∨ x5) ∧ (x3 ∨ x4) ∧ (x2 ∨ x6) ∧ . . .)

(x1)

F p2 := ((x3 ∨ x4) ∧ . . .)

(x1)

I The clauses (x2 ∨ x5) and (x2 ∨ x6) depend on the partitioning constraint

I Their label has to be adapted accordingly!

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 57



Iterative Partitioning – A Abstract Example

I Solve formula F

I Create a tree
. Create partitioning constraints K i with 1 ≤ i ≤ r , for some r
. F ≡

∨
1≤i≤k (F ∧ K i)

. K i ∧ K j ≡ ⊥ for all 1 ≤ i < j ≤ k

II e.g. K 1 = x ∧ y , K 2 = ((¬x ∨ ¬y) ∧ c) and K 3 = ((¬x ∨ ¬y) ∧ ¬c)
. Label each node with its path to the root node,

e.g. F 132 = F ∧ K 1 ∧ K 13 ∧ K 132

I Have one solver for each core, assign a node to each solver

I Partition nodes recursively if resources become available again

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 58



Iterative Partitioning – A Abstract Example

I Solve formula F

I Create a tree
. Create partitioning constraints K i with 1 ≤ i ≤ r , for some r
. F ≡

∨
1≤i≤k (F ∧ K i)

. K i ∧ K j ≡ ⊥ for all 1 ≤ i < j ≤ k

II e.g. K 1 = x ∧ y , K 2 = ((¬x ∨ ¬y) ∧ c) and K 3 = ((¬x ∨ ¬y) ∧ ¬c)
. Label each node with its path to the root node,

e.g. F 132 = F ∧ K 1 ∧ K 13 ∧ K 132

I Have one solver for each core, assign a node to each solver

I Partition nodes recursively if resources become available again

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 59



Iterative Partitioning – A Abstract Example

I Solve formula F

I Create a tree
. Create partitioning constraints K i with 1 ≤ i ≤ r , for some r
. F ≡

∨
1≤i≤k (F ∧ K i)

. K i ∧ K j ≡ ⊥ for all 1 ≤ i < j ≤ k

II e.g. K 1 = x ∧ y , K 2 = ((¬x ∨ ¬y) ∧ c) and K 3 = ((¬x ∨ ¬y) ∧ ¬c)
. Label each node with its path to the root node,

e.g. F 132 = F ∧ K 1 ∧ K 13 ∧ K 132

I Have one solver for each core, assign a node to each solver

I Partition nodes recursively if resources become available again

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 60



Iterative Partitioning – A Abstract Example

I Have one solver for each core, assign a node to each solver

I Partition nodes recursively if resources become available again

I Created 4 nodes with their partitioning constraints

I Assign all 5 solvers S1 to S5 to nodes

F , S1

F 1, S2 F 2, S3 F 3, S4 F 4, S5

K 1

K 2 K 3
K 4

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 61



Iterative Partitioning – A Abstract Example

I Have one solver for each core, assign a node to each solver

I Partition nodes recursively if resources become available again

I Solver S2 and S4 find their formula to be unsatisfiable

I Partition F 2, and assign the solvers again

F , S1

F 1, S2 F 2, S3 F 3, S4 F 4, S5

K 1

K 2 K 3
K 4

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 62



Iterative Partitioning – A Abstract Example

I Have one solver for each core, assign a node to each solver

I Partition nodes recursively if resources become available again

F , S1

F 1 ≡ ⊥ F 2, S3 F 3 ≡ ⊥ F 4, S5

K 1

K 2 K 3
K 4

F 21, S2 F 22, S4 F 23

K 21 K 22 K 23

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 63



Iterative Partitioning – A Abstract Example

I Have one solver for each core, assign a node to each solver

I Partition nodes recursively if resources become available again

I Solver S2 and S4 find their formula to be unsatisfiable

I Assign S2 to F 21, partition F 4, and assign S4 to F 41

F , S1

F 1 ≡ ⊥ F 2, S3 F 3 ≡ ⊥ F 4, S5

K 1

K 2 K 3
K 4

F 21, S2 F 22, S4 F 23

K 21 K 22 K 23

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 64



Iterative Partitioning – A Abstract Example

I Have one solver for each core, assign a node to each solver

I Partition nodes recursively if resources become available again

F , S1

F 1 ≡ ⊥ F 2, S3 F 3 ≡ ⊥ F 4, S5

K 1

K 2 K 3
K 4

F 21 ≡ ⊥ F 22 ≡ ⊥ F 23,S2

K 21 K 22 K 23

F 41, S4 F 42

K 41 K 42

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 65



Iterative Partitioning – A Abstract Example

I Have one solver for each core, assign a node to each solver

I Partition nodes recursively if resources become available again

I Solver S2 finds F 23 to be unsatisfiable

I F 2 has to be unsatisfiable as well

F , S1

F 1 ≡ ⊥ F 2, S3 F 3 ≡ ⊥ F 4, S5

K 1

K 2 K 3
K 4

F 21 ≡ ⊥ F 22 ≡ ⊥ F 23,S2

K 21 K 22 K 23

F 41, S4 F 42

K 41 K 42

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 66



Iterative Partitioning – A Abstract Example

I Have one solver for each core, assign a node to each solver

I Partition nodes recursively if resources become available again

I Solver S2 finds F 23 to be unsatisfiable

I F 2 has to be unsatisfiable as well

F , S1

F 1 ≡ ⊥ F 2 ≡ ⊥ F 3 ≡ ⊥ F 4, S5

K 1

K 2 K 3
K 4

F 21 ≡ ⊥ F 22 ≡ ⊥ F 23 ≡ ⊥

K 21 K 22 K 23

F 41, S4 F 42, S2

K 41 K 42

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 67



Iterative Partitioning – A Abstract Example

I Have one solver for each core, assign a node to each solver

I Partition nodes recursively if resources become available again

I Solver S4 finds F 41 to be satisfiable

I Then F 4 and F are satisfiable as well

F , S1

F 1 ≡ ⊥ F 2 ≡ ⊥ F 3 ≡ ⊥ F 4, S5

K 1

K 2 K 3
K 4

F 21 ≡ ⊥ F 22 ≡ ⊥ F 23 ≡ ⊥

K 21 K 22 K 23

F 41, S4 F 42, S2

K 41 K 42

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 68



Iterative Partitioning – A Abstract Example

I Have one solver for each core, assign a node to each solver

I Partition nodes recursively if resources become available again

I Solver S4 finds F 41 to be satisfiable

I Then F 4 and F are satisfiable as well

F ≡ >

F 1 ≡ ⊥ F 2 ≡ ⊥ F 3 ≡ ⊥ F 4 ≡ >

K 1

K 2 K 3
K 4

F 21 ≡ ⊥ F 22 ≡ ⊥ F 23 ≡ ⊥

K 21 K 22 K 23

F 41 ≡ > F 42, S2

K 41 K 42

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 69



Iterative Partitioning – Downward Sharing

I Solver S1 learns clause C

I Downward clause sharing is safe, F |= C, then F ∧ K i |= C

I Assumption: no simplification

F , S1 F |= C

F 3 ≡ ⊥ F 4, S5 F 4 = F ∧ K 4 |= C

K 3
K 4

F 41, S4 F 42, S2 F 41 = F ∧ K 4 ∧ K 41 |= C

K 41 K 42

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 70



Iterative Partitioning – Upward Sharing

I Solver S2 learns clause C, F ∧ K 4 ∧ K 42 |= C

I Suppose C depends only on F and K 4

I Upward clause sharing to F 4 is safe

I Store dependency level for each clause

I Assumption: no simplification

F , S1

F 3 ≡ ⊥ F 4, S5 F 4 = F ∧ K 4 |= C

K 3
K 4

F 41, S4 F 42, S2 F 41 = F ∧ K 4 ∧ K 41 |= C

K 41 K 42

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 71



Iterative Partitioning – Abort Redundant

I Solver S2 learns empty clause⊥, F ∧ K 4 ∧ K 42 |= ⊥
I Suppose the empty clause depends only on F and K 4

I Upward clause sharing to F 4 is safe

I Abort all solvers below F 4 (S2, S4 and S5)

F , S1 F |= ⊥

F 3 ≡ ⊥ F 4, S5 F 4 = F ∧ K 4 |= ⊥

K 3
K 4

F 41, S4 F 42, S2 F 41 = F ∧ K 4 ∧ K 41 |= ⊥

K 41 K 42

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 72



Partition Tree With Shared Clauses

F = ((x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x2)

∧(x2 ∨ x4 ∨ x1) ∧ (x2 ∨ x4 ∨ x1)

∧(x4 ∨ x2 ∨ x5 ∨ x7) ∧ (x4 ∨ x2 ∨ x5) ∧ (x7 ∨ x8))

F 1 = (. . . ∧ (x2 ∨ x4 ∨ x1) ∧ (x4 ∨ x2 ∨ x5) ∧ (x4 ∨ x2 ∨ x5))

((x3 ∨ x2) ∧ (x2 ∨ x4)

∧(x2 ∨ x4) ∧ . . .)

(x1)

((x2 ∨ x3) ∧ (x3 ∨ x2) ∧ . . .)

F 121 = ((x2) ∧ (x4 ∨ x2 ∨ x5)

∧(x4 ∨ x2 ∨ x5))

(x3)

((x2) ∧ (x4 ∨ x2 ∨ x5)

∧(x4 ∨ x2 ∨ x5))

(x3)

(x1)

(x7)

F 2

(x7)

I D = (x4 ∨ x2) is learned by (x4 ∨ x2 ∨ x5)⊗ (x4 ∨ x2 ∨ x5) in formula F 121

I D depends on the partition constraint x7

I Hence, D can be shared in the subtree of F 1

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 73



Partition Tree With Shared Clauses

F = ((x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x2)

∧(x2 ∨ x4 ∨ x1) ∧ (x2 ∨ x4 ∨ x1)

∧(x4 ∨ x2 ∨ x5 ∨ x7) ∧ (x4 ∨ x2 ∨ x5) ∧ (x7 ∨ x8))

F 1 = (. . . ∧ (x2 ∨ x4 ∨ x1) ∧ (x4 ∨ x2 ∨ x5) ∧ (x4 ∨ x2 ∨ x5))

((x3 ∨ x2) ∧ (x2 ∨ x4)

∧(x2 ∨ x4) ∧ . . .)

(x1)

((x2 ∨ x3) ∧ (x3 ∨ x2) ∧ . . .)

F 121 = ((x2) ∧ (x4 ∨ x2 ∨ x5)

∧(x4 ∨ x2 ∨ x5))

(x3)

((x2) ∧ (x4 ∨ x2 ∨ x5)

∧(x4 ∨ x2 ∨ x5))

(x3)

(x1)

(x7)

F 2

(x7)

I D = (x4 ∨ x2) is learned by (x4 ∨ x2 ∨ x5)⊗ (x4 ∨ x2 ∨ x5) in formula F 121

I D depends on the partition constraint x7
I Hence, D can be shared in the subtree of F 1

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 74



Not Discussed Here

I Sharing and Simplification

I Low-Level Parallelization

I Parallel Simplification

Steffen Hölldobler and Norbert Manthey
SAT Solving – Parallel Search 75


