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Review: Datalog

Datalog is a powerful recursive query language

Advantages:

• Natural extension of (U)CQs with recursion

• Can be extended with (EDB) negation

• Polynomial data complexity of query answering

Disadvantages:

• High query and combined complexity (ExpTime)

• Perfect optimisation is undecidable

• Somewhat complicated to write queries
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Graph Databases

Our original motivation for going from FO queries to Datalog:
Reachability of nodes in a (directed) graph{ let’s focus on graphs

Graph database: a DBMS that supports “graphs” as its datamodel

There are many kinds of graphs:

• Directed or undirected?

• Labelled or unlabelled edges/nodes?

• What kinds of labels? Datatypes?

• Parallel edges (multi-graphs)? With same label?

• One graph or several graphs per database?

Two types of graph database models dominate the market today:
Resource Description Framework (RDF) and Property Graph
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Resource Description Framework (RDF)

RDF is a W3C standard for representing linked data on the Web

• Directed labelled graph; nodes are identified by their labels

• Labels are URIs or datatype literals

• Multiple parallel edges only when using different edge labels

• Supports multiple graphs in one database

• W3C standard; implementations for many programming
languages

• Datatype support based on W3C XML Schema datatypes

• Graphs can be exchanged in many standard syntax formats
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Property Graph

Property Graph is a popular data model of many graph databases

• Directed labelled multi-graph; labels do not identify nodes

• “Labels” can be lists of attribute-value pairs

• Multiple parallel edges with the exact same labels are possible

• No native multi-graph support (could be simulated with
additional attributes)

• No standard definition of technical details; most common
implementation: Tinkerpop/Blueprints API (Java)

• Datatype support varies by implementation

• No standard syntax for exchanging data
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Representing Graphs

Graphs (of any type) are usually viewed as sets of edges
• RDF: triples of form subject-predicate-object

– When managing multiple graphs, each triple is extended
with a fourth component (graph ID){ quads

– RDF databases are sometimes still called “triple stores”,
although most modern systems effectively store quads

• Property Graph: edge objects with attribute lists
– represented by Java objects in Blueprints

Graphs can be stored in relational databases

• RDF: table Triple[Subject,Predicate,Object]

• Property Graph: tables Edge[SourceId,EdgeId,TargetId] and
Attributes[Id,Attribute,Value]
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Representing Data in Graphs

Property Graphs can represent RDF:

• use attributes to store RDF node and edge labels (URIs)

• use key constraints to ensure that no two distinct nodes can
have same label

RDF can represent Property Graphs:

• use additional nodes to represent Property Graph edges

• use RDF triples with special predicates to represent attributes

Either model can also represent hypergraphs/RDBs (exercise)

{ all models can represent all data in principle
{ supported query features and performance will vary
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Querying Graphs

Preferred query language depends on graph model

• RDF: W3C SPARQL query language
• Property Graph: no uniform approach to data access

– many tools prefer API access over a query language
– proprietary query languages, e.g., “Cypher” for Neo4j

However, there are some common basics in almost all cases:

• Conjunctive queries

• Regular path queries
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Conjunctive Queries over Graphs

Basic descriptions of local patterns in a graph

Formally, it suffices to say:
CQs over RDF correspond to CQs over relational databases with a
single table Triple[Subject,Predicate,Object]

(analogously for Property Graphs)

• All complexity results for query answering and optimisation
carry over from RDBs (in particular, restricting to graphs does
not make anything simpler)

• Details of representation of data in tables do not matter

• CQs are restricted to local patterns (no reachability . . . )
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Regular Path Queries

Idea: use regular expressions to navigate over paths

Let’s consider a simplified graph model, where a graph is given by:

• Set of nodes N (without additional labels)

• Set of edges E, labelled by a function λ : E → L, where L is a
finite set of labels

Definition
A regular expression over a set of labels L is an expression of the
following form:

E ::= L | (E ◦ E) | (E + E) | E∗

A regular path query (RPQ) is an expression of the form E(s, t),
where E is a regular expression and s and t are terms (constants or
variables).
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Semantics of Regular Path Queries

As usual, a regular expression E matches a word w = `1 · · · `n if any
of the following conditions is satisfied:
• E ∈ L is a label and w = E.

• E = (E1 ◦ E2) and there is i ∈ {0, . . . , n} such that E1 matches `1 · · · `i

and E2 matches `i+1 · · · `n (the words matched by E1 and E2 can be
empty if i = 0 or i = n, respectively).

• E = (E1 + E2) and w is matched by E1 or by E2

• E = E∗1 and w has the form w1w2 · · ·wm for n ≥ 0, where each word wi

is matched by E1

Definition
Let a and b be constants and x and y be variables. An RPQ E(a, b)
is entailed by a graph G if there is a directed path from node a to
node b that is labelled by a word matched by E. The answers to
RPQs E(x, y), E(x, b), and E(a, y) are defined in the obvious way.
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Extending the Expressive Power of RPQs
Regular path queries can be used to express typical reachability
queries, but are still quite limited{ extensions

2-Way Regular Path Queries (2RPQs)

• For every label ` ∈ L, also introduce a converse label `−

• Allow converse labels in regular expressions

• Matched paths can follow edges forwards or backwards

Conjunctive Regular Path Queries (CRPQs)

• Extend conjunctive queries with RPQs

• RPQs can be used like binary query atoms

• Obvious semantics

Conjunctive 2-Way Regular Path Queries (C2RPQs) combine both
extensions
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C2RPQs: Examples

All ancestors of Alice:(
(father +mother) ◦ (father +mother)∗

)
(alice, y)

People with finite Erdös number:

(authorOf ◦ authorOf−)∗(x, paulErdös)

Pairs of stops connected by tram lines 3 and 8:

(nextStop3 ◦ nextStop3∗)(x, y) ∧ (nextStop8 ◦ nextStop8∗)(x, y)
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Complexity of RPQs

A nondeterministic algorithm for Boolean RPQs:

• Transform regular expression into a finite automaton

• Starting from the first node, guess a matching path

• When moving along path, advance state of automaton

• Accept if the second node is reached in an accepting state

• Reject if path is longer than size of graph × size of automaton

Space requirements when assuming query (and automaton) fixed:
pointer to current node in graph, pointer to current state of
automaton, counter for length of path{ NL algorithm

Conversely, reachability in an unlabelled graph is hard for NL

{ RPQ matching is NL-complete (data complexity)

(Combined/query complexity is in P, as we will see below)
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Complexity of C2RPQs

We already know:

• CQ matching is in AC0 (data complexity) and NP-complete
(query and combined complexity)

• RPQ matching is NL-complete (data) and in P

(query/combined)

• AC0 ⊂ NL and NL ⊆ NP

{ C2RPQs are NP-hard (combined/query) and NL-hard (data)

It’s not hard to show that these bounds are tight:

Theorem
C2RPQ matching is NP-complete for combined and query
complexity, and NL-complete for data complexity.
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(C2)RPQs and Datalog

How do path queries relate to Datalog?

We already know:

• Datalog is ExpTime-complete (combined/query) and
P-complete (data)

• C2RPQs are NP-complete (combined/query) and
NL-complete (data)

{ maybe Datalog is more expressive that C2RPQs . . .

Indeed, we can express regular expressions in Datalog

For simplicity, assume that we have a binary EDB predicate p` for
each label ` ∈ L (other encodings would work just as well)
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2-Way Regular Expressions in Datalog
We transform a regular expression E to a Datalog query 〈QE, PE〉:

If E = ` ∈ L is a label, then PE = {QE(x, y)← p`(x, y)}

If E = `− is the converse of a label ` ∈ L, then

PE = {QE(x, y)← p`(y, x)}

If E = (E1 ◦ E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, z)← QE1 (x, y) ∧ QE2 (y, z)}

If E = (E1 + E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, y)← QE1 (x, y), QE(x, y)← QE2 (x, y)}

If E = E∗1 then

PE = PE1 ∪ {QE(x, x)←, QE(x, z)← QE(x, y) ∧ QE1 (y, z)}
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Reprise: Combined Complexity of 2RPQs

As a side effect, the previous translation shows that 2RPQs can be
evaluated in P combined complexity:

• Each (2-way) regular expression E leads to a Datalog query
〈QE, PE〉 of polynomial size

• Each rule in PE has at most three variables
{ the grounding of PE for a graph with nodes N is of size
|PE | × |N |3

• propositional logic rules can be evaluated in polynomial time

{ polynomial time decision procedure
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Expressing C2RPQs in Datalog

It is now easy to express C2RPQs in Datalog:

• Use the encoding of CQs in Datalog as shown in the exercise

• Express 2RPQ atoms in Datalog as just shown

Can every Datalog query over binary “labelled-edge” EDB
predicates be expressed with (C2)RPQs?

• This would imply P = NL (but not that NP = ExpTime!):
unlikely but not known to be false

• However, there are stronger direct arguments that show the
limits of C2RPQs (exercise)
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Linear Datalog and Binary Datalog
Expressing 2RPQs in Datalog requires only restricted forms of
Datalog:

Definition
A Datalog program is linear if each of its rules has at most one IDB
atom in its body. A Datalog program is binary if all of its IDB
predicates have arity at most two.

The following complexity results are known:

Theorem
Query answering in linear Datalog is NL-complete for data
complexity, and PSpace-complete for combined and query
complexity.
Combined complexity further drops to NP for binary Datalog.

{ complexity results that are more similar to (C2)RPQs . . .
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2RPQs and Linear Datalog
The Datalog translation of 2RPQs does not lead to linear Datalog,
but we can fix this.

We transform a regular expression E to a linear Datalog query 〈QE, Plin
E 〉:

• Construct a non-deterministic automaton AE for E

• For every state q of AE, we use a binary IDB predicate Sq

• For the starting state q0 of AE, we add a rule Sq0 (x, x)←

• For every transition q
`
→ q′ of AE, we add a rule

Sq′ (x, z)← Sq(x, y) ∧ p`(y, z)

• For every final state qf of AE, we add a rule

QE(x, y)← Sqf (x, y)

Two-way queries can be captured by allowing two-way transitions.
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Linear Datalog vs. 2RPQs

So all 2RPQs can be expessed in linear Datalog
Is the converse also true?

No. Counterexample:

Query(x, z)← pa(x, y) ∧ pb(y, z)

Query(x, z)← pa(x, x′) ∧ Query(x′, z′) ∧ pb(z′, z)

The linear Datalog program matches paths with labels from anbn

{ context-free, non-regular language
{ not expressible in (C2)RPQs

Intuition: linear Datalog generalises context-free languages
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Query Optimisation for C2RPQs

Recall the basic static optimisation problems of database theory:

• Query containment

• Query equivalence

• Query emptiness

Which of these are decidable for (C2)RPQs?

Observation: query emptiness is trivial
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Containment for RPQs

Containment of Regular Path Queries corresponds to containment
of regular expressions{ known to be decidable in PSpace

Proof sketch for checking E1 v E2:

(1) Construct non-deterministic automata (NFAs), A1 and A2 for the
regular expressions E1 and E2, respectively

(2) Construct an automaton Ā2 that accepts the complement of A2.

(3) Construct the intersection A1 ∩ Ā2 of A1 and Ā2

(4) Check if A1 ∩ Ā2 accepts a word (if yes, then there is a counterexample
that disproves E1 v E2; if no, then the containment holds)

Complexity estimate:
A1 ∩ Ā2 is exponential (blow-up by powerset construction in step (2)) but
step (4) is possible by checking reachability on the state graph
{ NL algorithm on an exponential state graph
{ NPSpace algorithm (construct the state graph on the fly)
{ PSpace algorithm (Savitch’s Theorem)
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Containment for (C)2RPQs

Things are more tricky when adding converses and conjunctions

Theorem
• Containment of 2RPQs is PSpace-complete

• Containment of C2RPQs is ExpSpace-complete

The proofs are more involved.

Automata-theoretic constructions are used, but with more complicated
automata models and for somewhat different languages (there is no good
“language of possible C2RPQ matches on a graph”{ consider language
of possible proofs instead)
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Query Optimisation for Path Queries

Decidable in PSpace (2RPQs) and ExpSpace (C2RPQs)

Should be compared to linear Datalog:

Theorem
Query containment for linear Datalog queries is undecidable.

Proof: see Lecture 11 (Post Correspondence Problem in Datalog –
in fact, in linear Datalog)

Essentially no adoption in practice
{ maybe the complexities are too high . . .
{ or maybe path query optimisers are just too primitive
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Path Queries: Final Remarks on Expressivity

We have seen that C2RPQs are NL-complete for data
{ can all NL-complete queries be captured by a C2RPQ?

No. For many reasons.

• C2RPQs have no disjunction ({ Unions of C2RPQs)

• C2RPQs have no negation

FO-queries with a binary transitive closure operator capture NL

Several (regular) extensions of path queries:

• Nested unary 2RPQs in regular expressions (“test operators”)

• Nested binary C2RPQs in regular expressions

• Other more expressive fragments of “regular Datalog”, e.g.,
Monadically Defined Queries
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• Nested unary 2RPQs in regular expressions (“test operators”)

• Nested binary C2RPQs in regular expressions

• Other more expressive fragments of “regular Datalog”, e.g.,
Monadically Defined Queries
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Summary and Outlook

Graph databases as an important class of “noSQL” databases

Two main data models

• Resource Description Framework (RDF)

• Property Graph

Path queries as common foundation of all graph query languages

• higher data complexities than CQs/FO queries

• lower complexities than Datalog queries

• decidable query optimisation

Next topics:

• Applications

• Summary
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