SAT Solving - Parallel Search

Steffen Hölldobler and Norbert Manthey
International Center for Computational Logic Technische Universität Dresden Germany

- Parallel Approaches
- Abstract Description
- High-Level
- Problems

TECHNISCHE
UNIVERSITAT

Parallelization - Warm Up

- If an algorithm has three parts that consume $80 \%, 10 \%$ and 10%

Parallelization - Warm Up

- If an algorithm has three parts that consume $80 \%, 10 \%$ and 10%
- Which task should be parallelized?

Parallelization - Warm Up

- If an algorithm has three parts that consume $80 \%, 10 \%$ and 10%
- Which task should be parallelized?

What is the ideal speedup for two cores?

TECHNISCHE

Parallelization - Warm Up

- Assume two solvers S_{1} and S_{2} solve the formula F independently
- S_{1} learns C, S_{2} learns D

Parallelization - Warm Up

- Assume two solvers S_{1} and S_{2} solve the formula F independently
- S_{1} learns C, S_{2} learns D
- If S_{1} receives D, is satisfiability preserved?

Parallelization - Warm Up

- Assume two solvers S_{1} and S_{2} solve the formula F independently
- S_{1} learns C, S_{2} learns D
- If S_{1} receives D, is satisfiability preserved?
- If S_{1} receives D, is equivalence preserved?

TECHNISCHE
UNIVERSITAT

Parallelization - Warm Up

- Run unit propagation on

$$
F=(\neg e \vee f) \wedge(\neg a \vee e) \wedge(\neg c \vee d) \wedge(\neg b \vee c) \wedge(\neg a \vee b) \wedge a
$$

Parallelization - Warm Up

- Run unit propagation on

$$
F=(\neg e \vee f) \wedge(\neg a \vee e) \wedge(\neg c \vee d) \wedge(\neg b \vee c) \wedge(\neg a \vee b) \wedge a
$$

- How would you parallelize?

Parallelization - Warm Up

- Run unit propagation on

$$
F=(\neg e \vee f) \wedge(\neg a \vee e) \wedge(\neg c \vee d) \wedge(\neg b \vee c) \wedge(\neg a \vee b) \wedge a
$$

- How would you parallelize?
- Can the steps be run in parallel?

Parallelization - Warm Up

- Run unit propagation on

$$
F=(\neg e \vee f) \wedge(\neg a \vee e) \wedge(\neg c \vee d) \wedge(\neg b \vee c) \wedge(\neg a \vee b) \wedge a
$$

- How would you parallelize?
- Can the steps be run in parallel?
- Run unit propagation on
$F=(\neg e \vee f) \wedge(\neg d \vee e) \wedge(\neg c \vee d) \wedge(\neg b \vee c) \wedge(\neg a \vee b) \wedge a$

Parallelization - Warm Up

- Run unit propagation on

$$
F=(\neg e \vee f) \wedge(\neg a \vee e) \wedge(\neg c \vee d) \wedge(\neg b \vee c) \wedge(\neg a \vee b) \wedge a
$$

- How would you parallelize?
- Can the steps be run in parallel?
- Run unit propagation on
$F=(\neg e \vee f) \wedge(\neg d \vee e) \wedge(\neg c \vee d) \wedge(\neg b \vee c) \wedge(\neg a \vee b) \wedge a$
- From a complexity point of view, this is an open question!

Parallelization - Revision

- A sequential algorithm
\triangleright requires time t_{1} seconds
- A parallel algorithm
\triangleright utilizes \boldsymbol{p} computation units (cores)
\triangleright requires time t_{p} seconds
\Rightarrow The speedup $S_{p}=\frac{t_{1}}{t_{p}}$
\triangleright A speedup S_{p} is superlinear, if $S_{p}>p$
- The efficiency $E_{p}=\frac{S_{p}}{p}$
- An algorithm is called scalable,
if it can solve a given problem faster when additional resources are added

Abstract Visualization

Finding an Exit in a Maze

- Some rules
\triangleright starting point is located in the left column
\triangleright exit is on the right side (if there exists one)
\triangleright search decisions can be done only when moving right
\triangleright when moving left, use backtracking

Finding an Exit in a Maze

- Some rules
\triangleright starting point is located in the left column
\triangleright exit is on the right side (if there exists one)
\triangleright search decisions can be done only when moving right
\triangleright when moving left, use backtracking

- Parallel approaches: multiple searches, search space splitting

Solve With Multiple Solvers

- Use a solver per computing resource
\triangleright Use different heuristics
\triangleright Solvers work independently

Solve With Multiple Solvers

- Learned clauses can be shared
\triangleright All solvers work on the same formula
\triangleright No simplification involved

TECHNISCHE

Solve With Multiple Solvers

- Arising questions:
\triangleright How scalable is the presented approach?

TECHNISCHE

Solve With Multiple Solvers

- Arising questions:
\triangleright How scalable is the presented approach?
\triangleright What influences scalability?

Solve With Multiple Solvers

- Arising questions:
\triangleright How scalable is the presented approach?
\triangleright What influences scalability?
\triangleright How long is clause sharing valid wrt simplification?

Solve With Multiple Solvers

- Arising questions:
\triangleright How scalable is the presented approach?
\triangleright What influences scalability?
\triangleright How long is clause sharing valid wrt simplification?
\triangleright Is there a good alternative?

Partition Search Space

- Create a partition per computing resource
\triangleright Assign a solver to each partition
\triangleright Solvers work independently

Partition Search Space

- Learned clauses can be shared

Partition Search Space

- Learned clauses can be shared
\triangleright with respect to the partition
\triangleright carefully

Partition Search Space

- Partitions can be re-partitioned
\triangleright Ensure load balancing and applies many resources to hard partitions
\triangleright Possible to use learned clauses of parent partition

High Level Parallelization Approaches

Parallel Portfolio Solvers

Search Space Partitioning Solvers

TECHNISCHE
UNIVERSITAT

Parallel Portfolio Solvers

- Solve a formula F with n resources
- Idea: solve F with multiple solvers

TECHNISCHE
UNIVERSITAT

Parallel Portfolio Solvers

- Solve a formula F with n resources
- Idea: solve F with multiple solvers
\triangleright With different configurations

Parallel Portfolio Solvers

- Solve a formula F with n resources
- Idea: solve F with multiple solvers
\triangleright With different configurations
\triangleright With knowledge sharing (learned clauses)

Parallel Portfolio Solvers

- Solve a formula F with n resources
- Idea: solve F with multiple solvers
\triangleright With different configurations
\triangleright With knowledge sharing (learned clauses)
- Drawbacks:
\triangleright Known to not scale well
\triangleright A small set of configurations is already robust
\triangleright Scalability is independent of formula size

Parallel Portfolio Solvers - Sharing

- Given two solvers S_{1} and S_{2}, and let S_{1} learn a clause C
- Let F^{1} and F^{2} be the working formulas of S_{1} and S_{2}, respectively
- When is S_{2} allowed to receive C

Parallel Portfolio Solvers - Sharing

- Given two solvers S_{1} and S_{2}, and let S_{1} learn a clause C
- Let F^{1} and F^{2} be the working formulas of S_{1} and S_{2}, respectively
- When is S_{2} allowed to receive C
\triangleright If $F^{2} \equiv F^{2} \wedge C$
\triangleright If $F^{2} \equiv \mathrm{SAT} F^{2} \wedge C$

Parallel Portfolio Solvers - Sharing

- Given two solvers S_{1} and S_{2}, and let S_{1} learn a clause C
- Let F^{1} and F^{2} be the working formulas of S_{1} and S_{2}, respectively
- When is S_{2} allowed to receive C
\triangleright If $F^{2} \equiv F^{2} \wedge C$
\triangleright If $F^{2} \equiv \mathrm{SAT} F^{2} \wedge C$
\triangleright The check is done implicitely, as it is too expensive
- No simplification, then all clauses are entailed
$\#$ Only clause elimination / model increasing techniques, then sharing preserves equisatisfiability

Parallel Portfolio Solvers - Sharing

- Given two solvers S_{1} and S_{2}, and let S_{1} learn a clause C
- Let F^{1} and F^{2} be the working formulas of S_{1} and S_{2}, respectively
- When is S_{2} allowed to receive C
\triangleright If $F^{2} \equiv F^{2} \wedge C$
\triangleright If $F^{2} \equiv \mathrm{SAT} F^{2} \wedge C$
\triangleright The check is done implicitely, as it is too expensive
- No simplification, then all clauses are entailed
$\#$ Only clause elimination / model increasing techniques, then sharing preserves equisatisfiability
\triangleright Addition of redundant, but not entailed, clauses
\rightarrow Extra care, otherwise:
$\rightarrow F^{1}=x$, and S_{2} applies simplification:
$F^{2}=x \sim_{\text {modellinc }} F^{2}=\emptyset \sim_{\text {modelDec }} F^{2}=\bar{x}$
\rightarrow Solver S_{2} reveices (x) from $S_{1}: F^{2}=\bar{x} \wedge x$
\rightarrow Satisfiable formula is found to be unsatisfiable

Parallel Portfolio Solvers - Sharing

- Given two solvers S_{1} and S_{2}, and let S_{1} learn a clause C
- Let F^{1} and F^{2} be the working formulas of S_{1} and S_{2}, respectively
- When is S_{2} allowed to receive C
\triangleright If $F^{2} \equiv F^{2} \wedge C$
\triangleright If $F^{2} \equiv \mathrm{SAT} F^{2} \wedge C$
\triangleright The check is done implicitely, as it is too expensive
\rightarrow No simplification, then all clauses are entailed
\rightarrow Only clause elimination / model increasing techniques, then sharing preserves equisatisfiability
\triangleright Addition of redundant, but not entailed, clauses
\rightarrow Do not receive clauses, if a model decreasing has been used

Solving SAT in parallel with the Portfolio approach

- Different SAT solvers compete

Solving SAT in parallel with the Portfolio approach

- The portfolio of these solvers requires the smallest run time

Solving SAT in parallel with the Portfolio approach

- By adding communication among the solvers, the performance can be improved

High Level Parallelization Approaches

Parallel Portfolio Solvers

Search Space Partitioning Solvers

Search Space Partitioning

- Partition search space of formula F into sub spaces:
\triangleright For some $r>0$ create r "child"-formulas $F^{i}, 0<i \leq r$, such that
\rightarrow their disjunction is equal to the initial formula $F \equiv \bigvee F^{i}$
\rightarrow a partition constraint K^{i} in CNF is added, $F^{i}:=F \wedge K^{i}$

Search Space Partitioning

- Partition search space of formula F into sub spaces:
\triangleright For some $r>0$ create r "child"-formulas $F^{i}, 0<i \leq r$, such that
\rightarrow their disjunction is equal to the initial formula $F \equiv \bigvee F^{i}$
\rightarrow a partition constraint K^{i} in CNF is added, $F^{i}:=F \wedge K^{i}$
\triangleright To obtain a partition, additionally ensure
\rightarrow that the child-formulas represent disjoint search spaces

$$
F^{i} \wedge F^{j} \equiv \perp, \text { for all } 0 \leq i<j \leq r
$$

Search Space Partitioning

- Partition search space of formula F into sub spaces:
\triangleright For some $r>0$ create r "child"-formulas $F^{i}, 0<i \leq r$, such that
\rightarrow their disjunction is equal to the initial formula $F \equiv \bigvee F^{i}$
$\|$ a partition constraint K^{i} in CNF is added, $F^{i}:=F \wedge K^{i}$
\triangleright To obtain a partition, additionally ensure
\rightarrow that the child-formulas represent disjoint search spaces

$$
F^{i} \wedge F^{j} \equiv \perp, \text { for all } 0 \leq i<j \leq r
$$

\triangleright Solve each child-formula with a sequential solver
\triangleright If a solver proofed unsatisfiability of a sub formula
\Rightarrow assign a new child formula

Search Space Partitioning

- Partition search space of formula F into sub spaces:
\triangleright For some $r>0$ create r "child"-formulas $F^{i}, 0<i \leq r$, such that
\Rightarrow their disjunction is equal to the initial formula $F \equiv \bigvee F^{i}$
m a partition constraint K^{i} in CNF is added, $F^{i}:=F \wedge K^{i}$
\triangleright To obtain a partition, additionally ensure
\rightarrow that the child-formulas represent disjoint search spaces

$$
F^{i} \wedge F^{j} \equiv \perp, \text { for all } 0 \leq i<j \leq r
$$

\triangleright Solve each child-formula with a sequential solver
\triangleright If a solver proofed unsatisfiability of a sub formula
\rightarrow assign a new child formula
\triangleright Load-balancing is usually handled by providing sufficiently many child formulas
\triangleright Can scale with the number of created child formulas, if partitioning works

(Plain) Search Space Partitioning

- finds models as fast as the fastest solver

(Plain) Search Space Partitioning

- proofs unsatisfiability as slow as the slowest solver

(Plain) Search Space Partitioning

- not ensured:
$\max \left(t_{\text {Solver }}\left(F^{1}\right), t_{\text {Solver }}\left(F^{2}\right), t_{\text {Solver }}\left(F^{3}\right), t_{\text {Solver }}\left(F^{4}\right)\right) \leq\left(t_{\text {Solver }}(F)\right)$

Iterative Search Space Partitioning

- Partition search space of formula F into sub spaces:
\triangleright For some $r>0$ create r "child"-formulas $F^{i}, 0 \leq i \leq r$, such that
$\rightarrow F \equiv \bigvee F^{i}$
$\rightarrow F^{i} \wedge F^{j} \equiv \perp$, for all $0 \leq i<j \leq r$.
\triangleright Solve all formulas with a sequential solver (not only child formulas)
\triangleright If a solver proofed unsatisfiability of a sub formula, assign a new child formula
\rightarrow assign a new child formula
\rightarrow or by recursively applying the partitioning procedure to child formulas

Iterative Search Space Partitioning

- Partition search space of formula F into sub spaces:
\triangleright For some $r>0$ create r "child"-formulas $F^{i}, 0 \leq i \leq r$, such that
$\rightarrow F \equiv \bigvee F^{i}$
$\rightarrow F^{i} \wedge F^{j} \equiv \perp$, for all $0 \leq i<j \leq r$.
\triangleright Solve all formulas with a sequential solver (not only child formulas)
\triangleright If a solver proofed unsatisfiability of a sub formula, assign a new child formula
- assign a new child formula
\rightarrow or by recursively applying the partitioning procedure to child formulas
\triangleright Creates a breadth first search in the search space

Iterative Search Space Partitioning

- Partition search space of formula F into sub spaces:
\triangleright For some $r>0$ create r "child"-formulas $F^{i}, 0 \leq i \leq r$, such that
$\rightarrow F \equiv \bigvee F^{i}$
$\mapsto F^{i} \wedge F^{j} \equiv \perp$, for all $0 \leq i<j \leq r$.
\triangleright Solve all formulas with a sequential solver (not only child formulas)
\triangleright If a solver proofed unsatisfiability of a sub formula, assign a new child formula
\rightarrow assign a new child formula
\rightarrow or by recursively applying the partitioning procedure to child formulas
\triangleright Creates a breadth first search in the search space
\triangleright Can assign new child-formulas to new resources by iterative partitioning

Iterative Search Space Partitioning

- finds models as fast as the fastest solver

Iterative Search Space Partitioning

- proofs unsatisfiability as fast as the slowest "necessary" solver

Iterative Search Space Partitioning

- by iteratively partitioning the search space, new child formulas become more constrained

Iterative Partitioning - Dependencies

- Solve formula F
- Create a tree
\triangleright Create partitioning constraints K^{i} with $1 \leq i \leq r$, for some r
$\triangleright F \equiv \bigvee_{1 \leq i \leq k}\left(F \wedge K^{i}\right)$
$\triangleright K^{i} \wedge K^{j} \equiv \perp$ for all $1 \leq i<j \leq k$
- Definition
\triangleright A clause \boldsymbol{C} depends on a path p, if p is the longest path of all clauses that participated in the derivation of \boldsymbol{C}.

Iterative Partitioning - Dependencies

$$
\begin{gathered}
F^{p}:=\left(\left(x_{1} \vee x_{2} \vee x_{5}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(\overline{x_{2}}, x_{6}, x_{1}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{6}}\right)\right) \\
F^{p 1}:=\left(\left(x_{2} \vee x_{5}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(\overline{x_{2}} \vee x_{6}\right) \wedge \ldots\right) \quad F^{p 2}:=\left(\left(x_{3} \vee x_{4}\right) \wedge \ldots\right)
\end{gathered}
$$

Iterative Partitioning - Dependencies

\checkmark The clauses $\left(x_{2} \vee x_{5}\right)$ and $\left(\overline{x_{2}} \vee x_{6}\right)$ depend on the partitioning constraint

Iterative Partitioning - Dependencies

$$
\begin{gathered}
F^{p}:=\left(\left(x_{1} \vee x_{2} \vee x_{5}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(\overline{x_{2}}, x_{6}, x_{1}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{6}}\right)\right) \\
F^{p 1}:=\left(\left(x_{2} \vee x_{5}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(\overline{x_{2}} \vee x_{6}\right) \wedge \ldots\right) \quad F^{p 2}:=\left(\left(x_{3} \vee x_{4}\right) \wedge \ldots\right)
\end{gathered}
$$

- The clauses $\left(x_{2} \vee x_{5}\right)$ and ($\overline{x_{2}} \vee x_{6}$) depend on the partitioning constraint
- Their label has to be adapted accordingly!

Iterative Partitioning - A Abstract Example

- Solve formula F
- Create a tree
\triangleright Create partitioning constraints K^{i} with $1 \leq i \leq r$, for some r
$\triangleright F \equiv \bigvee_{1 \leq i \leq k}\left(F \wedge K^{i}\right)$
$\triangleright K^{i} \wedge K^{j} \equiv \perp$ for all $1 \leq i<j \leq k$
\rightarrow e.g. $K^{1}=x \wedge y, K^{2}=((\neg x \vee \neg y) \wedge c)$ and $K^{3}=((\neg x \vee \neg y) \wedge \neg c)$
\triangleright Label each node with its path to the root node,

$$
\text { e.g. } F^{132}=F \wedge K^{1} \wedge K^{13} \wedge K^{132}
$$

Iterative Partitioning - A Abstract Example

- Solve formula F
- Create a tree
\triangleright Create partitioning constraints K^{i} with $1 \leq i \leq r$, for some r
$\triangleright F \equiv \bigvee_{1 \leq i \leq k}\left(F \wedge K^{i}\right)$
$\triangleright K^{i} \wedge K^{j} \equiv \perp$ for all $1 \leq i<j \leq k$
\rightarrow e.g. $K^{1}=x \wedge y, K^{2}=((\neg x \vee \neg y) \wedge c)$ and $K^{3}=((\neg x \vee \neg y) \wedge \neg c)$
\triangleright Label each node with its path to the root node,

$$
\text { e.g. } F^{132}=F \wedge K^{1} \wedge K^{13} \wedge K^{132}
$$

- Have one solver for each core, assign a node to each solver

Iterative Partitioning - A Abstract Example

- Solve formula F
- Create a tree
\triangleright Create partitioning constraints K^{i} with $1 \leq i \leq r$, for some r
$\triangleright F \equiv \bigvee_{1 \leq i \leq k}\left(F \wedge K^{i}\right)$
$\triangleright K^{i} \wedge K^{j} \equiv \perp$ for all $1 \leq i<j \leq k$
\rightarrow e.g. $K^{1}=x \wedge y, K^{2}=((\neg x \vee \neg y) \wedge c)$ and $K^{3}=((\neg x \vee \neg y) \wedge \neg c)$
\triangleright Label each node with its path to the root node,

$$
\text { e.g. } F^{132}=F \wedge K^{1} \wedge K^{13} \wedge K^{132}
$$

- Have one solver for each core, assign a node to each solver
- Partition nodes recursively if resources become available again

Iterative Partitioning - A Abstract Example

- Created 4 nodes with their partitioning constraints
- Assign all 5 solvers S_{1} to S_{5} to nodes

Iterative Partitioning - A Abstract Example

- Solver S_{2} and S_{4} find their formula to be unsatisfiable
- Partition F^{2}, and assign the solvers again

Iterative Partitioning - A Abstract Example

Iterative Partitioning - A Abstract Example

- Solver S_{2} and S_{4} find their formula to be unsatisfiable
- Assign S_{2} to F^{21}, partition F^{4}, and assign S_{4} to F^{41}

Iterative Partitioning - A Abstract Example

Iterative Partitioning - A Abstract Example

- Solver S_{2} finds F^{23} to be unsatisfiable
- F^{2} has to be unsatisfiable as well

Iterative Partitioning - A Abstract Example

- Solver S_{2} finds F^{23} to be unsatisfiable
- F^{2} has to be unsatisfiable as well

Iterative Partitioning - A Abstract Example

- Solver S_{4} finds F^{41} to be satisfiable
- Then F^{4} and F are satisfiable as well

Iterative Partitioning - A Abstract Example

- Solver S_{4} finds F^{41} to be satisfiable
- Then F^{4} and F are satisfiable as well

Iterative Partitioning - Downward Sharing

- Solver S_{1} learns clause C
- Downward clause sharing is safe, $F \vDash C$, then $F \wedge K^{i} \vDash C$
- Assumption: no simplification

Iterative Partitioning - Upward Sharing

- Solver S_{2} learns clause $C, F \wedge K^{4} \wedge K^{42} \vDash C$
- Suppose C depends only on F and K^{4}
- Upward clause sharing to F^{4} is safe
- Store dependency level for each clause
- Assumption: no simplification

Iterative Partitioning - Abort Redundant

- Solver S_{2} learns empty clause $\perp, F \wedge K^{4} \wedge K^{42} \vDash \perp$
- Suppose the empty clause depends only on F and K^{4}
- Upward clause sharing to F^{4} is safe
- Abort all solvers below $F^{4}\left(S_{2}, S_{4}\right.$ and $\left.S_{5}\right)$

Partition Tree With Shared Clauses

$\triangleright D=\left(x_{4} \vee x_{2}\right)$ is learned by $\left(x_{4} \vee x_{2} \vee x_{5}\right) \otimes\left(x_{4} \vee x_{2} \vee \overline{x_{5}}\right)$ in formula F^{121}
$\rightarrow D$ depends on the partition constraint x_{7}

Partition Tree With Shared Clauses

$\checkmark D=\left(x_{4} \vee x_{2}\right)$ is learned by $\left(x_{4} \vee x_{2} \vee x_{5}\right) \otimes\left(x_{4} \vee x_{2} \vee \overline{x_{5}}\right)$ in formula F^{121}

- D depends on the partition constraint x_{7}
- Hence, D can be shared in the subtree of F^{1}

Not Discussed Here

- Sharing and Simplification
- Low-Level Parallelization
- Parallel Simplification

