

FOUNDATIONS OF DATABASES AND QUERY LANGUAGES

Lecture 3: Complexity of Query Answering

Markus Krötzsch

TU Dresden, 27 April 2015

Review: The Relational Calculus

What we have learned so far:

- There are many ways to describe databases:
 - → named perspective, unnamed perspective, interpretations, ground fracts, (hyper)graphs
- There are many ways to describe query languages:
 - → relational algebra, domain independent FO queries, safe-range FO queries, actice domain FO queries Codd's tuple calculus
 - → either under named or under unnamed perspetive

All of these are largely equivalent: The Relational Calculus

Next guestion: How hard is it to answer such gueries?

Overview

- 1. Introduction | Relational data model
- 2. First-order queries
- 3. Complexity of query answering
- 4. Complexity of first-order query answering
- 5. Query optimization
- 6. Conjunctive queries
- 7. Limits of first-order query expressiveness
- 8. Introduction to Datalog
- 9. Implementation techniques for Datalog
- 10. Path queries
- 11. Constraints (1)
- 12. Constraints (2)
- 13. "Buffer time"
- 14. Outlook: database theory in practice

Markus Krötzsch, 27 April 2015

Foundations of Databases and Query Languages

slide 2 of 31

How to Measure Complexity of Queries?

- Complexity classes often for decision problems (yes/no answer)

 → database queries return many results (no decision problem)
- The size of a query result can be very large
 → it would not be fair to measure this as "complexity"

Query Answering as Decision Problem

We consider the following decision problems:

- Boolean guery entailment: given a Boolean guery q and a database instance I, does $I \models q$ hold?
- Query of tuple problem: given an n-ary query q, a database instance \mathcal{I} and a tuple $\langle c_1, \ldots, c_n \rangle$, does $\langle c_1, \ldots, c_n \rangle \in M[q](\mathcal{I})$ hold?
- Query emptiness problem: given a query q and a database instance \mathcal{I} , does $M[q](\mathcal{I}) \neq \emptyset$ hold?
- → Computationally equivalent problems (exercise)

Markus Krötzsch, 27 April 2015

Foundations of Databases and Query Languages

slide 5 of 31

Review: Computation and Complexity Theory

The Size of the Input

Combined Complexity

Input: Boolean query q and database instance I

Output: Does $I \models q$ hold?

- → estimates complexity in terms of overall input size
- → "2KB query/2TB database" = "2TB query/2KB database"
- → study worst-case complexity of algorithms for fixed queries:

Data Complexity

Input: database instance I

Output: Does $I \models q$ hold? (for fixed q)

→ we can also fix the database and vary the query:

Query Complexity

Input: Boolean guery q

Output: Does $I \models q$ hold? (for fixed I)

Markus Krötzsch, 27 April 2015

Foundations of Databases and Query Languages

slide 6 of 31

The Turing Machine (1)

Computation is usually modelled with Turing Machines (TMs)

→ "algorithm" = "something implemented on a TM"

A TM is an automaton with (unlimited) working memory:

- It has a finite set of states O
- Q includes a start state q_{start} and an accept state q_{acc}
- The memory is a tape with numbered cells 0, 1, 2, ...
- Each tape cell holds one symbol from the set of tape symbols Σ
- There is a special symbol

 for "empty" tape cells
- The TM has a transition relation $\Delta \subseteq (Q \times \Sigma) \times (Q \times \Sigma \times \{l, r, s\})$
- Δ might be a partial function $(Q \times \Sigma) \to (Q \times \Sigma \times \{l, r, s\})$ → deterministic TM (DTM); otherwise nondeterministic TM

There are many different but equivalent ways of defining TMs.

slide 8 of 31

The Turing Machine (2)

TMs operate step-by-step:

• At every moment, the TM is in one state $q \in Q$ with its read/write head at a certain tape position $p \in \mathbb{N}$, and the tape has a certain contents $\sigma_0 \sigma_1 \sigma_2 \cdots$ with all $\sigma_i \in \Sigma$

→ current configuration of the TM

- The TM starts in state q_{start} and at tape position 0.
- Transition $\langle q, \sigma, q', \sigma', d \rangle \in \Delta$ means: if in state q and the tape symbol at its current position is σ , then change to state q', write symbol σ' to tape, move head by d (left/right/stay)
- If there is more than one possible transition, the TM picks one nondeterministically
- The TM halts when there is no possible transition for the current configuration (possibly never)

A computation path (or run) of a TM is a sequence of configurations that can be obtained by some choice of transition.

Markus Krötzsch, 27 April 2015

Foundations of Databases and Query Languages

slide 9 of 31

Solving Computation Problems with TMs

A decision problem is a language \mathcal{L} of words over $\Sigma \setminus \{\Box\}$ \rightarrow the set of all inputs for which the answer is "yes"

A TM decides a decision problem $\mathcal L$ if it accepts exactly the words in $\mathcal L$

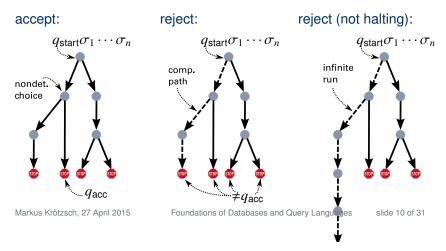
TMs take time (number of steps) and space (number of cells):

- TIME(f(n)): Problems that can be decided by a DTM in O(f(n)) steps, where f is a function of the input length n
- SPACE(f(n)): Problems that can be decided by a DTM using O(f(n)) tape cells, where f is a function of the input length n
- NTIME(f(n)): Problems that can be decided by a TM in at most O(f(n)) steps on any of its computation paths
- NSPACE(f(n)): Problems that can be decided by a TM using at most O(f(n)) tape cells on any of its computation paths

Languages Accepted by TMs

The (nondeterministic) TM accepts an input $\sigma_1 \cdots \sigma_n \in (\Sigma \setminus \{\Box\})^*$ if, when started on the tape $\sigma_1 \cdots \sigma_n \Box \Box \cdots$,

- (1) the TM halts on every computation path and
- (2) there is at least one computation path that halts in the accepting state $q_{acc} \in Q$.



Some Common Complexity Classes

Markus Krötzsch, 27 April 2015

$$P = PTIME = \bigcup_{k \ge 1} TIME(n^k)$$

$$EXP = EXPTIME = \bigcup_{k \ge 1} TIME(2^{n^k})$$

$$NEXP = NEXPTIME = \bigcup_{k \ge 1} NTIME(2^{n^k})$$

$$2EXP = 2EXPTIME = \bigcup_{k \ge 1} TIME(2^{2^{n^k}})$$

$$N2EXP = N2EXPTIME = \bigcup_{k \ge 1} NTIME(2^{2^{n^k}})$$

$$ETIME = \bigcup_{k \ge 1} TIME(2^{n^k})$$

$$\begin{aligned} \mathbf{L} &= \mathbf{LogSPACE} = \mathbf{SPACE}(\log n) & \mathbf{NL} &= \mathbf{NLogSPACE} = \mathbf{NSPACE}(\log n) \\ & \mathbf{PSPACE} = \bigcup_{k \geq 1} \mathbf{SPACE}(n^k) \\ & \mathbf{EXPSPACE} = \bigcup_{k \geq 1} \mathbf{SPACE}(2^{n^k}) \end{aligned}$$

NP

NP = Problems for which a possible solution can be verified in P:

- for every $w \in \mathcal{L}$, there is a certificate $c_w \in \Sigma^*$, such that
- the length of c_w is polynomial in the length of w, and
- the language $\{w \# \# c_w \mid w \in \mathcal{L}\}$ is in P

Equivalent to definition with nondeterministic TMs:

- ⇒ nondeterministically guess certificate; then run verifier DTM
- ← use accepting polynomial run as certificate; verify TM steps

Markus Krötzsch, 27 April 2015

Foundations of Databases and Query Languages

slide 13 of 31

NP and coNP

Note: Definition of NP is not symmetric

- there does not seem to be any polynomial certificate for Sudoku unsolvability or logic unsatisfiability
- ullet converse of an NP problem is CONP
- similar for NEXPTIME and N2EXPTIME

Other classes are symmetric:

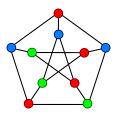
- Deterministic classes (COP = P etc.)
- $\bullet~$ Space classes mentioned above (esp. $\mathrm{CoNL} = \mathrm{NL})$

NP Examples

Examples:

- Sudoku solvability (certificate: filled-out grid)
- Composite (non-prime) number (certificate: factorization)
- Prime number (certificate: see Wikipedia "Primality certificate")
- Propositional logic satisfiability (certificate: satisfying assignment)
- Graph colourability (certificate: coloured graph)

5		3				7		
			8					6
	7			6			4	
	4		1					
7		8		5		3		9
					9		6	
	5			1			7	
6					4			
		2				5		3



p	q	r	$p \rightarrow q$
f	f	f	W
f	W	f	W
W	f	f	f
W	w	f	W
f	f	w	W
f	w	w	W
W	f	w	f
W	w	W	W

Markus Krötzsch, 27 April 2015

Foundations of Databases and Query Languages

slide 14 of 31

A Simple Proof for P = NP

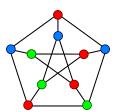
Clearly	$\mathcal{L} \in \mathcal{P}$	implies	$\mathcal{L} \in \mathrm{NP}$	
therefore	$\mathcal{L} \notin \mathrm{NP}$	implies	$\mathcal{L} \notin P$	
hence	$\mathcal{L} \in \text{conP}$	implies	$\mathcal{L} \in \text{coP}$	
that is	coN	$conP \subseteq coP$		
$\text{using } \mathrm{CoP} = \mathrm{P}$	coN			
and hence $NP \subseteq P$				
so by $P\subseteq NP$	NP = P			

q.e.d.?

Reductions

Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability



Encoding colours in propositions:

- r_i means "'vertex i is red"'
- g_i means "'vertex i is green"'
- b_i means "'vertex i is blue"'

Colouring conditions on vertices:

$$(\mathbf{r_1} \wedge \neg \mathbf{g_1} \wedge \neg \mathbf{b_1}) \vee (\neg \mathbf{r_1} \wedge \mathbf{g_1} \wedge \neg \mathbf{b_1}) \vee (\neg \mathbf{r_1} \wedge \neg \mathbf{g_1} \wedge \mathbf{b_1})$$
 (and so on for all vertices)

Colouring conditions for edges:

$$\neg (\mathbf{r}_1 \wedge \mathbf{r}_2) \wedge \neg (\mathbf{g}_1 \wedge \mathbf{g}_2) \wedge \neg (\mathbf{b}_1 \wedge \mathbf{b}_2)$$
 (and so on for all edges)

Satisfying truth assignment ⇔ valid colouring

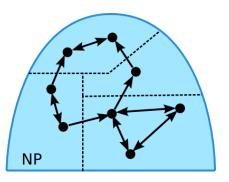
Markus Krötzsch, 27 April 2015

Foundations of Databases and Query Languages

slide 17 of 31

The Structure of NP

Idea: polynomial many-one reductions define an order on problems



Defining Reductions

Definition

Consider languages $\mathcal{L}_1, \mathcal{L}_2 \subseteq \Sigma^*$. A computable function $f: \Sigma^* \to \Sigma^*$ is a many-one reduction from \mathcal{L}_1 to \mathcal{L}_2 if:

$$w \in \mathcal{L}_1$$
 if and only if $f(w) \in \mathcal{L}_2$

- \rightarrow we can solve problem \mathcal{L}_1 by reducing it to problem \mathcal{L}_2
- \rightarrow only useful if the reduction is much easier than solving \mathcal{L}_1 directly
- → polynomial many-one reductions

Markus Krötzsch, 27 April 2015

Foundations of Databases and Query Languages

slide 18 of 31

NP-Hardness und NP-Completeness

Theorem (Cook 1971; Levin 1973)

All problems in NP can be polynomially many-one reduced to the propositional satisfiability problem (SAT).

 NP has a maximal class that contains a practically relevant problem

- If SAT can be solved in P, all problems in NP can
- Karp discovered 21 further such problems shortly after (1972)
- Thousands such problems have been discovered since . . .

Leonid Levin

Richard Karp

Definition

A language is

- NP-hard if every language in NP is polynomially many-one reducible to it
- NP-complete if it is NP-hard and in NP

Comparing Complexity Classes

Is any NP-complete problem in P?

- If yes, then P = NP
- Nobody knows → biggest open problem in computer science
- Similar situations for many complexity classes

Some things that are known:

 $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXPTIME \subseteq NEXPTIME$

- None of these is known to be strict
- But we know that $P \subseteq ExpTime$ and $NL \subseteq PSpace$
- Moreover PSPACE = NPSPACE (by Savitch's Theorem)

Markus Krötzsch, 27 April 2015

Foundations of Databases and Query Languages

slide 21 of 31

The Power of LOGSPACE

LogSpace transducers can still do a few things:

- store a constant number of counters and increment/decrement the counters
- store a constant number of pointers to the input tape, and locate/read items that start at this address from the input tape
- access/process/compare items from the input tape bit by bit

Examples:

Adding and subtracting binary numbers, detecting palindromes, comparing lists, searching items in a list, sorting lists, ...

Comparing Tractable Problems

Polynomial-time many-one reductions work well for (presumably) super-polynomial problems \rightarrow what to use for P and below?

Definition

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

Such a TM needs a slighlty different form of transitions:

- transition function input: state, input tape symbol, working tape symbol
- transition function output: state, working tape write symbol, input tape move, working tape move, output tape symbol or □ to not write anything to the output

Markus Krötzsch, 27 April 2015

Foundations of Databases and Query Languages

slide 22 of 31

Joining Two Tables in LogSpace

Input: two relations R and S, represented as a list of tuples

- Use two pointers p_R and p_S pointing to tuples in R resp. S
- Outer loop: iterate p_R over all tuples of R
- Inner loop for each position of p_R : iterate p_S over all tuples of S
- For each combination of p_R and p_S , compare the tuples:
 - Use another two loops that iterate over the columns of R and S
 - Compare attribute names bit by bit
 - For matching attribute names, compare the respective tuple values bit by bit
- If all joined columns agree, copy the relevant parts of tuples p_R and p_S to the output (bit by bit)

Output: $R \bowtie S$

→ Fixed number of pointers and counters (making this fully formal is still a bit of work; e.g., an additional counter is needed to move the input read head to the target of a pointer (seek)) Markus Krötzsch, 27 April 2015

LogSpace reductions

LogSpace functions: The output of a LogSpace transducer is the contents of its output tape when it halts \rightarrow partial function $\Sigma^* \rightarrow \Sigma^*$

Note: the composition of two LogSpace functions is LogSpace (exercise)

Definition

A many-one reduction f from \mathcal{L}_1 to \mathcal{L}_2 is a LogSpace reduction if it is implemented by some LogSpace transducer.

 \rightarrow can be used to define hardness for classes P and NL

Markus Krötzsch, 27 April 2015

Foundations of Databases and Query Languages

slide 25 of 31

Beyond Logarithmic Space

Propositional satisfiability can be solved in linear space:

ightarrow iterate over possible truth assignments and check each in turn

More generally: all problems in NP can be solved in PSPACE

 \rightarrow try all conceivable polynomial certificates and verify each in turn

What is a "typical" (that is, hard) problem in PSPACE?

→ Simple two-player games, and other uses of alternating quantifiers

From L to NL

 NL : Problems whose solution can be verified in L

Example: Reachability

- Input: a directed graph G and two nodes s and t of G
- Output: accept if there is a directed path from s to t in G

Algorithm sketch:

- Store the id of the current node and a counter for the path length
- Start with s as current node
- In each step, increment the counter and move from the current node to one of its direct successors (nondeterministic)
- When reaching t, accept
- When the step counter is larger than the total number of nodes, reject

Markus Krötzsch, 27 April 2015

Foundations of Databases and Query Languages

slide 26 of 31

Example: Playing "Geography"

A children's game:

- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- Repetitions are not allowed.
- The first player who cannot name a new city looses.

A mathematicians' game:

- Two players are marking nodes on a directed graph.
- Each node must be a successor of the previous one.
- Repetitions are not allowed.
- The first player who cannot mark a new node looses.

Question: given a certain graph and start node, can Player 1 enforce a win (i.e., does he have a winning strategy)?

ightarrow PSPACE-complete problem

Markus Krötzsch, 27 April 2015

Example: Quantified Boolean Formulae (QBF)

We consider formulae of the following form:

$$Q_1X_1.Q_2X_2.\cdots Q_nX_n.\varphi[X_1,\ldots,X_n]$$

where $Q_i \in \{\exists, \forall\}$ are quantifiers, X_i are propositional logic variables, and φ is a propositional logic formula with variables X_1, \ldots, X_n and constants \top (true) and \bot (false)

Semantics:

- \bullet Propositional formulae without variables (only constants \top and $\bot)$ are evaluated as usual
- $\exists X_1.\varphi[X_1]$ is true if either $\varphi[X_1/\top]$ or $\varphi[X_1/\bot]$ are
- $\forall X_1.\varphi[X_1]$ is true if both $\varphi[X_1/\top]$ and $\varphi[X_1/\bot]$ are

Question: Is a given QBF formula true?

ightarrow PSPACE-complete problem

Markus Krötzsch, 27 April 2015

Foundations of Databases and Query Languages

slide 29 of 31

Summary and Outlook

The complexity of query languages can be measured in different ways

Relevant complexity classes are based on restricting space and time:

$$L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXPTIME$$

Problems are compared using many-one reductions

Open questions:

- Now how hard is it to answer FO queries? (next lecture)
- We saw that joins are in LogSpace is this tight?
- How can we study the expressiveness of query languages?

A Note on Space and Time

How many different configurations does a TM have in space (f(n))?

$$|Q| \cdot f(n) \cdot |\Sigma|^{f(n)}$$

- \rightarrow No halting run can be longer than this
- \sim A time-bounded TM can explore all configurations in time proportional to this

Applications:

- $L \subseteq P$
- PSPACE ⊆ EXPTIME

Markus Krötzsch, 27 April 2015

Foundations of Databases and Query Languages

slide 30 of 31