

SAT Solving – Parallel Search

Steffen Hölldobler and Norbert Manthey International Center for Computational Logic Technische Universität Dresden Germany

Parallel Approaches

Abstract Description

High-Level

Problems

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

▶ If an algorithm has three parts that consume 80 %, 10 % and 10 %

- ▶ If an algorithm has three parts that consume 80 %, 10 % and 10 %
- Which task should be parallelized?

- ▶ If an algorithm has three parts that consume 80 %, 10 % and 10 %
- Which task should be parallelized?
- What is the ideal speedup for two cores?

▶ Assume two solvers S₁ and S₂ solve the formula F independently

▶ S₁ learns C, S₂ learns D

▶ Assume two solvers S₁ and S₂ solve the formula F independently

► S₁ learns C, S₂ learns D

▶ If S₁ receives D, is satisfiability preserved?

- Assume two solvers S_1 and S_2 solve the formula F independently
- ▶ S₁ learns C, S₂ learns D
- ▶ If S₁ receives D, is satisfiability preserved?
- ▶ If S₁ receives D, is equivalence preserved?

Run unit propagation on

 $F = (\neg e \lor f) \land (\neg a \lor e) \land (\neg c \lor d) \land (\neg b \lor c) \land (\neg a \lor b) \land a$

► Run unit propagation on $F = (\neg e \lor f) \land (\neg a \lor e) \land (\neg c \lor d) \land (\neg b \lor c) \land (\neg a \lor b) \land a$

How would you parallelize?

- ► Run unit propagation on $F = (\neg e \lor f) \land (\neg a \lor e) \land (\neg c \lor d) \land (\neg b \lor c) \land (\neg a \lor b) \land a$
- How would you parallelize?
- Can the steps be run in parallel?

- ▶ Run unit propagation on $F = (\neg e \lor f) \land (\neg a \lor e) \land (\neg c \lor d) \land (\neg b \lor c) \land (\neg a \lor b) \land a$
- How would you parallelize?
- Can the steps be run in parallel?
- ► Run unit propagation on $F = (\neg e \lor f) \land (\neg d \lor e) \land (\neg c \lor d) \land (\neg b \lor c) \land (\neg a \lor b) \land a$

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

- ► Run unit propagation on $F = (\neg e \lor f) \land (\neg a \lor e) \land (\neg c \lor d) \land (\neg b \lor c) \land (\neg a \lor b) \land a$
- How would you parallelize?
- Can the steps be run in parallel?
- ► Run unit propagation on $F = (\neg e \lor f) \land (\neg d \lor e) \land (\neg c \lor d) \land (\neg b \lor c) \land (\neg a \lor b) \land a$
- From a complexity point of view, this is an open question!

Parallelization – Revision

- A sequential algorithm
 - requires time t₁ seconds
- A parallel algorithm
 - utilizes p computation units (cores)
 - requires time t_p seconds
- The speedup $S_p = \frac{t_1}{t_p}$
 - ▷ A speedup S_p is superlinear, if $S_p > p$
- The efficiency $E_p = \frac{S_p}{p}$
- An algorithm is called scalable,

if it can solve a given problem faster when additional resources are added

Abstract Visualization

Finding an Exit in a Maze

- Some rules
 - starting point is located in the left column
 - exit is on the right side (if there exists one)
 - search decisions can be done only when moving right
 - when moving left, use backtracking

Finding an Exit in a Maze

- Some rules
 - starting point is located in the left column
 - > exit is on the right side (if there exists one)
 - search decisions can be done only when moving right
 - when moving left, use backtracking

Parallel approaches: multiple searches, search space splitting

- Use a solver per computing resource
 - Use different heuristics
 - Solvers work independently

- Learned clauses can be shared
 - > All solvers work on the same formula
 - No simplification involved

Arising questions:

How scalable is the presented approach?

Arising questions:

- How scalable is the presented approach?
- What influences scalability?

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

Arising questions:

- How scalable is the presented approach?
- What influences scalability?
- How long is clause sharing valid wrt simplification?

Arising questions:

- How scalable is the presented approach?
- What influences scalability?
- How long is clause sharing valid wrt simplification?
- Is there a good alternative?

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

- Create a partition per computing resource
 - Assign a solver to each partition
 - Solvers work independently

Learned clauses can be shared

Steffen Hölldobler and Norbert Manthey SAT Solving – Parallel Search

- Learned clauses can be shared
 - with respect to the partition
 - carefully

- Partitions can be re-partitioned
 - Ensure load balancing and applies many resources to hard partitions
 - Possible to use learned clauses of parent partition

High Level Parallelization Approaches

Parallel Portfolio Solvers

Search Space Partitioning Solvers

- Solve a formula F with n resources
- Idea: solve F with multiple solvers

- Solve a formula F with n resources
- Idea: solve F with multiple solvers
 - With different configurations

- Solve a formula F with n resources
- Idea: solve F with multiple solvers
 - With different configurations
 - With knowledge sharing (learned clauses)

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

- Solve a formula F with n resources
- Idea: solve F with multiple solvers
 - With different configurations
 - With knowledge sharing (learned clauses)

Drawbacks:

- Known to not scale well
- A small set of configurations is already robust
- Scalability is independent of formula size

- ▶ Given two solvers S₁ and S₂, and let S₁ learn a clause C
- ▶ Let F^1 and F^2 be the working formulas of S_1 and S_2 , respectively
- ▶ When is S₂ allowed to receive C

- ▶ Given two solvers S₁ and S₂, and let S₁ learn a clause C
- ▶ Let F¹ and F² be the working formulas of S₁ and S₂, respectively
- When is S₂ allowed to receive C

▷ If F² ≡ F² ∧ C
▷ If F² ≡_{SAT} F² ∧ C

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

- Given two solvers S₁ and S₂, and let S₁ learn a clause C
- Let F¹ and F² be the working formulas of S₁ and S₂, respectively
- ▶ When is S₂ allowed to receive C

If
$$F^2 \equiv F^2 \wedge C$$

- ▷ If $F^2 \equiv_{SAT} F^2 \land C$
- > The check is done implicitely, as it is too expensive
 - No simplification, then all clauses are entailed
 - Only clause elimination / model increasing techniques, then sharing preserves equisatisfiability

- ▶ Given two solvers S₁ and S₂, and let S₁ learn a clause C
- Let F¹ and F² be the working formulas of S₁ and S₂, respectively
- ▶ When is S₂ allowed to receive C

If
$$F^2 \equiv F^2 \wedge C$$

- ▷ If $F^2 \equiv_{SAT} F^2 \land C$
- > The check is done implicitely, as it is too expensive
 - No simplification, then all clauses are entailed
 - Only clause elimination / model increasing techniques, then sharing preserves equisatisfiability
- Addition of redundant, but not entailed, clauses
 - Extra care, otherwise:
 - $F^1 = x$, and S_2 applies simplification:
 - $F^2 = x \rightsquigarrow_{\text{modelInc}} F^2 = \emptyset \rightsquigarrow_{\text{modelDec}} F^2 = \overline{x}$
 - Solver S_2 reveices (x) from S_1 : $F^2 = \overline{x} \wedge x$
 - Satisfiable formula is found to be unsatisfiable

- ▶ Given two solvers S₁ and S₂, and let S₁ learn a clause C
- Let F¹ and F² be the working formulas of S₁ and S₂, respectively
- ▶ When is S₂ allowed to receive C

If
$$F^2 \equiv F^2 \wedge C$$

- ▷ If $F^2 \equiv_{SAT} F^2 \land C$
- > The check is done implicitely, as it is too expensive
 - No simplification, then all clauses are entailed
 - Only clause elimination / model increasing techniques, then sharing preserves equisatisfiability
- Addition of redundant, but not entailed, clauses
 - > Do not receive clauses, if a model decreasing has been used

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

Solving SAT in parallel with the Portfolio approach

Different SAT solvers compete

Solving SAT in parallel with the Portfolio approach

The portfolio of these solvers requires the smallest run time

Solving SAT in parallel with the Portfolio approach

 By adding communication among the solvers, the performance can be improved

High Level Parallelization Approaches

Parallel Portfolio Solvers

Search Space Partitioning Solvers

- ▶ Partition search space of formula *F* into sub spaces:
 - ▷ For some r > 0 create r "child"-formulas F^i , 0 < i ≤ r, such that
 - \blacktriangleright their disjunction is equal to the initial formula $F \equiv \bigvee F^i$
 - **•** a partition constraint K^i in CNF is added, $F^i := F \wedge K^i$

INTERNATIONAL CENTER

- Partition search space of formula F into sub spaces:
 - ▷ For some r > 0 create r "child"-formulas F^i , $0 < i \le r$, such that
 - \blacktriangleright their disjunction is equal to the initial formula $F \equiv \bigvee F^i$
 - **•** a partition constraint K^i in CNF is added, $F^i := F \wedge K^i$
 - > To obtain a partition, additionally ensure
 - ▶ that the child-formulas represent disjoint search spaces $F^i \wedge F^j \equiv \bot$, for all $0 \le i < j \le r$.

INTERNATIONAL CENTER

- Partition search space of formula F into sub spaces:
 - ▷ For some r > 0 create r "child"-formulas F^i , $0 < i \le r$, such that
 - \blacktriangleright their disjunction is equal to the initial formula $F \equiv \bigvee F^i$
 - **•** a partition constraint K^i in CNF is added, $F^i := F \wedge K^i$
 - > To obtain a partition, additionally ensure
 - ▶ that the child-formulas represent disjoint search spaces $F^i \wedge F^j \equiv \bot$, for all $0 \le i \le j \le r$.
 - Solve each child-formula with a sequential solver
 - If a solver proofed unsatisfiability of a sub formula
 - assign a new child formula

- Partition search space of formula F into sub spaces:
 - ▷ For some r > 0 create r "child"-formulas F^i , $0 < i \le r$, such that
 - \blacktriangleright their disjunction is equal to the initial formula $F \equiv \bigvee F^i$
 - **•** a partition constraint K^i in CNF is added, $F^i := F \wedge K^i$
 - > To obtain a partition, additionally ensure
 - ▶ that the child-formulas represent disjoint search spaces $F^i \wedge F^j \equiv \bot$, for all 0 < i < j < r.
 - Solve each child-formula with a sequential solver
 - If a solver proofed unsatisfiability of a sub formula
 - assign a new child formula
 - Load-balancing is usually handled by providing sufficiently many child formulas
 - > Can scale with the number of created child formulas, if partitioning works

finds models as fast as the fastest solver

Steffen Hölldobler and Norbert Manthey SAT Solving – Parallel Search

proofs unsatisfiability as slow as the slowest solver

 $max(t_{Solver}(F^1), t_{Solver}(F^2), t_{Solver}(F^3), t_{Solver}(F^4)) \leq (t_{Solver}(F))$

- Partition search space of formula F into sub spaces:
 - ▷ For some r > 0 create r "child"-formulas F^i , $0 \le i \le r$, such that

$$F \equiv \bigvee F^i$$

$$F^i \wedge F^j \equiv \bot, \text{ for all } 0 < i < j < r.$$

- Solve all formulas with a sequential solver (not only child formulas)
- If a solver proofed unsatisfiability of a sub formula, assign a new child formula
 - assign a new child formula
 - or by recursively applying the partitioning procedure to child formulas

INTERNATIONAL CENTER

- Partition search space of formula F into sub spaces:
 - ▷ For some r > 0 create r "child"-formulas F^i , $0 \le i \le r$, such that

$$F \equiv \bigvee F^{i}$$

$$F^{i} \wedge F^{j} \equiv \bot, \text{ for all } 0 \le i < j \le r.$$

- Solve all formulas with a sequential solver (not only child formulas)
- If a solver proofed unsatisfiability of a sub formula, assign a new child formula
 - 🗭 assign a new child formula
 - or by recursively applying the partitioning procedure to child formulas
- Creates a breadth first search in the search space

- Partition search space of formula F into sub spaces:
 - ▷ For some r > 0 create r "child"-formulas F^i , $0 \le i \le r$, such that

$$F \equiv \bigvee F^{i}$$

$$F^{i} \wedge F^{j} \equiv \bot, \text{ for all } 0 \le i < j \le r.$$

- Solve all formulas with a sequential solver (not only child formulas)
- If a solver proofed unsatisfiability of a sub formula, assign a new child formula
 - 🕨 assign a new child formula
 - or by recursively applying the partitioning procedure to child formulas
- Creates a breadth first search in the search space
- > Can assign new child-formulas to new resources by iterative partitioning

finds models as fast as the fastest solver

Steffen Hölldobler and Norbert Manthey SAT Solving – Parallel Search

proofs unsatisfiability as fast as the slowest "necessary" solver

by iteratively partitioning the search space, new child formulas become more constrained

- Solve formula F
- Create a tree
 - ▷ Create partitioning constraints K^i with $1 \le i \le r$, for some r
 - $\triangleright \mathbf{F} \equiv \bigvee_{1 \leq i \leq k} (\mathbf{F} \wedge \mathbf{K}^i)$
 - $\triangleright \ \mathbf{K}^i \wedge \mathbf{K}^j \equiv \bot \text{ for all } 1 \leq i < j \leq k$

Definition

 \triangleright A clause *C* depends on a path *p*, if *p* is the longest path of all clauses that participated in the derivation of *C*.

INTERNATIONAL CENTER

▶ The clauses $(x_2 \lor x_5)$ and $(x_2 \lor x_6)$ depend on the partitioning constraint

- ▶ The clauses $(x_2 \lor x_5)$ and $(\overline{x_2} \lor x_6)$ depend on the partitioning constraint
- Their label has to be adapted accordingly!

- Solve formula F
- Create a tree
 - ▷ Create partitioning constraints K^i with $1 \le i \le r$, for some r

$$\triangleright \mathbf{F} \equiv \bigvee_{1 \leq i \leq k} (\mathbf{F} \wedge \mathbf{K}^i)$$

 $\triangleright \ \mathbf{K}^{i} \wedge \mathbf{K}^{j} \equiv \bot \text{ for all } 1 \leq i < j \leq k$

▶ e.g.
$$K^1 = x \land y, K^2 = ((\neg x \lor \neg y) \land c)$$
 and $K^3 = ((\neg x \lor \neg y) \land \neg c)$

> Label each node with its path to the root node,

e.g. $F^{132} = F \wedge K^1 \wedge K^{13} \wedge K^{132}$

INTERNATIONAL CENTER

- Solve formula F
- Create a tree
 - ▷ Create partitioning constraints K^i with $1 \le i \le r$, for some r

$$\triangleright \mathbf{F} \equiv \bigvee_{1 \leq i \leq k} (\mathbf{F} \wedge \mathbf{K}^i)$$

 $\triangleright \ \mathbf{K}^i \wedge \mathbf{K}^j \equiv \bot \text{ for all } 1 \leq i < j \leq k$

▶ e.g.
$$K^1 = x \land y, K^2 = ((\neg x \lor \neg y) \land c)$$
 and $K^3 = ((\neg x \lor \neg y) \land \neg c)$

Label each node with its path to the root node,

e.g.
$$F^{132} = F \wedge K^1 \wedge K^{13} \wedge K^{132}$$

Have one solver for each core, assign a node to each solver

INTERNATIONAL CENTER

Solve formula F

e

- Create a tree
 - ▷ Create partitioning constraints K^i with $1 \le i \le r$, for some r

$$\triangleright \mathbf{F} \equiv \bigvee_{1 \leq i \leq k} (\mathbf{F} \wedge \mathbf{K}^i)$$

 $\triangleright \ \mathbf{K}^i \wedge \mathbf{K}^j \equiv \bot \text{ for all } 1 \leq i < j \leq k$

▶ e.g.
$$K^1 = x \land y, K^2 = ((\neg x \lor \neg y) \land c)$$
 and $K^3 = ((\neg x \lor \neg y) \land \neg c)$

Label each node with its path to the root node,

e.g.
$$F^{132} = F \wedge K^1 \wedge K^{13} \wedge K^{132}$$

- Have one solver for each core, assign a node to each solver
- Partition nodes recursively if resources become available again

INTERNATIONAL CENTER

- Created 4 nodes with their partitioning constraints
- Assign all 5 solvers S₁ to S₅ to nodes

- Solver S₂ and S₄ find their formula to be unsatisfiable
- Partition F², and assign the solvers again

Steffen Hölldobler and Norbert Manthey SAT Solving – Parallel Search

- Solver S₂ and S₄ find their formula to be unsatisfiable
- Assign S₂ to F²¹, partition F⁴, and assign S₄ to F⁴¹

Steffen Hölldobler and Norbert Manthey SAT Solving – Parallel Search

- ▶ Solver S₂ finds F²³ to be unsatisfiable
- F² has to be unsatisfiable as well

- ▶ Solver S₂ finds F²³ to be unsatisfiable
- F² has to be unsatisfiable as well

- Solver S₄ finds F⁴¹ to be satisfiable
- ▶ Then *F*⁴ and *F* are satisfiable as well

- Solver S₄ finds F⁴¹ to be satisfiable
- ▶ Then *F*⁴ and *F* are satisfiable as well

Iterative Partitioning – Downward Sharing

- Solver S₁ learns clause C
- **>** Downward clause sharing is safe, $F \models C$, then $F \land K^i \models C$
- Assumption: no simplification

INTERNATIONAL CENTER

Iterative Partitioning – Upward Sharing

- Solver S₂ learns clause C, $F \wedge K^4 \wedge K^{42} \models C$
- Suppose C depends only on F and K⁴
- Upward clause sharing to F⁴ is safe
- Store dependency level for each clause
- Assumption: no simplification

Iterative Partitioning – Abort Redundant

- ▶ Solver S₂ learns empty clause \bot , $F \land K^4 \land K^{42} \models \bot$
- Suppose the empty clause depends only on F and K⁴
- Upward clause sharing to F⁴ is safe
- Abort all solvers below F⁴ (S₂, S₄ and S₅)

Partition Tree With Shared Clauses

- ▶ $D = (x_4 \lor x_2)$ is learned by $(x_4 \lor x_2 \lor x_5) \otimes (x_4 \lor x_2 \lor \overline{x_5})$ in formula F^{121}
- D depends on the partition constraint x₇

Partition Tree With Shared Clauses

- ▶ $D = (x_4 \lor x_2)$ is learned by $(x_4 \lor x_2 \lor x_5) \otimes (x_4 \lor x_2 \lor \overline{x_5})$ in formula F^{121}
- D depends on the partition constraint x₇
- Hence, D can be shared in the subtree of F¹

Not Discussed Here

- Sharing and Simplification
- Low-Level Parallelization
- Parallel Simplification

