
FOUNDATIONS OF DATABASES
AND QUERY LANGUAGES

Lecture 13: Graph Databases and Path Queries

Markus Krötzsch

TU Dresden, 13 July 2015

https://ddll.inf.tu-dresden.de/web/Foundations_of_Databases_and_Query_Languages_%28SS2015%29
http://korrekt.org/

Overview
1. Introduction | Relational data model
2. First-order queries
3. Complexity of query answering
4. Complexity of FO query answering
5. Conjunctive queries
6. Tree-like conjunctive queries
7. Query optimisation
8. Conjunctive Query Optimisation / First-Order Expressiveness
9. First-Order Expressiveness / Introduction to Datalog

10. Expressive Power and Complexity of Datalog
11. Optimisation and Evaluation of Datalog
12. Evaluation of Datalog (2)
13. Graph Databases and Path Queries
14. Outlook: database theory in practice

See course homepage [⇒ link] for more information and materials
Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 2 of 44

https://ddll.inf.tu-dresden.de/web/Foundations_of_Databases_and_Query_Languages_%28SS2015%29

Review: Datalog

Datalog is a powerful recursive query language

Advantages:

• Natural extension of (U)CQs with recursion

• Can be extended with (EDB) negation

• Polynomial data complexity of query answering

Disadvantages:

• High query and combined complexity (ExpTime)

• Perfect optimisation is undecidable

• Somewhat complicated to write queries

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 3 of 44

Graph Databases

Our original motivation for going from FO queries to Datalog:
Reachability of nodes in a (directed) graph{ let’s focus on graphs

Graph database: a DBMS that supports “graphs” as its datamodel

There are many kinds of graphs:

• Directed or undirected?

• Labelled or unlabelled edges/nodes?

• What kinds of labels? Datatypes?

• Parallel edges (multi-graphs)? With same label?

• One graph or several graphs per database?

Two types of graph database models dominate the market today:
Resource Description Framework (RDF) and Property Graph

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 4 of 44

Resource Description Framework (RDF)

RDF is a W3C standard for representing linked data on the Web

• Directed labelled graph; nodes are identified by their labels

• Labels are URIs or datatype literals

• Multiple parallel edges only when using different edge labels

• Supports multiple graphs in one database

• W3C standard; implementations for many programming
languages

• Datatype support based on W3C XML Schema datatypes

• Graphs can be exchanged in many standard syntax formats

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 5 of 44

Property Graph

Property Graph is a popular data model of many graph databases

• Directed labelled multi-graph; labels do not identify nodes

• “Labels” can be lists of attribute-value pairs

• Multiple parallel edges with the exact same labels are possible

• No native multi-graph support (could be simulated with
additional attributes)

• No standard definition of technical details; most common
implementation: Tinkerpop/Blueprints API (Java)

• Datatype support varies by implementation

• No standard syntax for exchanging data

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 6 of 44

Representing Graphs

Graphs (of any type) are usually viewed as sets of edges
• RDF: triples of form subject-predicate-object

– When managing multiple graphs, each triple is extended
with a fourth component (graph ID){ quads

– RDF databases are sometimes still called “triple stores”,
although most modern systems effectively store quads

• Property Graph: edge objects with attribute lists
– represented by Java objects in Blueprints

Graphs can be stored in relational databases

• RDF: table Triple[Subject,Predicate,Object]

• Property Graph: tables Edge[SourceId,EdgeId,TargetId] and
Attributes[Id,Attribute,Value]

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 7 of 44

Representing Data in Graphs

Property Graphs can represent RDF:

• use attributes to store RDF node and edge labels (URIs)

• use key constraints to ensure that no two distinct nodes can
have same label

RDF can represent Property Graphs:

• use additional nodes to represent Property Graph edges

• use RDF triples with special predicates to represent attributes

Either model can also represent hypergraphs/RDBs (exercise)

{ all models can represent all data in principle
{ supported query features and performance will vary

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 8 of 44

Representing Data in Graphs

Property Graphs can represent RDF:

• use attributes to store RDF node and edge labels (URIs)

• use key constraints to ensure that no two distinct nodes can
have same label

RDF can represent Property Graphs:

• use additional nodes to represent Property Graph edges

• use RDF triples with special predicates to represent attributes

Either model can also represent hypergraphs/RDBs (exercise)

{ all models can represent all data in principle
{ supported query features and performance will vary

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 9 of 44

Querying Graphs

Preferred query language depends on graph model

• RDF: W3C SPARQL query language
• Property Graph: no uniform approach to data access

– many tools prefer API access over a query language
– proprietary query languages, e.g., “Cypher” for Neo4j

However, there are some common basics in almost all cases:

• Conjunctive queries

• Regular path queries

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 10 of 44

Conjunctive Queries over Graphs

Basic descriptions of local patterns in a graph

Formally, it suffices to say:
CQs over RDF correspond to CQs over relational databases with a
single table Triple[Subject,Predicate,Object]

(analogously for Property Graphs)

• All complexity results for query answering and optimisation
carry over from RDBs (in particular, restricting to graphs does
not make anything simpler)

• Details of representation of data in tables do not matter

• CQs are restricted to local patterns (no reachability . . .)

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 11 of 44

Regular Path Queries

Idea: use regular expressions to navigate over paths

Let’s consider a simplified graph model, where a graph is given by:

• Set of nodes N (without additional labels)

• Set of edges E, labelled by a function λ : E → L, where L is a
finite set of labels

Definition
A regular expression over a set of labels L is an expression of the
following form:

E ::= L | (E ◦ E) | (E + E) | E∗

A regular path query (RPQ) is an expression of the form E(s, t),
where E is a regular expression and s and t are terms (constants or
variables).

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 12 of 44

Semantics of Regular Path Queries

As usual, a regular expression E matches a word w = `1 · · · `n if any
of the following conditions is satisfied:
• E ∈ L is a label and w = E.

• E = (E1 ◦ E2) and there is i ∈ {0, . . . , n} such that E1 matches `1 · · · `i

and E2 matches `i+1 · · · `n (the words matched by E1 and E2 can be
empty if i = 0 or i = n, respectively).

• E = (E1 + E2) and w is matched by E1 or by E2

• E = E∗1 and w has the form w1w2 · · ·wm for n ≥ 0, where each word wi

is matched by E1

Definition
Let a and b be constants and x and y be variables. An RPQ E(a, b)
is entailed by a graph G if there is a directed path from node a to
node b that is labelled by a word matched by E. The answers to
RPQs E(x, y), E(x, b), and E(a, y) are defined in the obvious way.

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 13 of 44

Extending the Expressive Power of RPQs
Regular path queries can be used to express typical reachability
queries, but are still quite limited{ extensions

2-Way Regular Path Queries (2RPQs)

• For every label ` ∈ L, also introduce a converse label `−

• Allow converse labels in regular expressions

• Matched paths can follow edges forwards or backwards

Conjunctive Regular Path Queries (CRPQs)

• Extend conjunctive queries with RPQs

• RPQs can be used like binary query atoms

• Obvious semantics

Conjunctive 2-Way Regular Path Queries (C2RPQs) combine both
extensions
Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 14 of 44

C2RPQs: Examples

All ancestors of Alice:(
(father +mother) ◦ (father +mother)∗

)
(alice, y)

People with finite Erdös number:

(authorOf ◦ authorOf−)∗(x, paulErdös)

Pairs of stops connected by tram lines 3 and 8:

(nextStop3 ◦ nextStop3∗)(x, y) ∧ (nextStop8 ◦ nextStop8∗)(x, y)

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 15 of 44

C2RPQs: Examples

All ancestors of Alice:(
(father +mother) ◦ (father +mother)∗

)
(alice, y)

People with finite Erdös number:

(authorOf ◦ authorOf−)∗(x, paulErdös)

Pairs of stops connected by tram lines 3 and 8:

(nextStop3 ◦ nextStop3∗)(x, y) ∧ (nextStop8 ◦ nextStop8∗)(x, y)

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 16 of 44

C2RPQs: Examples

All ancestors of Alice:(
(father +mother) ◦ (father +mother)∗

)
(alice, y)

People with finite Erdös number:

(authorOf ◦ authorOf−)∗(x, paulErdös)

Pairs of stops connected by tram lines 3 and 8:

(nextStop3 ◦ nextStop3∗)(x, y) ∧ (nextStop8 ◦ nextStop8∗)(x, y)

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 17 of 44

Complexity of RPQs

A nondeterministic algorithm for Boolean RPQs:

• Transform regular expression into a finite automaton

• Starting from the first node, guess a matching path

• When moving along path, advance state of automaton

• Accept if the second node is reached in an accepting state

• Reject if path is longer than size of graph × size of automaton

Space requirements when assuming query (and automaton) fixed:
pointer to current node in graph, pointer to current state of
automaton, counter for length of path{ NL algorithm

Conversely, reachability in an unlabelled graph is hard for NL

{ RPQ matching is NL-complete (data complexity)

(Combined/query complexity is in P, as we will see below)

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 18 of 44

Complexity of RPQs

A nondeterministic algorithm for Boolean RPQs:

• Transform regular expression into a finite automaton

• Starting from the first node, guess a matching path

• When moving along path, advance state of automaton

• Accept if the second node is reached in an accepting state

• Reject if path is longer than size of graph × size of automaton

Space requirements when assuming query (and automaton) fixed:
pointer to current node in graph, pointer to current state of
automaton, counter for length of path{ NL algorithm

Conversely, reachability in an unlabelled graph is hard for NL

{ RPQ matching is NL-complete (data complexity)

(Combined/query complexity is in P, as we will see below)

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 19 of 44

Complexity of C2RPQs

We already know:

• CQ matching is in AC0 (data complexity) and NP-complete
(query and combined complexity)

• RPQ matching is NL-complete (data) and in P

(query/combined)

• AC0 ⊂ NL and NL ⊆ NP

{ C2RPQs are NP-hard (combined/query) and NL-hard (data)

It’s not hard to show that these bounds are tight:

Theorem
C2RPQ matching is NP-complete for combined and query
complexity, and NL-complete for data complexity.

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 20 of 44

Complexity of C2RPQs

We already know:

• CQ matching is in AC0 (data complexity) and NP-complete
(query and combined complexity)

• RPQ matching is NL-complete (data) and in P

(query/combined)

• AC0 ⊂ NL and NL ⊆ NP

{ C2RPQs are NP-hard (combined/query) and NL-hard (data)

It’s not hard to show that these bounds are tight:

Theorem
C2RPQ matching is NP-complete for combined and query
complexity, and NL-complete for data complexity.

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 21 of 44

(C2)RPQs and Datalog

How do path queries relate to Datalog?

We already know:

• Datalog is ExpTime-complete (combined/query) and
P-complete (data)

• C2RPQs are NP-complete (combined/query) and
NL-complete (data)

{ maybe Datalog is more expressive that C2RPQs . . .

Indeed, we can express regular expressions in Datalog

For simplicity, assume that we have a binary EDB predicate p` for
each label ` ∈ L (other encodings would work just as well)

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 22 of 44

(C2)RPQs and Datalog

How do path queries relate to Datalog?

We already know:

• Datalog is ExpTime-complete (combined/query) and
P-complete (data)

• C2RPQs are NP-complete (combined/query) and
NL-complete (data)

{ maybe Datalog is more expressive that C2RPQs . . .

Indeed, we can express regular expressions in Datalog

For simplicity, assume that we have a binary EDB predicate p` for
each label ` ∈ L (other encodings would work just as well)

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 23 of 44

2-Way Regular Expressions in Datalog
We transform a regular expression E to a Datalog query 〈QE, PE〉:

If E = ` ∈ L is a label, then PE = {QE(x, y)← p`(x, y)}

If E = `− is the converse of a label ` ∈ L, then

PE = {QE(x, y)← p`(y, x)}

If E = (E1 ◦ E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, z)← QE1 (x, y) ∧ QE2 (y, z)}

If E = (E1 + E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, y)← QE1 (x, y), QE(x, y)← QE2 (x, y)}

If E = E∗1 then

PE = PE1 ∪ {QE(x, x)←, QE(x, z)← QE(x, y) ∧ QE1 (y, z)}

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 24 of 44

2-Way Regular Expressions in Datalog
We transform a regular expression E to a Datalog query 〈QE, PE〉:

If E = ` ∈ L is a label, then PE = {QE(x, y)← p`(x, y)}

If E = `− is the converse of a label ` ∈ L, then

PE = {QE(x, y)← p`(y, x)}

If E = (E1 ◦ E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, z)← QE1 (x, y) ∧ QE2 (y, z)}

If E = (E1 + E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, y)← QE1 (x, y), QE(x, y)← QE2 (x, y)}

If E = E∗1 then

PE = PE1 ∪ {QE(x, x)←, QE(x, z)← QE(x, y) ∧ QE1 (y, z)}

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 25 of 44

2-Way Regular Expressions in Datalog
We transform a regular expression E to a Datalog query 〈QE, PE〉:

If E = ` ∈ L is a label, then PE = {QE(x, y)← p`(x, y)}

If E = `− is the converse of a label ` ∈ L, then

PE = {QE(x, y)← p`(y, x)}

If E = (E1 ◦ E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, z)← QE1 (x, y) ∧ QE2 (y, z)}

If E = (E1 + E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, y)← QE1 (x, y), QE(x, y)← QE2 (x, y)}

If E = E∗1 then

PE = PE1 ∪ {QE(x, x)←, QE(x, z)← QE(x, y) ∧ QE1 (y, z)}

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 26 of 44

2-Way Regular Expressions in Datalog
We transform a regular expression E to a Datalog query 〈QE, PE〉:

If E = ` ∈ L is a label, then PE = {QE(x, y)← p`(x, y)}

If E = `− is the converse of a label ` ∈ L, then

PE = {QE(x, y)← p`(y, x)}

If E = (E1 ◦ E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, z)← QE1 (x, y) ∧ QE2 (y, z)}

If E = (E1 + E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, y)← QE1 (x, y), QE(x, y)← QE2 (x, y)}

If E = E∗1 then

PE = PE1 ∪ {QE(x, x)←, QE(x, z)← QE(x, y) ∧ QE1 (y, z)}

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 27 of 44

2-Way Regular Expressions in Datalog
We transform a regular expression E to a Datalog query 〈QE, PE〉:

If E = ` ∈ L is a label, then PE = {QE(x, y)← p`(x, y)}

If E = `− is the converse of a label ` ∈ L, then

PE = {QE(x, y)← p`(y, x)}

If E = (E1 ◦ E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, z)← QE1 (x, y) ∧ QE2 (y, z)}

If E = (E1 + E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, y)← QE1 (x, y), QE(x, y)← QE2 (x, y)}

If E = E∗1 then

PE = PE1 ∪ {QE(x, x)←, QE(x, z)← QE(x, y) ∧ QE1 (y, z)}

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 28 of 44

2-Way Regular Expressions in Datalog
We transform a regular expression E to a Datalog query 〈QE, PE〉:

If E = ` ∈ L is a label, then PE = {QE(x, y)← p`(x, y)}

If E = `− is the converse of a label ` ∈ L, then

PE = {QE(x, y)← p`(y, x)}

If E = (E1 ◦ E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, z)← QE1 (x, y) ∧ QE2 (y, z)}

If E = (E1 + E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, y)← QE1 (x, y), QE(x, y)← QE2 (x, y)}

If E = E∗1 then

PE = PE1 ∪ {QE(x, x)←, QE(x, z)← QE(x, y) ∧ QE1 (y, z)}

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 29 of 44

Reprise: Combined Complexity of 2RPQs

As a side effect, the previous translation shows that 2RPQs can be
evaluated in P combined complexity:

• Each (2-way) regular expression E leads to a Datalog query
〈QE, PE〉 of polynomial size

• Each rule in PE has at most three variables
{ the grounding of PE for a graph with nodes N is of size
|PE | × |N |3

• propositional logic rules can be evaluated in polynomial time

{ polynomial time decision procedure

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 30 of 44

Expressing C2RPQs in Datalog

It is now easy to express C2RPQs in Datalog:

• Use the encoding of CQs in Datalog as shown in the exercise

• Express 2RPQ atoms in Datalog as just shown

Can every Datalog query over binary “labelled-edge” EDB
predicates be expressed with (C2)RPQs?

• This would imply P = NL (but not that NP = ExpTime!):
unlikely but not known to be false

• However, there are stronger direct arguments that show the
limits of C2RPQs (exercise)

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 31 of 44

Expressing C2RPQs in Datalog

It is now easy to express C2RPQs in Datalog:

• Use the encoding of CQs in Datalog as shown in the exercise

• Express 2RPQ atoms in Datalog as just shown

Can every Datalog query over binary “labelled-edge” EDB
predicates be expressed with (C2)RPQs?

• This would imply P = NL (but not that NP = ExpTime!):
unlikely but not known to be false

• However, there are stronger direct arguments that show the
limits of C2RPQs (exercise)

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 32 of 44

Linear Datalog and Binary Datalog
Expressing 2RPQs in Datalog requires only restricted forms of
Datalog:

Definition
A Datalog program is linear if each of its rules has at most one IDB
atom in its body. A Datalog program is binary if all of its IDB
predicates have arity at most two.

The following complexity results are known:

Theorem
Query answering in linear Datalog is NL-complete for data
complexity, and PSpace-complete for combined and query
complexity.
Combined complexity further drops to NP for binary Datalog.

{ complexity results that are more similar to (C2)RPQs . . .
Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 33 of 44

2RPQs and Linear Datalog
The Datalog translation of 2RPQs does not lead to linear Datalog,
but we can fix this.

We transform a regular expression E to a linear Datalog query 〈QE, Plin
E 〉:

• Construct a non-deterministic automaton AE for E

• For every state q of AE, we use a binary IDB predicate Sq

• For the starting state q0 of AE, we add a rule Sq0 (x, x)←

• For every transition q
`
→ q′ of AE, we add a rule

Sq′ (x, z)← Sq(x, y) ∧ p`(y, z)

• For every final state qf of AE, we add a rule

QE(x, y)← Sqf (x, y)

Two-way queries can be captured by allowing two-way transitions.
Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 34 of 44

Linear Datalog vs. 2RPQs

So all 2RPQs can be expessed in linear Datalog
Is the converse also true?

No. Counterexample:

Query(x, z)← pa(x, y) ∧ pb(y, z)

Query(x, z)← pa(x, x′) ∧ Query(x′, z′) ∧ pb(z′, z)

The linear Datalog program matches paths with labels from anbn

{ context-free, non-regular language
{ not expressible in (C2)RPQs

Intuition: linear Datalog generalises context-free languages

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 35 of 44

Linear Datalog vs. 2RPQs

So all 2RPQs can be expessed in linear Datalog
Is the converse also true?

No. Counterexample:

Query(x, z)← pa(x, y) ∧ pb(y, z)

Query(x, z)← pa(x, x′) ∧ Query(x′, z′) ∧ pb(z′, z)

The linear Datalog program matches paths with labels from anbn

{ context-free, non-regular language
{ not expressible in (C2)RPQs

Intuition: linear Datalog generalises context-free languages

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 36 of 44

Query Optimisation for C2RPQs

Recall the basic static optimisation problems of database theory:

• Query containment

• Query equivalence

• Query emptiness

Which of these are decidable for (C2)RPQs?

Observation: query emptiness is trivial

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 37 of 44

Query Optimisation for C2RPQs

Recall the basic static optimisation problems of database theory:

• Query containment

• Query equivalence

• Query emptiness

Which of these are decidable for (C2)RPQs?

Observation: query emptiness is trivial

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 38 of 44

Containment for RPQs

Containment of Regular Path Queries corresponds to containment
of regular expressions{ known to be decidable in PSpace

Proof sketch for checking E1 v E2:

(1) Construct non-deterministic automata (NFAs), A1 and A2 for the
regular expressions E1 and E2, respectively

(2) Construct an automaton Ā2 that accepts the complement of A2.

(3) Construct the intersection A1 ∩ Ā2 of A1 and Ā2

(4) Check if A1 ∩ Ā2 accepts a word (if yes, then there is a counterexample
that disproves E1 v E2; if no, then the containment holds)

Complexity estimate:
A1 ∩ Ā2 is exponential (blow-up by powerset construction in step (2)) but
step (4) is possible by checking reachability on the state graph
{ NL algorithm on an exponential state graph
{ NPSpace algorithm (construct the state graph on the fly)
{ PSpace algorithm (Savitch’s Theorem)

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 39 of 44

Containment for (C)2RPQs

Things are more tricky when adding converses and conjunctions

Theorem
• Containment of 2RPQs is PSpace-complete

• Containment of C2RPQs is ExpSpace-complete

The proofs are more involved.

Automata-theoretic constructions are used, but with more complicated
automata models and for somewhat different languages (there is no good
“language of possible C2RPQ matches on a graph”{ consider language
of possible proofs instead)

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 40 of 44

Query Optimisation for Path Queries

Decidable in PSpace (2RPQs) and ExpSpace (C2RPQs)

Should be compared to linear Datalog:

Theorem
Query containment for linear Datalog queries is undecidable.

Proof: see Lecture 11 (Post Correspondence Problem in Datalog –
in fact, in linear Datalog)

Essentially no adoption in practice
{ maybe the complexities are too high . . .
{ or maybe path query optimisers are just too primitive

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 41 of 44

Path Queries: Final Remarks on Expressivity

We have seen that C2RPQs are NL-complete for data
{ can all NL-complete queries be captured by a C2RPQ?

No. For many reasons.

• C2RPQs have no disjunction ({ Unions of C2RPQs)

• C2RPQs have no negation

FO-queries with a binary transitive closure operator capture NL

Several (regular) extensions of path queries:

• Nested unary 2RPQs in regular expressions (“test operators”)

• Nested binary C2RPQs in regular expressions

• Other more expressive fragments of “regular Datalog”, e.g.,
Monadically Defined Queries

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 42 of 44

Path Queries: Final Remarks on Expressivity

We have seen that C2RPQs are NL-complete for data
{ can all NL-complete queries be captured by a C2RPQ?

No. For many reasons.

• C2RPQs have no disjunction ({ Unions of C2RPQs)

• C2RPQs have no negation

FO-queries with a binary transitive closure operator capture NL

Several (regular) extensions of path queries:

• Nested unary 2RPQs in regular expressions (“test operators”)

• Nested binary C2RPQs in regular expressions

• Other more expressive fragments of “regular Datalog”, e.g.,
Monadically Defined Queries

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 43 of 44

Summary and Outlook

Graph databases as an important class of “noSQL” databases

Two main data models

• Resource Description Framework (RDF)

• Property Graph

Path queries as common foundation of all graph query languages

• higher data complexities than CQs/FO queries

• lower complexities than Datalog queries

• decidable query optimisation

Next topics:

• Applications

• Summary

Markus Krötzsch, 13 July 2015 Foundations of Databases and Query Languages slide 44 of 44

