
FOUNDATIONS OF DATABASES AND
QUERY LANGUAGES

Lecture 11: Optimisation an Evaluation of Datalog

Markus Krötzsch

TU Dresden, 29 June 2015

https://ddll.inf.tu-dresden.de/web/Database_Theory_%28SS2016%29/en
http://korrekt.org/

Overview
1. Introduction | Relational data model
2. First-order queries
3. Complexity of query answering
4. Complexity of FO query answering
5. Conjunctive queries
6. Tree-like conjunctive queries
7. Query optimisation
8. Conjunctive Query Optimisation / First-Order Expressiveness
9. First-Order Expressiveness / Introduction to Datalog

10. Expressive Power and Complexity of Datalog
11. Optimisation and Evaluation of Datalog
12. Evaluation of Datalog (2)
13. Path queries
14. Outlook: database theory in practice

See course homepage [⇒ link] for more information and materials
Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 2 of 48

https://ddll.inf.tu-dresden.de/web/Database_Theory_%28SS2016%29/en

Review: Datalog Expressivity and Complexity

A rule-based recursive query language

father(alice, bob)

mother(alice, carla)

Parent(x, y)← father(x, y)

Parent(x, y)← mother(x, y)

SameGeneration(x, x)

SameGeneration(x, y)← Parent(x, v) ∧ Parent(y, w) ∧ SameGeneration(v, w)

Datalog is more complex than FO query answering:

• ExpTime-complete for query and combined complexity

• P-complete for data complexity

Datalog cannot express all query mappings in P

but semipositive Datalog with a successor ordering can

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 3 of 48

Datalog Implementation and Optimisation

How can Datalog query answering be implemented?
How can Datalog queries be optimised?

Recall: static query optimisation

• Query equivalence

• Query emptiness

• Query containment

{ all undecidable for FO queries, but decidable for (U)CQs

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 4 of 48

Learning from CQ Containment?

How did we manage to decide the question Q1
?
v Q2 for conjunctive

queries Q1 and Q2?

Key ideas were:

• We want to know if all situations where Q1 matches are also
matched by Q2.

• We can simply view Q1 as a database IQ1 : the most general
database that Q1 can match to

• Containment Q1
?
v Q2 holds if Q2 matches the database IQ1 .

{ decidable in NP

A CQ Q[x1, . . . , xn] can be expressed as a Datalog query with a
single rule Ans(x1, . . . , xn)← Q
{ Could we apply a similar technique to Datalog?

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 5 of 48

Checking Rule Entailment

The containment decision procedure for CQs suggests a procedure
for single Datalog rules:

• Consider a Datalog program P and a rule H ← B1 ∧ . . . ∧ Bn.
• Define a database IB1∧...∧Bn as for CQs:

– For every variable x in H ← B1 ∧ . . . ∧ Bn,
we introduce a fresh constant cx, not used anywhere yet

– We define Hc to be the same as H but with each variable
x replaced by cx; similarly we define Bc

i for each 1 ≤ i ≤ n
– The database IB1∧...∧Bn contains exactly the facts Bc

i
(1 ≤ i ≤ n)

• Now check if Hc ∈ T∞P (IB1∧...∧Bn):
– If no, then there is a database on which H ← B1 ∧ . . . ∧ Bn

produces an entailment that P does not produce.
– If yes, then P |= H ← B1 ∧ . . . ∧ Bn

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 6 of 48

Example: Rule Entailment
Let P be the program

Ancestor(x, y)← parent(x, y)

Ancestor(x, z)← parent(x, y) ∧ Ancestor(y, z)

and consider the rule Ancestor(x, z)← parent(x, y) ∧ parent(y, z).

Then Iparent(x,y)∧parent(y,z) = {parent(cx, cy), parent(cy, cz)} (abbr. as I).
We can compute T∞P (I):

T0
P(I) = I

T1
P(I) = {Ancestor(cx, cy), Ancestor(cy, cz)} ∪ I

T2
P(I) = {Ancestor(cx, cz) ∪ T1

P(I)

T3
P(I) = T2

P(I) = T∞P (I)

Therefore, Ancestor(x, z)c = Ancestor(cx, cz) ∈ T∞P (I),
so P entails Ancestor(x, z)← parent(x, y) ∧ parent(y, z).

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 7 of 48

Example: Rule Entailment
Let P be the program

Ancestor(x, y)← parent(x, y)

Ancestor(x, z)← parent(x, y) ∧ Ancestor(y, z)

and consider the rule Ancestor(x, z)← parent(x, y) ∧ parent(y, z).

Then Iparent(x,y)∧parent(y,z) = {parent(cx, cy), parent(cy, cz)} (abbr. as I).

We can compute T∞P (I):

T0
P(I) = I

T1
P(I) = {Ancestor(cx, cy), Ancestor(cy, cz)} ∪ I

T2
P(I) = {Ancestor(cx, cz) ∪ T1

P(I)

T3
P(I) = T2

P(I) = T∞P (I)

Therefore, Ancestor(x, z)c = Ancestor(cx, cz) ∈ T∞P (I),
so P entails Ancestor(x, z)← parent(x, y) ∧ parent(y, z).

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 8 of 48

Example: Rule Entailment
Let P be the program

Ancestor(x, y)← parent(x, y)

Ancestor(x, z)← parent(x, y) ∧ Ancestor(y, z)

and consider the rule Ancestor(x, z)← parent(x, y) ∧ parent(y, z).

Then Iparent(x,y)∧parent(y,z) = {parent(cx, cy), parent(cy, cz)} (abbr. as I).
We can compute T∞P (I):

T0
P(I) = I

T1
P(I) = {Ancestor(cx, cy), Ancestor(cy, cz)} ∪ I

T2
P(I) = {Ancestor(cx, cz) ∪ T1

P(I)

T3
P(I) = T2

P(I) = T∞P (I)

Therefore, Ancestor(x, z)c = Ancestor(cx, cz) ∈ T∞P (I),
so P entails Ancestor(x, z)← parent(x, y) ∧ parent(y, z).

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 9 of 48

Example: Rule Entailment
Let P be the program

Ancestor(x, y)← parent(x, y)

Ancestor(x, z)← parent(x, y) ∧ Ancestor(y, z)

and consider the rule Ancestor(x, z)← parent(x, y) ∧ parent(y, z).

Then Iparent(x,y)∧parent(y,z) = {parent(cx, cy), parent(cy, cz)} (abbr. as I).
We can compute T∞P (I):

T0
P(I) = I

T1
P(I) = {Ancestor(cx, cy), Ancestor(cy, cz)} ∪ I

T2
P(I) = {Ancestor(cx, cz) ∪ T1

P(I)

T3
P(I) = T2

P(I) = T∞P (I)

Therefore, Ancestor(x, z)c = Ancestor(cx, cz) ∈ T∞P (I),
so P entails Ancestor(x, z)← parent(x, y) ∧ parent(y, z).
Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 10 of 48

Deciding Datalog Containment?

Idea for two Datalog programs P1 and P2:

• If P2 |= P1, then every entailment of P1 is also entailed by P2

• In particular, this means that P1 is contained in P2

• We have P2 |= P1 if P2 |= H ← B1 ∧ . . . ∧ Bn

for every rule H ← B1 ∧ . . . ∧ Bn ∈ P1

• We can decide P2 |= H ← B1 ∧ . . . ∧ Bn.

Can we decide Datalog containment this way?

{ No! In fact, Datalog containment is undecidable. What’s wrong?

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 11 of 48

Deciding Datalog Containment?

Idea for two Datalog programs P1 and P2:

• If P2 |= P1, then every entailment of P1 is also entailed by P2

• In particular, this means that P1 is contained in P2

• We have P2 |= P1 if P2 |= H ← B1 ∧ . . . ∧ Bn

for every rule H ← B1 ∧ . . . ∧ Bn ∈ P1

• We can decide P2 |= H ← B1 ∧ . . . ∧ Bn.

Can we decide Datalog containment this way?
{ No! In fact, Datalog containment is undecidable. What’s wrong?

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 12 of 48

Implication Entailment vs. Datalog Entailment

P1 : P2 :

A(x, y)← parent(x, y) B(x, y)← parent(x, y)

A(x, z)← parent(x, y) ∧ A(y, z) B(x, z)← parent(x, y) ∧ B(y, z)

Consider the Datalog queries 〈A, P1〉 and 〈B, P2〉:

• Clearly, 〈A, P1〉 and 〈B, P2〉 are equivalent (and mutually
contained in each other).

• However, P2 entails no rule of P1 and P1 entails no rule of P2.

{ IDB predicates do not matter in Datalog, but predicate names
matter in first-order implications

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 13 of 48

Datalog as Second-Order Logic
Datalog is a fragment of second-order logic:
IDB pred’s are like variables that can take any set of tuples as value!

Example: the query 〈A, P1〉 can be expressed by the formula

∀A.

 ∀x, y.A(x, y) ← parent(x, y) ∧

∀x, y, z.A(x, z) ← parent(x, y) ∧ A(y, z)

→ A(v, w)

• This is a formula with two free variables v and w.
{ query with two result variables

• Intuitive semantics: “〈c, d〉 is a query result if A(c, d) holds
for all possible values of A that satisfy the rules”
{ Datalog semantics in other words

We can express any Datalog query like this, with one second-order
variable per IDB predicate.
Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 14 of 48

First-Order vs. Second-Order Logic

A Datalog program looks like a set of first-order implications,
but it has a second-order semantics

We have already seen that Datalog can express things that are
impossible to express in FO queries – that’s why we introduced it!1

Consequences for query optimisation:

• Entailment between sets of first-order implications is
decidable (shown above)

• Containment between Datalog queries is not decidable
(shown next)

1Possible confusion when comparing of FO and Datalog: entailments of
first-order implications agree with answers of Datalog queries, so it seems we can
break the FO locality restrictions; but query answering is model checking not
entailment; FO model checking is much weaker than second-order model checking
Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 15 of 48

Undecidability of Datalog Query Containment

A classical undecidable problem: Post Correspondence Problem

• Input: two lists of words α1, . . . ,αn and β1, . . . , βn

• Output: “yes” if there is a sequence of indices i1, i2, i3, . . . , im
such that αi1αi2αi3 · · ·αim = βi1βi2βi3 · · · βim .

{ we will reduce PCP to Datalog containment

We need to define Datalog programs that work on databases that
encode words:

• We represent words by chains of binary predicates

• Binary EDB predicates represent a letters

• For each letter σ, we use a binary EDB predicate letter[σ]

• We assume that the words αi have the form ai
1 · · · a

i
|βi |

, and
that the words βi have the form bi

1 · · · b
i
|βi |

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 16 of 48

Solving PCP with Datalog Containment

A program P1 to recognise potential PCP solutions.

Rules to recognise words αi and βi for every i ∈ {1, . . . , m}:

Ai(x0, x|αi |)← letter[ai
1](x0, x1) ∧ . . . ∧ letter[ai

|αi |
](x|αi |−1, x|αi |)

Bi(x0, x|βi |)← letter[bi
1](x0, x1) ∧ . . . ∧ letter[bi

|βi |
](x|βi |−1, x|βi |)

Rules to check for synchronised chairs (for all i ∈ {1, . . . , m}):

PCP(x, y1, y2)← Ai(x, y1) ∧ Bi(x, y2)

PCP(x, z1, z2)← PCP(x, y1, y2) ∧ Ai(y1, z1) ∧ Bi(y2, z2)

Accept()← PCP(x, z, z)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 17 of 48

Solving PCP with Datalog Containment (2)

Example: α1 = aa, β1 = a, α2 = b, β2 = aab

Example for an indented database and least model (selected parts):

letter[a]letter[a] letter[a] letter[a] letter[b]
1 2 3 4 5 6

A1

A2

A1

B1B1

B2

Additional IDB facts that are derived (among others):

PCP(1, 3, 2) PCP(1, 5, 3) PCP(1, 6, 6) Accept()

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 18 of 48

Solving PCP with Datalog Containment (3)

Example: α1 = aaaaa, β1 = bbb

Problem: P1 also accepts some unintended cases

letter[a]letter[a] letter[a] letter[a] letter[a]
1 2 3 4 5 6

A1

letter[b]
7 8

letter[b] letter[b]

B1

Additional IDB facts that are derived:

PCP(1, 6, 6) Accept()

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 19 of 48

Solving PCP with Datalog Containment (3)

Example: α1 = aaaaa, β1 = bbb

Problem: P1 also accepts some unintended cases

letter[a]letter[a] letter[a] letter[a] letter[a]
1 2 3 4 5 6

A1

letter[b]
7 8

letter[b] letter[b]

B1

Additional IDB facts that are derived:

PCP(1, 6, 6) Accept()

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 20 of 48

Solving PCP with Datalog Containment (4)
Solution: specify a program P2 that recognises all unwanted cases

P2 consists of the following rules (for all letters σ,σ′):

EP(x, x)←

EP(y1, y2)← EP(x1, x2) ∧ letter[σ](x1, y1) ∧ letter[σ](x2, y2)

Accept()← EP(x1, x2) ∧ letter[σ](x1, y1) ∧ letter[σ′](x2, y2) σ , σ′

NEP(x1, y2)← EP(x1, x2) ∧ letter[σ](x2, y2)

NEP(x1, y2)← NEP(x1, x2) ∧ letter[σ](x2, y2)

Accept()← NEP(x, x)

Intuition:
• EP defines equal paths (forwards, from one starting point)
• NEP defines paths of different length (from one starting point

to the same end point)

{ P2 accepts all databases with distinct parallel paths
Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 21 of 48

Solving PCP with Datalog Containment (5)

What does it mean if 〈Accept, P1〉 is contained in 〈Accept, P2〉?

The following are equivalent:
• All databases with potential PCP solutions also have distinct parallel paths.

• Databases without distinct parallel paths have no PCP solutions.

• Linear databases (words) have no PCP solutions.

• The answer to the PCP is “no”.

{ If we could decide Datalog containment, we could decide PCP

Theorem
Containment and equivalence of Datalog queries are undecidable.

(Note that emptiness of Datalog queries is trivial)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 22 of 48

Implementation of Datalog

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 23 of 48

Implementing Datalog

FO queries (and thus also CQs and UCQs) are supported by
almost all DMBS
{ many specific implementation and optimisation techniques

How can Datalog queries be answered in practice?
{ techniques for dealing with recursion in DBMS query answering

There are two major paradigms for answering recursive queries:

• Bottom-up: derive conclusions by applying rules to given facts

• Top-down: search for proofs to infer results given query

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 24 of 48

Computing Datalog Query Answers Bottom-Up

We already saw a way to compute Datalog answers bottom-up:
the step-wise computation of the consequence operator TP

Bottom-up computation is known under many names:

• Forward-chaining since rules are “chained” from premise to
conclusion (common in logic programming)

• Materialisation since inferred facts are stored (“materialised”)
(common in databases)

• Saturation since the input database is “saturated” with
inferences (common in theorem proving)

• Deductive closure since we “close” the input under
entailments (common in formal logic)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 25 of 48

Naive Evaluation of Datalog Queries

A direct approach for computing T∞P

Notation for line 06/07:

• a substitution θ is a
mapping from variables to
database elements

• for a formula F, we write Fθ
for the formula obtained by
replacing each free variable
x in F by θ(x)

• for a CQ Q and database I,
we write θ ∈ Q(I) if I |= Qθ

01 T0
P := ∅

02 i := 0

03 repeat :

04 T i+1
P := ∅

05 for H ← B1 ∧ . . . ∧ B` ∈ P :

06 for θ ∈ B1 ∧ . . . ∧ B`(T i
P) :

07 T i+1
P := T i+1

P ∪ {Hθ}

08 i := i + 1

09 until T i−1
P = T i

P

10 return T i
P

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 26 of 48

What’s Wrong with Naive Evaluation?

An example Datalog program:

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2) T(x, z)← T(x, y) ∧ T(y, z)

How many body matches do we need to iterate over?

T0
P = ∅

initialisation

T1
P = {T(1, 2), T(2, 3), T(3, 4), T(4, 5)}

4 matches for (R1)

T2
P = T1

P ∪ {T(1, 3), T(2, 4), T(3, 5)}

4 × (R1) + 3 × (R2)

T3
P = T2

P ∪ {T(1, 4), T(2, 5), T(1, 5)}

4 × (R1) + 8 × (R2)

T4
P = T3

P = T∞P

4 × (R1) + 10 × (R2)

In total, we considered 37 matches to derive 11 facts

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 27 of 48

What’s Wrong with Naive Evaluation?

An example Datalog program:

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2) T(x, z)← T(x, y) ∧ T(y, z)

How many body matches do we need to iterate over?

T0
P = ∅ initialisation

T1
P = {T(1, 2), T(2, 3), T(3, 4), T(4, 5)}

4 matches for (R1)

T2
P = T1

P ∪ {T(1, 3), T(2, 4), T(3, 5)}

4 × (R1) + 3 × (R2)

T3
P = T2

P ∪ {T(1, 4), T(2, 5), T(1, 5)}

4 × (R1) + 8 × (R2)

T4
P = T3

P = T∞P

4 × (R1) + 10 × (R2)

In total, we considered 37 matches to derive 11 facts

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 28 of 48

What’s Wrong with Naive Evaluation?

An example Datalog program:

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2) T(x, z)← T(x, y) ∧ T(y, z)

How many body matches do we need to iterate over?

T0
P = ∅ initialisation

T1
P = {T(1, 2), T(2, 3), T(3, 4), T(4, 5)} 4 matches for (R1)

T2
P = T1

P ∪ {T(1, 3), T(2, 4), T(3, 5)}

4 × (R1) + 3 × (R2)

T3
P = T2

P ∪ {T(1, 4), T(2, 5), T(1, 5)}

4 × (R1) + 8 × (R2)

T4
P = T3

P = T∞P

4 × (R1) + 10 × (R2)

In total, we considered 37 matches to derive 11 facts

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 29 of 48

What’s Wrong with Naive Evaluation?

An example Datalog program:

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2) T(x, z)← T(x, y) ∧ T(y, z)

How many body matches do we need to iterate over?

T0
P = ∅ initialisation

T1
P = {T(1, 2), T(2, 3), T(3, 4), T(4, 5)} 4 matches for (R1)

T2
P = T1

P ∪ {T(1, 3), T(2, 4), T(3, 5)} 4 × (R1) + 3 × (R2)

T3
P = T2

P ∪ {T(1, 4), T(2, 5), T(1, 5)}

4 × (R1) + 8 × (R2)

T4
P = T3

P = T∞P

4 × (R1) + 10 × (R2)

In total, we considered 37 matches to derive 11 facts

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 30 of 48

What’s Wrong with Naive Evaluation?

An example Datalog program:

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2) T(x, z)← T(x, y) ∧ T(y, z)

How many body matches do we need to iterate over?

T0
P = ∅ initialisation

T1
P = {T(1, 2), T(2, 3), T(3, 4), T(4, 5)} 4 matches for (R1)

T2
P = T1

P ∪ {T(1, 3), T(2, 4), T(3, 5)} 4 × (R1) + 3 × (R2)

T3
P = T2

P ∪ {T(1, 4), T(2, 5), T(1, 5)} 4 × (R1) + 8 × (R2)

T4
P = T3

P = T∞P

4 × (R1) + 10 × (R2)

In total, we considered 37 matches to derive 11 facts

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 31 of 48

What’s Wrong with Naive Evaluation?

An example Datalog program:

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2) T(x, z)← T(x, y) ∧ T(y, z)

How many body matches do we need to iterate over?

T0
P = ∅ initialisation

T1
P = {T(1, 2), T(2, 3), T(3, 4), T(4, 5)} 4 matches for (R1)

T2
P = T1

P ∪ {T(1, 3), T(2, 4), T(3, 5)} 4 × (R1) + 3 × (R2)

T3
P = T2

P ∪ {T(1, 4), T(2, 5), T(1, 5)} 4 × (R1) + 8 × (R2)

T4
P = T3

P = T∞P 4 × (R1) + 10 × (R2)

In total, we considered 37 matches to derive 11 facts

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 32 of 48

What’s Wrong with Naive Evaluation?

An example Datalog program:

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2) T(x, z)← T(x, y) ∧ T(y, z)

How many body matches do we need to iterate over?

T0
P = ∅ initialisation

T1
P = {T(1, 2), T(2, 3), T(3, 4), T(4, 5)} 4 matches for (R1)

T2
P = T1

P ∪ {T(1, 3), T(2, 4), T(3, 5)} 4 × (R1) + 3 × (R2)

T3
P = T2

P ∪ {T(1, 4), T(2, 5), T(1, 5)} 4 × (R1) + 8 × (R2)

T4
P = T3

P = T∞P 4 × (R1) + 10 × (R2)

In total, we considered 37 matches to derive 11 facts

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 33 of 48

Less Naive Evaluation Strategies

Does it really matter how often we consider a rule match?
After all, each fact is added only once . . .

In practice, finding applicable rules takes significant time, even if
the conclusion does not need to be added – iteration takes time!
{ huge potential for optimisation

Observation:
we derive the same conclusions over and over again in each step

Idea: apply rules only to newly derived facts
{ semi-naive evaluation

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 34 of 48

Less Naive Evaluation Strategies

Does it really matter how often we consider a rule match?
After all, each fact is added only once . . .

In practice, finding applicable rules takes significant time, even if
the conclusion does not need to be added – iteration takes time!
{ huge potential for optimisation

Observation:
we derive the same conclusions over and over again in each step

Idea: apply rules only to newly derived facts
{ semi-naive evaluation

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 35 of 48

Semi-Naive Evaluation

The computation yields sets T0
P ⊆ T1

P ⊆ T2
P ⊆ . . . ⊆ T∞P

• For an IDB predicate R, let Ri be the “predicate” that contains
exactly the R-facts in T i

P

• For i ≤ 1, let ∆i
R be the collection of facts Ri \ Ri−1

We can restrict rules to use only some computations.
Some options for the computation in step i + 1:

T(x, z)← Ti(x, y) ∧ Ti(y, z) same as original rule

T(x, z)← ∆i
T(x, y) ∧ ∆i

T(y, z) restrict to new facts

T(x, z)← ∆i
T(x, y) ∧ Ti(y, z) partially restrict to new facts

T(x, z)← Ti(x, y) ∧ ∆i
T(y, z) partially restrict to new facts

What to chose?

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 36 of 48

Semi-Naive Evaluation (2)
Inferences that involve new and old facts are necessary:

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2) T(x, z)← T(x, y) ∧ T(y, z)

T0
P = ∅

∆1
T = {T(1, 2), T(2, 3), T(3, 4), T(3, 4), T(4, 5)} T1

P = ∆1
T

∆2
T = {T(1, 3), T(2, 4), T(3, 5)} T2

P = T1
P ∪ ∆2

T

∆3
T = {T(1, 4), T(2, 5), T(1, 5)} T3

P = T2
P ∪ ∆3

T

∆4
T = ∅ T4

P = T3
P = T∞P

To derive T(1, 4) in ∆3
T, we need to combine

T(1, 3) ∈ ∆2
T with T(3, 4) ∈ ∆1

T or T(1, 2) ∈ ∆1
T with T(2, 4) ∈ ∆2

T
{ rule T(x, z)← ∆i

T(x, y) ∧ ∆i
T(y, z) is not enough

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 37 of 48

Semi-Naive Evaluation (3)
Correct approach: consider only rule application that use at least
one newly derived IDB atom

For example program:

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2.1) T(x, z)← ∆i
T(x, y) ∧ Ti(y, z)

(R2.2) T(x, z)← Ti(x, y) ∧ ∆i
T(y, z)

There is still redundancy here: the matches for
T(x, z)← ∆i

T(x, y) ∧ ∆i
T(y, z) are covered by both (R2.1) and (R2.2)

{ replace (R2.2) by the following rule:

(R2.2′) T(x, z)← Ti−1(x, y) ∧ ∆i
T(y, z)

EDB atoms do not change, so their ∆ would be ∅
{ ignore such rules after the first iteration

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 38 of 48

Semi-Naive Evaluation (3)
Correct approach: consider only rule application that use at least
one newly derived IDB atom

For example program:

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2.1) T(x, z)← ∆i
T(x, y) ∧ Ti(y, z)

(R2.2) T(x, z)← Ti(x, y) ∧ ∆i
T(y, z)

There is still redundancy here: the matches for
T(x, z)← ∆i

T(x, y) ∧ ∆i
T(y, z) are covered by both (R2.1) and (R2.2)

{ replace (R2.2) by the following rule:

(R2.2′) T(x, z)← Ti−1(x, y) ∧ ∆i
T(y, z)

EDB atoms do not change, so their ∆ would be ∅
{ ignore such rules after the first iteration
Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 39 of 48

Semi-Naive Evaluation: Example

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2.1) T(x, z)← ∆i
T(x, y) ∧ Ti(y, z)

(R2.2′) T(x, z)← Ti−1(x, y) ∧ ∆i
T(y, z)

How many body matches do we need to iterate over?

T0
P = ∅

initialisation

T1
P = {T(1, 2), T(2, 3), T(3, 4), T(4, 5)}

4 × (R1)

T2
P = T1

P ∪ {T(1, 3), T(2, 4), T(3, 5)}

3 × (R2.1)

T3
P = T2

P ∪ {T(1, 4), T(2, 5), T(1, 5)}

3 × (R2.1), 2 × (R2.2′)

T4
P = T3

P = T∞P

1 × (R2.1), 1 × (R2.2′)

In total, we considered 14 matches to derive 11 facts

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 40 of 48

Semi-Naive Evaluation: Example

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2.1) T(x, z)← ∆i
T(x, y) ∧ Ti(y, z)

(R2.2′) T(x, z)← Ti−1(x, y) ∧ ∆i
T(y, z)

How many body matches do we need to iterate over?

T0
P = ∅ initialisation

T1
P = {T(1, 2), T(2, 3), T(3, 4), T(4, 5)}

4 × (R1)

T2
P = T1

P ∪ {T(1, 3), T(2, 4), T(3, 5)}

3 × (R2.1)

T3
P = T2

P ∪ {T(1, 4), T(2, 5), T(1, 5)}

3 × (R2.1), 2 × (R2.2′)

T4
P = T3

P = T∞P

1 × (R2.1), 1 × (R2.2′)

In total, we considered 14 matches to derive 11 facts

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 41 of 48

Semi-Naive Evaluation: Example

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2.1) T(x, z)← ∆i
T(x, y) ∧ Ti(y, z)

(R2.2′) T(x, z)← Ti−1(x, y) ∧ ∆i
T(y, z)

How many body matches do we need to iterate over?

T0
P = ∅ initialisation

T1
P = {T(1, 2), T(2, 3), T(3, 4), T(4, 5)} 4 × (R1)

T2
P = T1

P ∪ {T(1, 3), T(2, 4), T(3, 5)}

3 × (R2.1)

T3
P = T2

P ∪ {T(1, 4), T(2, 5), T(1, 5)}

3 × (R2.1), 2 × (R2.2′)

T4
P = T3

P = T∞P

1 × (R2.1), 1 × (R2.2′)

In total, we considered 14 matches to derive 11 facts

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 42 of 48

Semi-Naive Evaluation: Example

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2.1) T(x, z)← ∆i
T(x, y) ∧ Ti(y, z)

(R2.2′) T(x, z)← Ti−1(x, y) ∧ ∆i
T(y, z)

How many body matches do we need to iterate over?

T0
P = ∅ initialisation

T1
P = {T(1, 2), T(2, 3), T(3, 4), T(4, 5)} 4 × (R1)

T2
P = T1

P ∪ {T(1, 3), T(2, 4), T(3, 5)} 3 × (R2.1)

T3
P = T2

P ∪ {T(1, 4), T(2, 5), T(1, 5)}

3 × (R2.1), 2 × (R2.2′)

T4
P = T3

P = T∞P

1 × (R2.1), 1 × (R2.2′)

In total, we considered 14 matches to derive 11 facts

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 43 of 48

Semi-Naive Evaluation: Example

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2.1) T(x, z)← ∆i
T(x, y) ∧ Ti(y, z)

(R2.2′) T(x, z)← Ti−1(x, y) ∧ ∆i
T(y, z)

How many body matches do we need to iterate over?

T0
P = ∅ initialisation

T1
P = {T(1, 2), T(2, 3), T(3, 4), T(4, 5)} 4 × (R1)

T2
P = T1

P ∪ {T(1, 3), T(2, 4), T(3, 5)} 3 × (R2.1)

T3
P = T2

P ∪ {T(1, 4), T(2, 5), T(1, 5)} 3 × (R2.1), 2 × (R2.2′)

T4
P = T3

P = T∞P

1 × (R2.1), 1 × (R2.2′)

In total, we considered 14 matches to derive 11 facts

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 44 of 48

Semi-Naive Evaluation: Example

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2.1) T(x, z)← ∆i
T(x, y) ∧ Ti(y, z)

(R2.2′) T(x, z)← Ti−1(x, y) ∧ ∆i
T(y, z)

How many body matches do we need to iterate over?

T0
P = ∅ initialisation

T1
P = {T(1, 2), T(2, 3), T(3, 4), T(4, 5)} 4 × (R1)

T2
P = T1

P ∪ {T(1, 3), T(2, 4), T(3, 5)} 3 × (R2.1)

T3
P = T2

P ∪ {T(1, 4), T(2, 5), T(1, 5)} 3 × (R2.1), 2 × (R2.2′)

T4
P = T3

P = T∞P 1 × (R2.1), 1 × (R2.2′)

In total, we considered 14 matches to derive 11 facts

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 45 of 48

Semi-Naive Evaluation: Example

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2.1) T(x, z)← ∆i
T(x, y) ∧ Ti(y, z)

(R2.2′) T(x, z)← Ti−1(x, y) ∧ ∆i
T(y, z)

How many body matches do we need to iterate over?

T0
P = ∅ initialisation

T1
P = {T(1, 2), T(2, 3), T(3, 4), T(4, 5)} 4 × (R1)

T2
P = T1

P ∪ {T(1, 3), T(2, 4), T(3, 5)} 3 × (R2.1)

T3
P = T2

P ∪ {T(1, 4), T(2, 5), T(1, 5)} 3 × (R2.1), 2 × (R2.2′)

T4
P = T3

P = T∞P 1 × (R2.1), 1 × (R2.2′)

In total, we considered 14 matches to derive 11 facts
Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 46 of 48

Semi-Naive Evaluation: Full Definition
In general, a rule of the form

H(~x)← e1(~y1) ∧ . . . ∧ en(~yn) ∧ I1(~z1) ∧ I2(~z2) ∧ . . . ∧ Im(~zm)

is transformed into m rules

H(~x)← e1(~y1) ∧ . . . ∧ en(~yn) ∧ ∆i
I1 (~z1) ∧ Ii2(~z2) ∧ . . . ∧ Iim(~zm)

H(~x)← e1(~y1) ∧ . . . ∧ en(~yn) ∧ Ii−1
1 (~z1) ∧ ∆i

I2 (~z2) ∧ . . . ∧ Iim(~zm)

. . .

H(~x)← e1(~y1) ∧ . . . ∧ en(~yn) ∧ Ii−1
1 (~z1) ∧ Ii−1

2 (~z2) ∧ . . . ∧ ∆i
Im (~zm)

Advantages and disadvantages:

• Huge improvement over naive evaluation

• Some redundant computations remain (see example)

• Some overhead for implementation (store level of entailments)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 47 of 48

Summary and Outlook

Perfect Datalog optimisation is impossible

• same situation as for FO queries

• but for somewhat different reasons

Datalog queries can be evaluated bottom-up or top-down

Simplest practical bottom-up technique: semi-naive evaluation

Next topics:

• More on Datalog implementation

• Further query languages

• Applications

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 48 of 48

