
FOUNDATIONS OF DATABASES
AND QUERY LANGUAGES

Lecture 3: Complexity of Query Answering

Markus Krötzsch

TU Dresden, 27 April 2015

Overview

1. Introduction | Relational data model

2. First-order queries

3. Complexity of query answering

4. Complexity of first-order query answering

5. Query optimization

6. Conjunctive queries

7. Limits of first-order query expressiveness

8. Introduction to Datalog

9. Implementation techniques for Datalog

10. Path queries

11. Constraints (1)

12. Constraints (2)

13. “Buffer time”

14. Outlook: database theory in practice
Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 2 of 31

Review: The Relational Calculus

What we have learned so far:

• There are many ways to describe databases:
{ named perspective, unnamed perspective, interpretations,
ground fracts, (hyper)graphs

• There are many ways to describe query languages:
{ relational algebra, domain independent FO queries,
safe-range FO queries, actice domain FO queries
Codd’s tuple calculus
{ either under named or under unnamed perspetive

All of these are largely equivalent: The Relational Calculus

Next question: How hard is it to answer such queries?

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 3 of 31

How to Measure Complexity of Queries?

• Complexity classes often for decision problems (yes/no answer)
{ database queries return many results (no decision problem)

• The size of a query result can be very large
{ it would not be fair to measure this as “complexity”

• In practice, database instances are much larger than queries
{ can we take this into account?

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 4 of 31

Query Answering as Decision Problem

We consider the following decision problems:

• Boolean query entailment: given a Boolean query q and a
database instance I, does I |= q hold?

• Query of tuple problem: given an n-ary query q, a database
instance I and a tuple 〈c1, . . . , cn〉, does 〈c1, . . . , cn〉 ∈ M[q](I)
hold?

• Query emptiness problem: given a query q and a database
instance I, does M[q](I) , ∅ hold?

{ Computationally equivalent problems (exercise)

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 5 of 31

The Size of the Input
Combined Complexity

Input: Boolean query q and database instance I
Output: Does I |= q hold?

{ estimates complexity in terms of overall input size
{ “2KB query/2TB database” = “2TB query/2KB database”
{ study worst-case complexity of algorithms for fixed queries:

Data Complexity
Input: database instance I
Output: Does I |= q hold? (for fixed q)

{ we can also fix the database and vary the query:

Query Complexity
Input: Boolean query q
Output: Does I |= q hold? (for fixed I)

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 6 of 31

Review: Computation and
Complexity Theory

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 7 of 31

The Turing Machine (1)

Computation is usually modelled with Turing Machines (TMs)
{ “algorithm” = “something implemented on a TM”

A TM is an automaton with (unlimited) working memory:

• It has a finite set of states Q

• Q includes a start state qstart and an accept state qacc

• The memory is a tape with numbered cells 0, 1, 2, . . .

• Each tape cell holds one symbol from the set of tape symbols Σ

• There is a special symbol � for “empty” tape cells

• The TM has a transition relation ∆ ⊆ (Q × Σ) × (Q × Σ × {l, r, s})
• ∆ might be a partial function (Q × Σ)→ (Q × Σ × {l, r, s})
{ deterministic TM (DTM); otherwise nondeterministic TM

There are many different but equivalent ways of defining TMs.

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 8 of 31

The Turing Machine (2)

TMs operate step-by-step:

• At every moment, the TM is in one state q ∈ Q with its read/write head at a
certain tape position p ∈ N, and the tape has a certain contents σ0σ1σ2 · · ·
with all σi ∈ Σ

{ current configuration of the TM

• The TM starts in state qstart and at tape position 0.

• Transition 〈q,σ, q′,σ′, d〉 ∈ ∆ means:
if in state q and the tape symbol at its current position is σ,
then change to state q′, write symbol σ′ to tape, move head by d (left/right/stay)

• If there is more than one possible transition, the TM picks one
nondeterministically

• The TM halts when there is no possible transition for the current configuration
(possibly never)

A computation path (or run) of a TM is a sequence of
configurations that can be obtained by some choice of transition.

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 9 of 31

Languages Accepted by TMs
The (nondeterministic) TM accepts an input σ1 · · ·σn ∈ (Σ \ {�})∗ if,
when started on the tape σ1 · · ·σn�� · · · ,
(1) the TM halts on every computation path and
(2) there is at least one computation path that halts in the

accepting state qacc ∈ Q.

accept: reject: reject (not halting):
qstartσ1 · · ·σn

qacc

qstartσ1 · · ·σn

,qacc

qstartσ1 · · ·σn

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 10 of 31

Solving Computation Problems with TMs

A decision problem is a language L of words over Σ \ {�}
{ the set of all inputs for which the answer is “yes”

A TM decides a decision problem L if it accepts exactly the words in L

TMs take time (number of steps) and space (number of cells):

• Time(f (n)): Problems that can be decided by a DTM in
O(f (n)) steps, where f is a function of the input length n

• Space(f (n)): Problems that can be decided by a DTM using
O(f (n)) tape cells, where f is a function of the input length n

• NTime(f (n)): Problems that can be decided by a TM in at
most O(f (n)) steps on any of its computation paths

• NSpace(f (n)): Problems that can be decided by a TM using
at most O(f (n)) tape cells on any of its computation paths

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 11 of 31

Some Common Complexity Classes

P = PTime =
⋃

k≥1

Time(nk) NP =
⋃

k≥1

NTime(nk)

Exp = ExpTime =
⋃

k≥1

Time(2nk
) NExp = NExpTime =

⋃

k≥1

NTime(2nk
)

2Exp = 2ExpTime =
⋃

k≥1

Time(22nk

) N2Exp = N2ExpTime =
⋃

k≥1

NTime(22nk

)

ETime =
⋃

k≥1

Time(2nk)

L = LogSpace = Space(log n) NL = NLogSpace = NSpace(log n)

PSpace =
⋃

k≥1

Space(nk)

ExpSpace =
⋃

k≥1

Space(2nk
)

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 12 of 31

NP

NP = Problems for which a possible solution can be verified in P:

• for every w ∈ L, there is a certificate cw ∈ Σ∗, such that

• the length of cw is polynomial in the length of w, and

• the language {w##cw | w ∈ L} is in P

Equivalent to definition with nondeterministic TMs:

• ⇒ nondeterministically guess certificate; then run verifier DTM

• ⇐ use accepting polynomial run as certificate; verify TM steps

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 13 of 31

NP Examples

Examples:

• Sudoku solvability (certificate: filled-out grid)

• Composite (non-prime) number (certificate: factorization)

• Prime number (certificate: see Wikipedia “Primality certificate”)

• Propositional logic satisfiability (certificate: satisfying assignment)

• Graph colourability (certificate: coloured graph)

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 14 of 31

NP and coNP

Note: Definition of NP is not symmetric

• there does not seem to be any polynomial certificate for
Sudoku unsolvability or logic unsatisfiability

• converse of an NP problem is coNP

• similar for NExpTime and N2ExpTime

Other classes are symmetric:

• Deterministic classes (coP = P etc.)

• Space classes mentioned above (esp. coNL = NL)

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 15 of 31

A Simple Proof for P = NP

Clearly L ∈ P implies L ∈ NP

therefore L < NP implies L < P
hence L ∈ coNP implies L ∈ coP
that is coNP ⊆ coP

using coP = P coNP ⊆ P

and hence NP ⊆ P

so by P ⊆ NP NP = P

q.e.d.?

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 16 of 31

Reductions

Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability

Encoding colours in propositions:

• ri means "‘vertex i is red"’

• gi means "‘vertex i is green"’

• bi means "‘vertex i is blue"’

Colouring conditions on vertices:
(r1 ∧ ¬g1 ∧ ¬b1) ∨ (¬r1 ∧ g1 ∧ ¬b1) ∨ (¬r1 ∧ ¬g1 ∧ b1)

(and so on for all vertices)

Colouring conditions for edges:
¬(r1 ∧ r2) ∧ ¬(g1 ∧ g2) ∧ ¬(b1 ∧ b2) (and so on for all edges)

Satisfying truth assignment⇔ valid colouring
Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 17 of 31

Defining Reductions

Definition
Consider languages L1,L2 ⊆ Σ∗. A computable function
f : Σ∗ → Σ∗ is a many-one reduction from L1 to L2 if:

w ∈ L1 if and only if f (w) ∈ L2

{ we can solve problem L1 by reducing it to problem L2

{ only useful if the reduction is much easier than solving L1 directly
{ polynomial many-one reductions

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 18 of 31

The Structure of NP

Idea: polynomial many-one reductions define an order on problems

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 19 of 31

NP-Hardness und NP-Completeness

Stephen Cook

Leonid Levin

Richard Karp

Theorem (Cook 1971; Levin 1973)
All problems in NP can be polynomially many-one reduced to the
propositional satisfiability problem (SAT).

• NP has a maximal class that contains a practically relevant
problem

• If SAT can be solved in P, all problems in NP can

• Karp discovered 21 further such problems shortly after (1972)

• Thousands such problems have been discovered since . . .

Definition
A language is

• NP-hard if every language in NP is polynomially many-one
reducible to it

• NP-complete if it is NP-hard and in NP

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 20 of 31

Comparing Complexity Classes

Is any NP-complete problem in P?

• If yes, then P = NP

• Nobody knows{ biggest open problem in computer science

• Similar situations for many complexity classes

Some things that are known:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace ⊆ ExpTime ⊆ NExpTime

• None of these is known to be strict

• But we know that P (ExpTime and NL (PSpace

• Moreover PSpace = NPSpace (by Savitch’s Theorem)

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 21 of 31

Comparing Tractable Problems
Polynomial-time many-one reductions work well for (presumably)
super-polynomial problems{ what to use for P and below?

Definition
A LogSpace transducer is a deterministic TM with three tapes:

• a read-only input tape

• a read/write working tape of size O(log n)

• a write-only, write-once output tape

Such a TM needs a slighlty different form of transitions:

• transition function input: state, input tape symbol, working tape symbol

• transition function output: state, working tape write symbol, input
tape move, working tape move, output tape symbol or � to not write
anything to the output

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 22 of 31

The Power of LogSpace

LogSpace transducers can still do a few things:

• store a constant number of counters and
increment/decrement the counters

• store a constant number of pointers to the input tape, and
locate/read items that start at this address from the input tape

• access/process/compare items from the input tape bit by bit

Examples:
Adding and subtracting binary numbers, detecting palindromes,
comparing lists, searching items in a list, sorting lists, . . .

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 23 of 31

Joining Two Tables in LogSpace

Input: two relations R and S, represented as a list of tuples

• Use two pointers pR and pS pointing to tuples in R resp. S
• Outer loop: iterate pR over all tuples of R
• Inner loop for each position of pR: iterate pS over all tuples of S
• For each combination of pR and pS, compare the tuples:

– Use another two loops that iterate over the columns of R and S
– Compare attribute names bit by bit
– For matching attribute names, compare the respective tuple

values bit by bit

• If all joined columns agree, copy the relevant parts of tuples
pR and pS to the output (bit by bit)

Output: R ./ S

{ Fixed number of pointers and counters
(making this fully formal is still a bit of work; e.g., an additional counter is
needed to move the input read head to the target of a pointer (seek))
Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 24 of 31

LogSpace reductions

LogSpace functions: The output of a LogSpace transducer is the
contents of its output tape when it halts{ partial function Σ∗ → Σ∗

Note: the composition of two LogSpace functions is LogSpace (exercise)

Definition
A many-one reduction f from L1 to L2 is a LogSpace reduction if
it is implemented by some LogSpace transducer.

{ can be used to define hardness for classes P and NL

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 25 of 31

From L to NL
NL: Problems whose solution can be verified in L

Example: Reachability

• Input: a directed graph G and two nodes s and t of G

• Output: accept if there is a directed path from s to t in G

Algorithm sketch:

• Store the id of the current node and a counter for the path
length

• Start with s as current node

• In each step, increment the counter and move from the
current node to one of its direct successors (nondeterministic)

• When reaching t, accept

• When the step counter is larger than the total number of
nodes, reject

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 26 of 31

Beyond Logarithmic Space

Propositional satisfiability can be solved in linear space:
{ iterate over possible truth assignments and check each in turn

More generally: all problems in NP can be solved in PSpace

{ try all conceivable polynomial certificates and verify each in turn

What is a “typical” (that is, hard) problem in PSpace?
{ Simple two-player games, and other uses of alternating quantifiers

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 27 of 31

Example: Playing “Geography”

A children’s game:

• Two players are taking turns naming cities.

• Each city must start with the last letter of the previous.

• Repetitions are not allowed.

• The first player who cannot name a new city looses.

A mathematicians’ game:

• Two players are marking nodes on a directed graph.

• Each node must be a successor of the previous one.

• Repetitions are not allowed.

• The first player who cannot mark a new node looses.

Question: given a certain graph and start node, can Player 1
enforce a win (i.e., does he have a winning strategy)?

{ PSpace-complete problem
Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 28 of 31

Example: Quantified Boolean Formulae (QBF)

We consider formulae of the following form:

Q1X1. Q2X2. · · · QnXn.ϕ[X1, . . . , Xn]

where Qi ∈ {∃,∀} are quantifiers, Xi are propositional logic
variables, and ϕ is a propositional logic formula with variables
X1, . . . , Xn and constants > (true) and ⊥ (false)

Semantics:

• Propositional formulae without variables (only constants >
and ⊥) are evaluated as usual

• ∃X1.ϕ[X1] is true if either ϕ[X1/>] or ϕ[X1/⊥] are

• ∀X1.ϕ[X1] is true if both ϕ[X1/>] and ϕ[X1/⊥] are

Question: Is a given QBF formula true?
{ PSpace-complete problem
Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 29 of 31

A Note on Space and Time

How many different configurations does a TM have in space (f (n))?

|Q| · f (n) · |Σ|f (n)

{ No halting run can be longer than this
{ A time-bounded TM can explore all configurations in time
proportional to this

Applications:

• L ⊆ P

• PSpace ⊆ ExpTime

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 30 of 31

Summary and Outlook

The complexity of query languages can be measured in different ways

Relevant complexity classes are based on restricting space and time:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace ⊆ ExpTime

Problems are compared using many-one reductions

Open questions:

• Now how hard is it to answer FO queries? (next lecture)

• We saw that joins are in LogSpace – is this tight?

• How can we study the expressiveness of query languages?

Markus Krötzsch, 27 April 2015 Foundations of Databases and Query Languages slide 31 of 31

