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Overview
1. Introduction | Relational data model
2. First-order queries
3. Complexity of query answering
4. Complexity of FO query answering
5. Conjunctive queries
6. Tree-like conjunctive queries
7. Query optimisation
8. Conjunctive Query Optimisation / First-Order Expressiveness
9. First-Order Expressiveness / Introduction to Datalog

10. Expressive Power and Complexity of Datalog
11. Optimisation and Evaluation of Datalog
12. Evaluation of Datalog (2)
13. Path queries
14. Outlook: database theory in practice

See course homepage [⇒ link] for more information and materials
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Review: Datalog Expressivity and Complexity

A rule-based recursive query language

father(alice, bob)

mother(alice, carla)

Parent(x, y)← father(x, y)

Parent(x, y)← mother(x, y)

SameGeneration(x, x)

SameGeneration(x, y)← Parent(x, v) ∧ Parent(y, w) ∧ SameGeneration(v, w)

Datalog is more complex than FO query answering:

• ExpTime-complete for query and combined complexity

• P-complete for data complexity

Datalog cannot express all query mappings in P

but semipositive Datalog with a successor ordering can
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Datalog Implementation and Optimisation

How can Datalog query answering be implemented?
How can Datalog queries be optimised?

Recall: static query optimisation

• Query equivalence

• Query emptiness

• Query containment

{ all undecidable for FO queries, but decidable for (U)CQs
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Learning from CQ Containment?

How did we manage to decide the question Q1
?
v Q2 for conjunctive

queries Q1 and Q2?

Key ideas were:

• We want to know if all situations where Q1 matches are also
matched by Q2.

• We can simply view Q1 as a database IQ1 : the most general
database that Q1 can match to

• Containment Q1
?
v Q2 holds if Q2 matches the database IQ1 .

{ decidable in NP

A CQ Q[x1, . . . , xn] can be expressed as a Datalog query with a
single rule Ans(x1, . . . , xn)← Q
{ Could we apply a similar technique to Datalog?

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 5 of 48



Checking Rule Entailment

The containment decision procedure for CQs suggests a procedure
for single Datalog rules:

• Consider a Datalog program P and a rule H ← B1 ∧ . . . ∧ Bn.
• Define a database IB1∧...∧Bn as for CQs:

– For every variable x in H ← B1 ∧ . . . ∧ Bn,
we introduce a fresh constant cx, not used anywhere yet

– We define Hc to be the same as H but with each variable
x replaced by cx; similarly we define Bc

i for each 1 ≤ i ≤ n
– The database IB1∧...∧Bn contains exactly the facts Bc

i
(1 ≤ i ≤ n)

• Now check if Hc ∈ T∞P (IB1∧...∧Bn ):
– If no, then there is a database on which H ← B1 ∧ . . . ∧ Bn

produces an entailment that P does not produce.
– If yes, then P |= H ← B1 ∧ . . . ∧ Bn
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Example: Rule Entailment
Let P be the program

Ancestor(x, y)← parent(x, y)

Ancestor(x, z)← parent(x, y) ∧ Ancestor(y, z)

and consider the rule Ancestor(x, z)← parent(x, y) ∧ parent(y, z).

Then Iparent(x,y)∧parent(y,z) = {parent(cx, cy), parent(cy, cz)} (abbr. as I).
We can compute T∞P (I):

T0
P(I) = I

T1
P(I) = {Ancestor(cx, cy), Ancestor(cy, cz)} ∪ I

T2
P(I) = {Ancestor(cx, cz) ∪ T1

P(I)

T3
P(I) = T2

P(I) = T∞P (I)

Therefore, Ancestor(x, z)c = Ancestor(cx, cz) ∈ T∞P (I),
so P entails Ancestor(x, z)← parent(x, y) ∧ parent(y, z).
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Deciding Datalog Containment?

Idea for two Datalog programs P1 and P2:

• If P2 |= P1, then every entailment of P1 is also entailed by P2

• In particular, this means that P1 is contained in P2

• We have P2 |= P1 if P2 |= H ← B1 ∧ . . . ∧ Bn

for every rule H ← B1 ∧ . . . ∧ Bn ∈ P1

• We can decide P2 |= H ← B1 ∧ . . . ∧ Bn.

Can we decide Datalog containment this way?

{ No! In fact, Datalog containment is undecidable. What’s wrong?
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Implication Entailment vs. Datalog Entailment

P1 : P2 :

A(x, y)← parent(x, y) B(x, y)← parent(x, y)

A(x, z)← parent(x, y) ∧ A(y, z) B(x, z)← parent(x, y) ∧ B(y, z)

Consider the Datalog queries 〈A, P1〉 and 〈B, P2〉:

• Clearly, 〈A, P1〉 and 〈B, P2〉 are equivalent (and mutually
contained in each other).

• However, P2 entails no rule of P1 and P1 entails no rule of P2.

{ IDB predicates do not matter in Datalog, but predicate names
matter in first-order implications
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Datalog as Second-Order Logic
Datalog is a fragment of second-order logic:
IDB pred’s are like variables that can take any set of tuples as value!

Example: the query 〈A, P1〉 can be expressed by the formula

∀A.

 ∀x, y.A(x, y) ← parent(x, y) ∧

∀x, y, z.A(x, z) ← parent(x, y) ∧ A(y, z)

→ A(v, w)

• This is a formula with two free variables v and w.
{ query with two result variables

• Intuitive semantics: “〈c, d〉 is a query result if A(c, d) holds
for all possible values of A that satisfy the rules”
{ Datalog semantics in other words

We can express any Datalog query like this, with one second-order
variable per IDB predicate.
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First-Order vs. Second-Order Logic

A Datalog program looks like a set of first-order implications,
but it has a second-order semantics

We have already seen that Datalog can express things that are
impossible to express in FO queries – that’s why we introduced it!1

Consequences for query optimisation:

• Entailment between sets of first-order implications is
decidable (shown above)

• Containment between Datalog queries is not decidable
(shown next)

1Possible confusion when comparing of FO and Datalog: entailments of
first-order implications agree with answers of Datalog queries, so it seems we can
break the FO locality restrictions; but query answering is model checking not
entailment; FO model checking is much weaker than second-order model checking
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Undecidability of Datalog Query Containment

A classical undecidable problem: Post Correspondence Problem

• Input: two lists of words α1, . . . ,αn and β1, . . . , βn

• Output: “yes” if there is a sequence of indices i1, i2, i3, . . . , im
such that αi1αi2αi3 · · ·αim = βi1βi2βi3 · · · βim .

{ we will reduce PCP to Datalog containment

We need to define Datalog programs that work on databases that
encode words:

• We represent words by chains of binary predicates

• Binary EDB predicates represent a letters

• For each letter σ, we use a binary EDB predicate letter[σ]

• We assume that the words αi have the form ai
1 · · · a

i
|βi |

, and
that the words βi have the form bi

1 · · · b
i
|βi |
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Solving PCP with Datalog Containment

A program P1 to recognise potential PCP solutions.

Rules to recognise words αi and βi for every i ∈ {1, . . . , m}:

Ai(x0, x|αi |)← letter[ai
1](x0, x1) ∧ . . . ∧ letter[ai

|αi |
](x|αi |−1, x|αi |)

Bi(x0, x|βi |)← letter[bi
1](x0, x1) ∧ . . . ∧ letter[bi

|βi |
](x|βi |−1, x|βi |)

Rules to check for synchronised chairs (for all i ∈ {1, . . . , m}):

PCP(x, y1, y2)← Ai(x, y1) ∧ Bi(x, y2)

PCP(x, z1, z2)← PCP(x, y1, y2) ∧ Ai(y1, z1) ∧ Bi(y2, z2)

Accept()← PCP(x, z, z)
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Solving PCP with Datalog Containment (2)

Example: α1 = aa, β1 = a, α2 = b, β2 = aab

Example for an indented database and least model (selected parts):

letter[a]letter[a] letter[a] letter[a] letter[b]
1 2 3 4 5 6

A1

A2

A1

B1B1

B2

Additional IDB facts that are derived (among others):

PCP(1, 3, 2) PCP(1, 5, 3) PCP(1, 6, 6) Accept()
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Solving PCP with Datalog Containment (3)

Example: α1 = aaaaa, β1 = bbb

Problem: P1 also accepts some unintended cases

letter[a]letter[a] letter[a] letter[a] letter[a]
1 2 3 4 5 6

A1

letter[b]
7 8

letter[b] letter[b]

B1

Additional IDB facts that are derived:

PCP(1, 6, 6) Accept()
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Solving PCP with Datalog Containment (4)
Solution: specify a program P2 that recognises all unwanted cases

P2 consists of the following rules (for all letters σ,σ′):

EP(x, x)←

EP(y1, y2)← EP(x1, x2) ∧ letter[σ](x1, y1) ∧ letter[σ](x2, y2)

Accept()← EP(x1, x2) ∧ letter[σ](x1, y1) ∧ letter[σ′](x2, y2) σ , σ′

NEP(x1, y2)← EP(x1, x2) ∧ letter[σ](x2, y2)

NEP(x1, y2)← NEP(x1, x2) ∧ letter[σ](x2, y2)

Accept()← NEP(x, x)

Intuition:
• EP defines equal paths (forwards, from one starting point)
• NEP defines paths of different length (from one starting point

to the same end point)

{ P2 accepts all databases with distinct parallel paths
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Solving PCP with Datalog Containment (5)

What does it mean if 〈Accept, P1〉 is contained in 〈Accept, P2〉?

The following are equivalent:
• All databases with potential PCP solutions also have distinct parallel paths.

• Databases without distinct parallel paths have no PCP solutions.

• Linear databases (words) have no PCP solutions.

• The answer to the PCP is “no”.

{ If we could decide Datalog containment, we could decide PCP

Theorem
Containment and equivalence of Datalog queries are undecidable.

(Note that emptiness of Datalog queries is trivial)
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Implementation of Datalog
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Implementing Datalog

FO queries (and thus also CQs and UCQs) are supported by
almost all DMBS
{ many specific implementation and optimisation techniques

How can Datalog queries be answered in practice?
{ techniques for dealing with recursion in DBMS query answering

There are two major paradigms for answering recursive queries:

• Bottom-up: derive conclusions by applying rules to given facts

• Top-down: search for proofs to infer results given query
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Computing Datalog Query Answers Bottom-Up

We already saw a way to compute Datalog answers bottom-up:
the step-wise computation of the consequence operator TP

Bottom-up computation is known under many names:

• Forward-chaining since rules are “chained” from premise to
conclusion (common in logic programming)

• Materialisation since inferred facts are stored (“materialised”)
(common in databases)

• Saturation since the input database is “saturated” with
inferences (common in theorem proving)

• Deductive closure since we “close” the input under
entailments (common in formal logic)
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Naive Evaluation of Datalog Queries

A direct approach for computing T∞P

Notation for line 06/07:

• a substitution θ is a
mapping from variables to
database elements

• for a formula F, we write Fθ
for the formula obtained by
replacing each free variable
x in F by θ(x)

• for a CQ Q and database I,
we write θ ∈ Q(I) if I |= Qθ

01 T0
P := ∅

02 i := 0

03 repeat :

04 T i+1
P := ∅

05 for H ← B1 ∧ . . . ∧ B` ∈ P :

06 for θ ∈ B1 ∧ . . . ∧ B`(T i
P) :

07 T i+1
P := T i+1

P ∪ {Hθ}

08 i := i + 1

09 until T i−1
P = T i

P

10 return T i
P
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What’s Wrong with Naive Evaluation?

An example Datalog program:

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2) T(x, z)← T(x, y) ∧ T(y, z)

How many body matches do we need to iterate over?

T0
P = ∅

initialisation

T1
P = {T(1, 2), T(2, 3), T(3, 4), T(4, 5)}

4 matches for (R1)

T2
P = T1

P ∪ {T(1, 3), T(2, 4), T(3, 5)}

4 × (R1) + 3 × (R2)

T3
P = T2

P ∪ {T(1, 4), T(2, 5), T(1, 5)}

4 × (R1) + 8 × (R2)

T4
P = T3

P = T∞P

4 × (R1) + 10 × (R2)

In total, we considered 37 matches to derive 11 facts
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Less Naive Evaluation Strategies

Does it really matter how often we consider a rule match?
After all, each fact is added only once . . .

In practice, finding applicable rules takes significant time, even if
the conclusion does not need to be added – iteration takes time!
{ huge potential for optimisation

Observation:
we derive the same conclusions over and over again in each step

Idea: apply rules only to newly derived facts
{ semi-naive evaluation
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Semi-Naive Evaluation

The computation yields sets T0
P ⊆ T1

P ⊆ T2
P ⊆ . . . ⊆ T∞P

• For an IDB predicate R, let Ri be the “predicate” that contains
exactly the R-facts in T i

P

• For i ≤ 1, let ∆i
R be the collection of facts Ri \ Ri−1

We can restrict rules to use only some computations.
Some options for the computation in step i + 1:

T(x, z)← Ti(x, y) ∧ Ti(y, z) same as original rule

T(x, z)← ∆i
T(x, y) ∧ ∆i

T(y, z) restrict to new facts

T(x, z)← ∆i
T(x, y) ∧ Ti(y, z) partially restrict to new facts

T(x, z)← Ti(x, y) ∧ ∆i
T(y, z) partially restrict to new facts

What to chose?
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Semi-Naive Evaluation (2)
Inferences that involve new and old facts are necessary:

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2) T(x, z)← T(x, y) ∧ T(y, z)

T0
P = ∅

∆1
T = {T(1, 2), T(2, 3), T(3, 4), T(3, 4), T(4, 5)} T1

P = ∆1
T

∆2
T = {T(1, 3), T(2, 4), T(3, 5)} T2

P = T1
P ∪ ∆2

T

∆3
T = {T(1, 4), T(2, 5), T(1, 5)} T3

P = T2
P ∪ ∆3

T

∆4
T = ∅ T4

P = T3
P = T∞P

To derive T(1, 4) in ∆3
T, we need to combine

T(1, 3) ∈ ∆2
T with T(3, 4) ∈ ∆1

T or T(1, 2) ∈ ∆1
T with T(2, 4) ∈ ∆2

T
{ rule T(x, z)← ∆i

T(x, y) ∧ ∆i
T(y, z) is not enough
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Semi-Naive Evaluation (3)
Correct approach: consider only rule application that use at least
one newly derived IDB atom

For example program:

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2.1) T(x, z)← ∆i
T(x, y) ∧ Ti(y, z)

(R2.2) T(x, z)← Ti(x, y) ∧ ∆i
T(y, z)

There is still redundancy here: the matches for
T(x, z)← ∆i

T(x, y) ∧ ∆i
T(y, z) are covered by both (R2.1) and (R2.2)

{ replace (R2.2) by the following rule:

(R2.2′) T(x, z)← Ti−1(x, y) ∧ ∆i
T(y, z)

EDB atoms do not change, so their ∆ would be ∅
{ ignore such rules after the first iteration
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Semi-Naive Evaluation: Example

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2.1) T(x, z)← ∆i
T(x, y) ∧ Ti(y, z)

(R2.2′) T(x, z)← Ti−1(x, y) ∧ ∆i
T(y, z)

How many body matches do we need to iterate over?

T0
P = ∅

initialisation

T1
P = {T(1, 2), T(2, 3), T(3, 4), T(4, 5)}

4 × (R1)

T2
P = T1

P ∪ {T(1, 3), T(2, 4), T(3, 5)}

3 × (R2.1)

T3
P = T2

P ∪ {T(1, 4), T(2, 5), T(1, 5)}

3 × (R2.1), 2 × (R2.2′)

T4
P = T3

P = T∞P

1 × (R2.1), 1 × (R2.2′)

In total, we considered 14 matches to derive 11 facts
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Semi-Naive Evaluation: Full Definition
In general, a rule of the form

H(~x)← e1(~y1) ∧ . . . ∧ en(~yn) ∧ I1(~z1) ∧ I2(~z2) ∧ . . . ∧ Im(~zm)

is transformed into m rules

H(~x)← e1(~y1) ∧ . . . ∧ en(~yn) ∧ ∆i
I1 (~z1) ∧ Ii2(~z2) ∧ . . . ∧ Iim(~zm)

H(~x)← e1(~y1) ∧ . . . ∧ en(~yn) ∧ Ii−1
1 (~z1) ∧ ∆i

I2 (~z2) ∧ . . . ∧ Iim(~zm)

. . .

H(~x)← e1(~y1) ∧ . . . ∧ en(~yn) ∧ Ii−1
1 (~z1) ∧ Ii−1

2 (~z2) ∧ . . . ∧ ∆i
Im (~zm)

Advantages and disadvantages:

• Huge improvement over naive evaluation

• Some redundant computations remain (see example)

• Some overhead for implementation (store level of entailments)
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Summary and Outlook

Perfect Datalog optimisation is impossible

• same situation as for FO queries

• but for somewhat different reasons

Datalog queries can be evaluated bottom-up or top-down

Simplest practical bottom-up technique: semi-naive evaluation

Next topics:

• More on Datalog implementation

• Further query languages

• Applications
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