Exercise 2

SAT-Solving

Prof. Steffen Hölldobler, Emmanuelle-Anna Dietz Saldanha
International Master Program in Computational Logic — summer term 2017
20.04.2017

Exercise 2.1

- 1. Give the definitions as presented in the lecture for:
 - clause
 - Horn clause
 - unit clause
 - binary clause
- 2. Give 3 examples for each clause type.

Exercise 2.2

What is a CNF formula? What could a disjunctive normal form (DNF) be? Try to find a fast algorithm (in polynomial time) to transform a CNF into a DNF. Is this possible?

Exercise 2.3

- 1. Demonstrate the combinatorial explosion of the equivalences elimination given in the lecture.
- 2. Transform F_1 , F_2 and F_3 into CNF with the help of the algorithm presented in the lecture.

$$F_1 = \neg p \land (p \to q) \land (\neg q \to p)$$

$$F_2 = \neg q \lor (\neg p \leftrightarrow q)$$

$$F_3 = p \leftrightarrow q$$

Exercise 2.4

- 1. An application of a rule of the form $\frac{D}{D_1|D_2}$ may lead to copies of subformulas. May this lead to a combinatorial explosion? If this is the case, then construct a sequence of examples showing the explosion. If this is not the case, then prove it.
- 2. What is a definitional transformation? Why you should use it? Use the definitional transformation to transform F_1 and F_2 into a CNF.

$$F_1 = \neg q \lor (\neg p \to q)$$

$$F_2 = \neg p \land (p \to q) \land (\neg q \to p)$$

3. Transform your example of Exercise 2.4.1 with the help of the definitional transformation.

Exercise 2.5

- 1. What is the reduct of a formula? Give an example.
- 2. Let $F=\langle [1,2],[-2,3],[2,3,-4],[-2],[-1,2,-5,6],[-1,3]\rangle$. Compute the reduct of F for the following partial interpretations:
 - (a) (1)
 - (b) (1,2,3)
 - (c) (4,5,6)
 - (d) (1,2,3,4,5,6)
 - (e) (-2,-3,5,6)

Exercise 2.6

1. Given the following 4 Clauses:

$$C_1 = [1, 2, 3]$$
 $C_2 = [-1, 4]$
 $C_3 = [-1, 2, 3]$ $C_4 = [-2, -4]$

Compute a resolvent of

- (a) C_1 and C_2 ,
- (b) C_1 and C_3 ,
- (c) C_1 and C_4 ,
- (d) C_3 and C_4 ,
- (e) C_2 and C_4 ,
- (f) C_2 and C_3 .
- 2. Let F be a CNF-formula and C a resolvent of two clauses C_1 and C_2 occurring in F , prove that $F \equiv F \wedge C$.