
DATABASE THEORY

Lecture 4: Complexity of FO Query Answering

Markus Krötzsch

TU Dresden, 21 April 2016

Overview
1. Introduction | Relational data model
2. First-order queries
3. Complexity of query answering
4. Complexity of FO query answering
5. Conjunctive queries
6. Tree-like conjunctive queries
7. Query optimisation
8. Conjunctive Query Optimisation / First-Order Expressiveness
9. First-Order Expressiveness / Introduction to Datalog

10. Expressive Power and Complexity of Datalog
11. Optimisation and Evaluation of Datalog
12. Evaluation of Datalog (2)
13. Graph Databases and Path Queries
14. Outlook: database theory in practice

See course homepage [⇒ link] for more information and materials
Markus Krötzsch, 21 April 2016 Database Theory slide 2 of 28

How to Measure Query Answering Complexity

Query answering as decision problem
{ consider Boolean queries

Various notions of complexity:

• Combined complexity (complexity w.r.t. size of query and
database instance)

• Data complexity (worst case complexity for any fixed query)

• Query complexity (worst case complexity for any fixed
database instance)

Various common complexity classes:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace ⊆ ExpTime

Markus Krötzsch, 21 April 2016 Database Theory slide 3 of 28

An Algorithm for Evaluating FO Queries

function Eval(ϕ,I)

01 switch (ϕ) {
02 case p(c1, . . . , cn) : return 〈c1, . . . , cn〉 ∈ pI

03 case ¬ψ : return ¬Eval(ψ,I)

04 case ψ1 ∧ ψ2 : return Eval(ψ1,I) ∧ Eval(ψ2,I)

05 case ∃x.ψ :

06 for c ∈ ∆I {
07 if Eval(ψ[x 7→ c],I) then return true

08 }
09 return false

10 }

Markus Krötzsch, 21 April 2016 Database Theory slide 4 of 28

FO Algorithm Worst-Case Runtime

Let m be the size of ϕ, and let n = |I| (total table sizes)

• How many recursive calls of Eval are there?
{ one per subexpression: at most m

• Maximum depth of recursion?
{ bounded by total number of calls: at most m

• Maximum number of iterations of for loop?
{ |∆I| ≤ n per recursion level
{ at most nm iterations

• Checking 〈c1, . . . , cn〉 ∈ pI can be done in linear time w.r.t. n

Runtime in m · nm · n = m · nm+1

Markus Krötzsch, 21 April 2016 Database Theory slide 5 of 28

Time Complexity of FO Algorithm

Let m be the size of ϕ, and let n = |I| (total table sizes)

Runtime in m · nm+1

Time complexity of FO query evaluation

• Combined complexity: in ExpTime

• Data complexity (m is constant): in P

• Query complexity (n is constant): in ExpTime

Markus Krötzsch, 21 April 2016 Database Theory slide 6 of 28

FO Algorithm Worst-Case Memory Usage

We can get better complexity bounds by looking at memory

Let m be the size of ϕ, and let n = |I| (total table sizes)

• For each (recursive) call, store pointer to current
subexpression of ϕ: log m

• For each variable in ϕ (at most m), store current constant
assignment (as a pointer): m · log n

• Checking 〈c1, . . . , cn〉 ∈ pI can be done in logarithmic space
w.r.t. n

Memory in m log m + m log n + log n = m log m + (m + 1) log n

Markus Krötzsch, 21 April 2016 Database Theory slide 7 of 28

Space Complexity of FO Algorithm

Let m be the size of ϕ, and let n = |I| (total table sizes)

Memory in m log m + (m + 1) log n

Space complexity of FO query evaluation

• Combined complexity: in PSpace

• Data complexity (m is constant): in L

• Query complexity (n is constant): in PSpace

Markus Krötzsch, 21 April 2016 Database Theory slide 8 of 28

FO Combined Complexity

The algorithm shows that FO query evaluation is in PSpace.
Is this the best we can get?

Hardness proof: reduce a known PSpace-hard problem to FO
query evaluation
{ QBF satisfiability

Let Q1X1. Q2X2. · · · QnXn.ϕ[X1, . . . , Xn] be a QBF (with Qi ∈ {∀,∃})
• Database instance I with ∆I = {0, 1}
• One table with one row: true(1)

• Transform input QBF into Boolean FO query

Q1x1. Q2x2. · · · Qnxn.ϕ[X1 7→ true(x1), . . . , Xn 7→ true(xn)]

Markus Krötzsch, 21 April 2016 Database Theory slide 9 of 28

PSpace-hardness for DI Queries
The previous reduction from QBF may lead to a query that is not
domain independent

Example: QBF ∃p.¬p leads to FO query ∃x.¬true(x)

Better approach:

• Consider QBF Q1X1. Q2X2. · · · QnXn.ϕ[X1, . . . , Xn] with ϕ in
negation normal form: negations only occur directly before
variables Xi (still PSpace-complete: exercise)

• Database instance I with ∆I = {0, 1}
• Two tables with one row each: true(1) and false(0)
• Transform input QBF into Boolean FO query

Q1x1. Q2x2. · · · Qnxn.ϕ′

where ϕ′ is obtained by replacing each negated variable ¬Xi

with false(xi) and each non-negated variable Xi with true(xi).
Markus Krötzsch, 21 April 2016 Database Theory slide 10 of 28

Combined Complexity of FO Query Answering

Theorem
The evaluation of FO queries is PSpace-complete with respect to
combined complexity.

We have actually shown something stronger:

Theorem
The evaluation of FO queries is PSpace-complete with respect to
query complexity.

Markus Krötzsch, 21 April 2016 Database Theory slide 11 of 28

Data Complexity of FO Query Answering

The algorithm showed that FO query evaluation is in L

{ can we do any better?

What could be better than L?

? ⊆ L ⊆ NL ⊆ P ⊆ . . .

{ we need to define circuit complexities first

Markus Krötzsch, 21 April 2016 Database Theory slide 12 of 28

Boolean Circuits

Definition
A Boolean circuit is a finite, directed, acyclic graph where

• each node that has no predecessors is an input node

• each node that is not an input node is one of the following
types of logical gate: AND, OR, NOT

• one or more nodes are designated output nodes

{ we will only consider Boolean circuits with exactly one output

{ propositional logic formulae are Boolean circuits with one output
and gates of fanout ≤ 1

Markus Krötzsch, 21 April 2016 Database Theory slide 13 of 28

Example

A Boolean circuit over an input string x1x2 . . . xn of length n

x1 x2 x3 x4 x5 . . . xn

. . .

. . .

(n2 gates)

. . .

Corresponds to formula (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ . . . ∨ (xn−1 ∧ xn)
{ accepts all strings with at least two 1s
Markus Krötzsch, 21 April 2016 Database Theory slide 14 of 28

Circuits as a Model for Parallel Computation

Previous example:

x1 x2 x3 x4 x5 . . . xn

. . .

. . .

(n2 gates)

. . .

{ n2 processors working in parallel
{ computation finishes in 2 steps

• size: number of gates = total number of computing steps

• depth: longest path of gates = time for parallel computation

{ refinement of polynomial time taking parallelizability into account

Markus Krötzsch, 21 April 2016 Database Theory slide 15 of 28

Solving Problems With Circuits

Observation: the input size is “hard-wired” in circuits
{ each circuit only has a finite number of different inputs
{ not a computationally interesting problem

How can we solve interesting problems with Boolean circuits?

Definition
A uniform family of Boolean circuits is a set of circuits Cn (n ≥ 0)
that can be computed from n (usually in logarithmic space or time;
we don’t discuss the details here).

A language L ⊆ {0, 1}∗ is decided by a uniform family (Cn)n≥0 of
Boolean circuits if for each word w of length |w|:

w ∈ L if and only if C|w|(w) = 1

Markus Krötzsch, 21 April 2016 Database Theory slide 16 of 28

Measuring Complexity with Boolean Circuits
How to measure the computing power of Boolean circuits?

Relevant metrics:

• size of the circuit: overall number of gates
(as function of input size)

• depth of the circuit: longest path of gates
(as function of input size)

• fan in: two inputs per gate or any number of inputs per gate?

Important classes of circuits: small-depth circuits

Definition
(Cn)n≥0 is a family of small-depth circuits if

• the size of Cn is polynomial in n,

• the depth of Cn is poly-logarithmic in n, that is, O(logk n).

Markus Krötzsch, 21 April 2016 Database Theory slide 17 of 28

The Complexity Classes NC and AC

Two important types of small-depth circuits

Definition
NCk is the class of problems that can be solved by uniform families
of circuits (Cn)n≥0 of fan-in ≤ 2, size polynomial in n, and depth in
O(logk n).

The class NC is defined as NC =
⋃

k≥0 NCk.
(“Nick’s Class” named after Nicholas Pippenger by Stephen Cook)

Definition
ACk and AC are defined like NCk and NC, respectively, but for
circuits with arbitrary fan-in.
(A is for “Alternating”: AND-OR gates alternate in such circuits)

Markus Krötzsch, 21 April 2016 Database Theory slide 18 of 28

Example

x1 x2 x3 x4 x5 . . . xn

. . .

. . .

(n2 gates)

. . .

family of polynomial size,
constant depth,
arbitrary fan-in circuits
{ in AC0

We can eliminate arbitrary fan-ins by using more layers of gates:

x1 x2 x3 x4 x5 . . . xn

. . .
(n2 gates)

. . .

. . .

. . .

. . .

. . .

(n2/ 2 gates)

(n2/ 4 gates)

. . .

family of polynomial size,
logarithmic depth,
bounded fan-in circuits
{ in NC1

Markus Krötzsch, 21 April 2016 Database Theory slide 19 of 28

Relationships of Circuit Complexity Classes

The previous sketch can be generalised:

NC0 ⊆ AC0 ⊆ NC1 ⊆ AC1 ⊆ . . . ⊆ ACk ⊆ NCk+1 ⊆ . . .

Only few inclusions are known to be proper: NC0 ⊂ AC0 ⊂ NC1

Direct consequence of above hierarchy: NC = AC

Interesting relations to other classes:

NC0 ⊂ AC0 ⊂ NC1 ⊆ L ⊆ NL ⊆ AC1 ⊆ . . . ⊆ NC ⊆ P

Intuition:

• Problems in NC are parallelisable

• Problems in P \NC are inherently sequential

However: it is not known if NC , P

Markus Krötzsch, 21 April 2016 Database Theory slide 20 of 28

Back to Databases . . .

Theorem
The evaluation of FO queries is complete for (logtime uniform) AC0

with respect to data complexity.

Proof:

• Membership: For a fixed Boolean FO query, provide a uniform
construction for a small-depth circuit based on the size of a
database

• Hardness: Show that circuits can be transformed into Boolean
FO queries in logarithmic time (not on a standard TM . . . not in
this lecture)

Markus Krötzsch, 21 April 2016 Database Theory slide 21 of 28

From Query to Circuit
Assumption:
• query and database schema is fixed
• database instance (and thus active domain) are variable

Construct circuit uniformly based on size of active domain

Sketch of construction:
• one input node for each possible database tuple (over given schema

and active domain)
{ true or false depending on whether tuple is present or not

• Recursively, for each subformula, introduce a gate for each possible
tuple (instantiation) of this formula
{ true or false depending on whether the subformula holds for this

tuple or not
• Logical operators correspond to gate types: basic operators obvious,
∀ as generalised conjunction, ∃ as generalised disjunction

• subformula with n free variables{ |adom|n gates
{ especially: |adom|0 = 1 output gate for Boolean query

Markus Krötzsch, 21 April 2016 Database Theory slide 22 of 28

Example

We consider the formula

∃z.(∃x.∃y.R(x, y) ∧ S(y, z)) ∧ ¬R(a, z)

Over the database instance:

R:

a a

a b

S:

b b

b c

Active domain: {a, b, c}

Markus Krötzsch, 21 April 2016 Database Theory slide 23 of 28

Example: ∃z.(∃x.∃y.R(x, y) ∧ S(y, z)) ∧ ¬R(a, z)

. . .R(a, a) R(a, b) R(a, c) S(a, a) . . . S(b, a) S(b, b) S(b, c) . . .

(R(x, y) ∧
. . .

S(y, z))
[a, b, a]

(R(x, y) ∧
S(y, z))

[a, b, b]

(R(x, y) ∧
S(y, z))

[a, b, c] . . .

(R(x, y) ∧
S(y, z))

[a, a, a]

. . .1 1 0 0 . . . 0 1 1 . . .

Markus Krötzsch, 21 April 2016 Database Theory slide 24 of 28

Example: ∃z.(∃x.∃y.R(x, y) ∧ S(y, z)) ∧ ¬R(a, z)

. . .R(a, a) R(a, b) R(a, c) S(a, a) . . . S(b, a) S(b, b) S(b, c) . . .

(R(x, y) ∧
. . .

S(y, z))
[a, b, a]

(R(x, y) ∧
S(y, z))

[a, b, b]

(R(x, y) ∧
S(y, z))

[a, b, c] . . .

(R(x, y) ∧
S(y, z))

[a, a, a]

∃y.(R(x, y) ∧
S(y, z))

[a, a]

.

. . .

. . .

∃y.(R(x, y) ∧
S(y, z))
[a, b]

∃y.(R(x, y) ∧
S(y, z))

[a, c]

. . .

∃x.∃y.(R(x, y) ∧
S(y, z))

[a]

. . .

∃x.∃y.(R(x, y) ∧
S(y, z))

[b]

. . .

∃x.∃y.(R(x, y) ∧
S(y, z))

[c]

. . .

R
(a

,x
)[

a]
¬R

(a
,x

)[
a]

¬R
(a

,x
)[

b]

¬R
(a

,x
)[

c]

R
(a

,x
)[

b]

R
(a

,x
)[

c]

. . .1 1 0 0 . . . 0 1 1 . . .

Markus Krötzsch, 21 April 2016 Database Theory slide 25 of 28

Example: ∃z.(∃x.∃y.R(x, y) ∧ S(y, z)) ∧ ¬R(a, z)

. . .R(a, a) R(a, b) R(a, c) S(a, a) . . . S(b, a) S(b, b) S(b, c) . . .

(R(x, y) ∧
. . .

S(y, z))
[a, b, a]

(R(x, y) ∧
S(y, z))

[a, b, b]

(R(x, y) ∧
S(y, z))

[a, b, c] . . .

(R(x, y) ∧
S(y, z))

[a, a, a]

∃y.(R(x, y) ∧
S(y, z))

[a, a]

.

. . .

. . .

∃y.(R(x, y) ∧
S(y, z))
[a, b]

∃y.(R(x, y) ∧
S(y, z))

[a, c]

. . .

∃x.∃y.(R(x, y) ∧
S(y, z))

[a]

. . .

∃x.∃y.(R(x, y) ∧
S(y, z))

[b]

. . .

∃x.∃y.(R(x, y) ∧
S(y, z))

[c]

. . .

R
(a

,x
)[

a]
¬R

(a
,x

)[
a]

¬R
(a

,x
)[

b]

¬R
(a

,x
)[

c]

R
(a

,x
)[

b]

R
(a

,x
)[

c]

(∃x.∃y.(R(x, y) ∧
S(y, z))

) ∧ ¬R(a, z)
[c]

(∃x.∃y.(R(x, y) ∧
S(y, z))

) ∧ ¬R(a, z)
[b]

(∃x.∃y.(R(x, y) ∧
S(y, z))

) ∧ ¬R(a, z)
[a]

∃z.
(∃x.∃y.(R(x, y) ∧
S(y, z))

) ∧ ¬R(a, z)

. . .1 1 0 0 . . . 0 1 1 . . .

Markus Krötzsch, 21 April 2016 Database Theory slide 26 of 28

Example: ∃z.(∃x.∃y.R(x, y) ∧ S(y, z)) ∧ ¬R(a, z)

. . .R(a, a) R(a, b) R(a, c) S(a, a) . . . S(b, a) S(b, b) S(b, c) . . .

(R(x, y) ∧
. . .

S(y, z))
[a, b, a]

(R(x, y) ∧
S(y, z))

[a, b, b]

(R(x, y) ∧
S(y, z))

[a, b, c] . . .

(R(x, y) ∧
S(y, z))

[a, a, a]

∃y.(R(x, y) ∧
S(y, z))

[a, a]

.

. . .

. . .

∃y.(R(x, y) ∧
S(y, z))
[a, b]

∃y.(R(x, y) ∧
S(y, z))

[a, c]

. . .

∃x.∃y.(R(x, y) ∧
S(y, z))

[a]

. . .

∃x.∃y.(R(x, y) ∧
S(y, z))

[b]

. . .

∃x.∃y.(R(x, y) ∧
S(y, z))

[c]

. . .

R
(a

,x
)[

a]
¬R

(a
,x

)[
a]

¬R
(a

,x
)[

b]

¬R
(a

,x
)[

c]

R
(a

,x
)[

b]

R
(a

,x
)[

c]

(∃x.∃y.(R(x, y) ∧
S(y, z))

) ∧ ¬R(a, z)
[c]

(∃x.∃y.(R(x, y) ∧
S(y, z))

) ∧ ¬R(a, z)
[b]

(∃x.∃y.(R(x, y) ∧
S(y, z))

) ∧ ¬R(a, z)
[a]

∃z.
(∃x.∃y.(R(x, y) ∧
S(y, z))

) ∧ ¬R(a, z)

. . .1 1 0 0 . . . 0 1 1 . . .

Markus Krötzsch, 21 April 2016 Database Theory slide 27 of 28

Summary and Outlook

The evaluation of FO queries is

• PSpace-complete for combined complexity

• PSpace-complete for query complexity

• AC0-complete for data complexity

Circuit complexities help to identify highly parallelisable problems in P

Open questions:

• Which other computing problems are interesting? (next lecture)

• Are there query languages with lower complexities?

• How can we study the expressiveness of query languages?

Markus Krötzsch, 21 April 2016 Database Theory slide 28 of 28

