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Previously . . .
• Games can model real-life situations, but model fidelity is important.• Noncooperative (strategic) games in normal form comprise players,

strategies for the players, and gain functions for all strategy profiles.• Various concepts can help predict/analyse the outcome of a game:– Dominant strategies– Pareto optimality– (pure) Nash equilibria• We have analysed a number of example games: prisoner’s dilemma,battle of the partners, chicken, penalties, and guessing numbers.• Pure Nash equilibria need not always exist.
Chicken
Two people, Eli and Fyn, are racingtowards each other in cars. Who-ever swerves (“chickens out”) losesface. If neither swerves, both getseriously injured.

(Eli, Fyn) Swerve RaceOn

Swerve (2,2) (1,3)
RaceOn (3,1) (0,0)
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Motivation
• So far we considered (Nash equilibria in) pure strategies.
• For some games, such pure equilibria did not exist . . . , e.g. penalties:
Penalties
Two football players face offat a (simplified) single pen-alty kick. The kicker can kickleft or right; the goal keepercan jump left or right. Thekicker scores a goal iff theychoose a different side thanthe keeper.

(Kicker, Keeper) JumpL JumpR

KickL (-1,1) (1,-1)
KickR (1,-1) (-1,1)

What does that predict about how the game will be played?
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Background
Recall
A (discrete) probability distribution on a countable set S is a function

π : S → [0, 1] such that ∑
s∈S π(s) = 1

where [0, 1] ⊆ R is the real unit interval.
π(s) represents the probability of a random variable taking the value s ∈ S.
Definition
A lottery consists of a countable set S and a probability distribution on S.
Assumption: Expected Utility Hypothesis
If (S,π) is a lottery and there is a function u : S → R assigning a utility to eachoutcome s ∈ S, then the expected utility of the lottery is given by

U(S,π) := ∑
s∈S u(s)π(s)

Normal-Form Games: Mixed Strategies (Lecture 2)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 6 of 28 Computational
Logic ∴ Group



Lotteries and Risk Neutrality
Example
Consider the following events: and lotteries:

• e0: “You get 0€.”• e1: “You get 100€.”• e2: “You get 200€.”
• L1 = ({e1} , {e1 7→ 1.0})
• L2 = ({e0, e2} , {e0 7→ 0.5, e2 7→ 0.5})

Which of these lotteries would you prefer?
Terminology
• A risk neutral player is one who is indifferent between L1 and L2;• a risk averse player is one who prefers L1 over L2;• a risk seeking player is one who prefers L2 over L1.
We assume throughout this course that players are risk neutral.
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Mixed Strategies and Equilibria
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Nash Equilibrium in Mixed Strategies
Definition
Let (P, S,u) be a game in normal form and assume that all Si are finite.1. Amixed strategy for player i ∈ P is a probability distribution πi on Si.– πi(sj) is the probability of the event that player i chooses strategy sj ∈ Si.– Πi denotes the set of all probability distributions on Si, for each 1 ≤ i ≤ n.– Denote Π := Π1 × · · · ×Πn and Π–i := Π1 × · · · ×Πi–1 ×Πi+1 × · · · ×Πn.
2. The expected utility of a mixed-strategy profile π = (π1, . . . ,πn) for i is

Ui(π) := ∑
s=(s1,...,sn)∈S

ui(s) ·
n∏
j=1

πj(sj)

• Π is the set of all mixed-strategy profiles for all players.• Π–i is the set of all mixed-strategy profiles for all players except i.• Likewise, for π ∈ Π and i ∈ P, we have π–i ∈ Π–i.
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Mixed Strategies: Examples

Notation
Let (P, S,u) be a game with P = {1, . . . ,n} and Si = {

s1, . . . , ski} for 1 ≤ i ≤ n.
We denote a mixed strategy πi for player i as a ki-tuple πi = (πi(s1), . . . ,πi(ski )).
Examples
• In penalties, a mixed strategy for Kicker is

πKicker = (πKicker(KickL),πKicker(KickR)) = (12 , 12
)

Another mixed strategy for Kicker is πKicker = (23 , 13
).

• In rock-paper-scissors, a mixed strategy for player Ann is
πAnn =

(13 , 13 , 13
)
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Best Responses and Mixed Nash Equilibria
Definition
Let (P, S,u) be a game in normal form and assume that all Si are finite.1. A mixed strategy πi ∈ Πi is player i’s best response to the mixed-strategyprofile π–i ∈ Π–i iff for all mixed strategies π′

i
∈ Πi, we have

Ui(π1, . . . ,πi–1,πi,πi+1, . . . ,πn) ≥ Ui(π1, . . . ,πi–1,π′
i
,πi+1, . . . ,πn)

2. A profile π = (π1, . . . ,πn) is (in) a Nash equilibrium in mixed strategiesiff mixed strategy πi is a best response to π–i for all players 1 ≤ i ≤ n.
Examples
• In penalties, assume Kicker plays (12 , 12

). A best response of Keeper to
this is (12 , 12

); other best responses are (1, 0) and (0, 1).
• In Rock-Paper-Scissors, a best response to (23 , 16 , 16

) is (0, 1, 0).
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Mixed Nash Equilibria: Characterisation (1)
Observation
A pure strategy sj ∈ Si is a special case of a mixed strategy πi with πi(sj) = 1and πi(sk) = 0 for all sk ∈ Si with k ̸= j. We conveniently denote such πi by sj.
Definition
The support of a mixed strategy πi for player i is the set {

sj

∣∣ πi(sj) > 0}.
Theorem
1. Let π = (π1, . . . ,πn) be a mixed-strategy profile in a game in normal form.A mixed strategy πi is a best response to mixed-strategy profile π–i if andonly if all pure strategies in the support of πi are best responses to π–i.2. Every pure Nash equilibrium is also a mixed Nash equilibrium.
The converse of 2. is not the case: there are “proper” mixed Nash equilibria.
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Mixed Nash Equilibria: Characterisation (2)
By definition, a mixed-strategy profile π is a Nash equilibrium iff for all i,

Ui(π) = max
π′
i
∈Πi

Ui(π–i,π′
i )

where Ui(π–i,π′
i
) denotes Ui(π1, . . . ,πi–1,π′

i
,πi+1, . . . ,πn).

By the previous theorem it is enough to focus on the pure strategies, thus
max
π′
i
∈Πi

Ui(π–i,π′
i ) = max

sj∈Πi
Ui(π–i, sj)

Altogether, π is a mixed Nash equilibrium if and only if for all players i:
Ui(π) = max

sj∈Πi
U(π–i, sj)

Thus only best responses occur in the support of each player’s πi in π.
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Mixed Nash Equilibria: Examples (1)
Battle of the Partners
• By the previous theorem, both pure Nash equilibria are also mixed N. e.
• A third mixed Nash equilibrium π is obtained by reasoning as follows:

UCat(Cinema) = 10 · πDee(Cinema) + 2 · πDee(Dancing)
UCat(Dancing) = 0 · πDee(Cinema) + 7 · πDee(Dancing)

To make Cat indifferent between the two choices, Deemust choose thevalues for πDee(Cinema) and πDee(Dancing) such that
10 · πDee(Cinema) + 2 · πDee(Dancing) = 7 · πDee(Dancing)

With πDee(Cinema) + πDee(Dancing) = 1, we obtain πDee = (13 , 23
).

By symmetry, π = (πCat,πDee) = ((23 , 13
) ,(13 , 23

)) with UCat(π) = 423 .
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Mixed Nash Equilibria: Examples (2)
Penalties
• For the mixed strategies πKicker = (12 , 12

) and πKeeper = (12 , 12
), the

mixed-strategy profile π = (πKicker,πKeeper) is a (strict) Nash equilibriumwith expected utilities UKicker(π) = 2 · 14 · (–1) + 2 · 14 · 1 = 0 = UKeeper(π):
• If (e.g.) Kicker were to deviate by (e.g.) playing π′ =

(23 , 13
), then Keeper

would best-respond by playing (1, 0), that is, playing JumpL, leading toexpected utilities UKicker(π′) = 23 · (–1) + 13 · 1 = –13 = –UKeeper(π′).
Rock-Paper-Scissors
• Similarly, for πAnn = πBob =

(13 , 13 , 13
), the mixed-strategy profile

π = (πAnn,πBob) is a (strict) Nash equilibrium in mixed strategies.
• Note that every pure strategy is a best response to π.
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Mixed Strategies: Discussion

Question
What does it mean to play a mixed strategy?
There are a (at least) four answers:
• Players may randomise to confuse their opponents.
• Players randomise because they are uncertain about actions of others.
• Mixed strategies describe what might happen in repeated play.
• Mixed strategies describe population dynamics: they describe theprobability of choosing a specific pure strategy out of a population ofpure strategies.
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Nash’s Theorem
Theorem (Nash, 1950)
Let G = (P, S,u) be a noncooperative game in normal form.
If P = {1, . . . ,n} is finite and for S = (S1, . . . , Sn) each Si is finite, thenthere exists a Nash equilibrium in mixed strategies.
Proof Sketch.
• View pure strategies si ∈ Si as unit vectors in R|Si|; mixed strategies πi ∈ Πiare then points of a simplex, a convex subset of R|Si|; Π is a simplotope.
• Define functions φij(π) = max{0,Ui(π–i, sj) –Ui(π)} for i ∈ P, 1 ≤ j ≤ |Si|.• Define (continuous) function f : Π → Π with π 7→ π′ = (π′1, . . . ,π′

n), where
π′
i
(sj) := πi(sj)+φij(π)∑

s
k

∈Si
(πi(sk)+φik(π))

• Use Brouwer’s fixpoint theorem to deduce that f has at least one fixpoint.
• Show that f (π) = π if and only if π is a mixed Nash equilibrium for G.
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Computation of Nash Equilibria
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Approaches to Find Equilibria for Two Players
Lemke-Howson algorithm (1964)
• Path-finding approach with geometrical interpretation
• Needs exponentially many steps in the worst case
Porter-Nudelman-Shoham (2004)
• Enumerates possible supports of mixed strategies, checks for equilibria
• Dominance checks and search bias for optimisation
Mixed Integer Programming (Sandholm, Gilpin, and Conitzer, 2005)
• Encode equilibrium property for a given game as a mixed integerprogram, i.e., as a mathematical (numerical) feasibility problem
• “Mixed” expresses that values for some variables may be real numbers
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Mixed Integer Programming (in a Nutshell)
Definition
• Amixed integer (linear) program is of the form

maximise cTx
subject to Ax ≤ b,

x ≥ 0,
and x ∈ Zk × Rℓ

where x is a vector of decision variables, and A, b, c are a matrix andtwo vectors of real values; the expression cTx is the objective function.
• If there is no objective function the program is a feasibility problem.
• A solution is a variable-value assignment that satisfies all constraints.
E.g.: maximise 2x1 – 3x2 subject to x1 + x2 ≤ 7, 2x1 – x2 ≤ 12, x1, x2 ≥ 0, and (x1, x2) ∈ Z × R

Area of active research; used in industrial applications; solvers exist, e.g. SCIP.
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Regret
Definition
Let (P, S,u) be a noncooperative game in normal form, i ∈ P, and sj ∈ Si.The regret of i playing sj w.r.t. opponent profile π–i is

rπ–i,sj :=
(
max
πk∈Πi

Ui(π–i,πk)
)
–Ui(π–i, sj)

Example: Prisoner’s Dilemma
• The regret of playing Silent in response to Confess is 1.
• The regret of Confess in response to any opponent strategy (profile) is 0.
More generally: The regret of any best response is zero.
Observation
A mixed strategy profile π is a Nash equilibrium if and only if every purestrategy is either played with probability zero or has zero regret.
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Computing Nash Equilibria via MIP (1)
For every player i ∈ P and pure strategy sj ∈ Si, introduce variables• bsj . . . to express that sj is not played by i, i.e.– bsj = 1 expresses that π(sj) = 0, and– bsj = 0 expresses that π(sj) > 0 and rπ–i ,sj = 0;
• ui . . . to express the maximal utility of i given π–i;• psj . . . to express the probability with which sj is played;• usj . . . to express the expected utility from playing sj;• rsj . . . to express the regret from playing sj.The formulation also uses the constants νi, denoting the maximally possibledifference between two payoffs for player i:

νi := max
s
(i)
u ,s(i)ℓ ∈Si,

s
(3–i)
u ,s(3–i)ℓ ∈S3–i

{
ui(s(1)u , s(2)u ) – ui(s(1)ℓ , s(2)ℓ )}

(Note that 3 – i for i ∈ P = {1, 2} just refers to the player other than i.)
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Computing Nash Equilibria via MIP (2)
Definition
Let G = (P, S,u) be a strategic game with P = {1, 2}. Its MIP formulation is

find psj , ui, usj , rsj , bsj such that
∀i : ∑

sj∈Si

psj = 1 (1)
∀i : ∀sj ∈ Si : usj =

∑
sk∈S3–i

ui(sk, sj)psk (2)
∀i : ∀sj ∈ Si : rsj = ui – usj (3)
∀i : ∀sj ∈ Si : psj ≤ 1 – bsj (4)
∀i : ∀sj ∈ Si : rsj ≤ νibsj (5)

where psj , ui, usj , rsj ≥ 0 and bsj ∈ {0, 1}

Normal-Form Games: Mixed Strategies (Lecture 2)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 23 of 28 Computational
Logic ∴ Group



Computing Nash equilibria via MIP (3)
The intuition behind the constraints is as follows:
(1) Guarantees that the values of the psj constitute a valid probabilitydistribution for each player.
(2) Guarantees the correct utility value for playing sj (where ui(sk, sj) denotesthe constant u1(sj, sk) for i = 1 and the constant u2(sk, sj) otherwise).(3) Guarantees the correct regret value for playing sj.(4) Guarantees that the probability of playing sj is indeed zero whenever thestrategy is chosen not to be played (otherwise the constraint is vacuous).
(5) Guarantees that the regret for playing sj is indeed zero whenever thestrategy is chosen to be played (otherwise the constraint is vacuous).
Proposition
For any two-player strategic game, the solutions of the MIP formulationcorrespond one-to-one to the mixed Nash equilibria of the game.
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Recall: Computational Complexity
Recall
• Complexity class P contains all languages (decision problems) that can bedecided by polynomial-time bounded deterministic Turing machines.
• Complexity class NP contains all languages L ⊆ Σ∗ for which there exists a

polynomial verifier, that is, a polynomial-time bounded deterministicTuring machine M (and a polynomial p) such that:– M accepts only pairs (x, y) of words such that
– x ∈ L, and– the length of y is at most polynomial in the length of x (i.e. | y| ≤ p(|x|));

– for every x ∈ L there is such a pair (x, y).
• A (polynomial-time) (many-one) reduction from A to B is a(polynomial-time) computable function f such that w ∈ A iff f (w) ∈ B.
• A language L is NP-hard iff all languages in NP can be reduced to L.
• A language is NP-complete iff it is NP-hard and in NP.
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Function Complexity Classes
• For (mixed) Nash equilibria, the question is not whether they exist.
• “Function” complexity classes contain “function” problems F ⊆ Σ∗ × Σ∗:

Input: A word x ∈ Σ∗.
Output: Any one y ∈ Σ∗ such that (x, y) ∈ F , if such a y exists;“no”, otherwise.

• Output y can be thought of as solution to a search problem instance x.
• Solution y need not be unique for x (relation F need not be functional).
• Complexity class FP contains all search problems F where any y with(x, y) ∈ F can be computed from x in deterministic polynomial time.
• Class FNP contains all F that are accepted by a polynomial verifier.
Examples
• Given a propositional formula φ, find a satisfying assignment if one exists.
• Given an undirected graph G and a k ∈ N, find a k-clique in G if one exists.
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Equilibria and Computational Complexity
Note
Finding a solution for a mixed integer feasibility problem with binarydecision variables is FNP-complete.
Is finding Nash equilibria of noncooperative games also FNP-complete?This is unlikely, as every game has at least one equilibrium.
Consider however the following variant:

Next-NE
Input: A strategic game G in normal form and a Nash equilibrium for G.

Output: Another Nash equilibrium of G, if one exists; “no” otherwise.
Proposition
Next-NE is FNP-complete.
Intuitively: Computing (mixed) Nash equilibria is computationally hard.
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Conclusion
Summary
• Amixed strategy is a probability distribution on pure strategies.
• In amixed Nash equilibrium, all players play best responses.
• Nash’s Theorem: Mixed Nash equilibria always exist (for finite games).
• Nash equilibria for concrete games can be obtained via a translation to a

mixed integer program:
– Binary variables model the choices of pure strategies to put in the support;– real-valued variables model probabilities, utilities, and regret.

• Given a game and an equilibrium, it is FNP-complete to find anotherequilibrium for the game.
Action Points
• Obtain all (mixed) Nash equilibria for chicken and interpret them.
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